董記紅 吳金節(jié) 王希春 馮士彬 丁紅研 劉國文 李心慰 李小兵 王 哲 李 玉*
(1.安徽農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,合肥230036;2.吉林大學(xué)動(dòng)物醫(yī)學(xué)學(xué)院,長春130062)
?
腺苷酸活化蛋白激酶信號(hào)轉(zhuǎn)導(dǎo)通路在奶牛酮病發(fā)生和發(fā)展過程中的調(diào)控機(jī)制
董記紅1吳金節(jié)1王希春1馮士彬1丁紅研1劉國文2李心慰2李小兵2王 哲2李 玉1*
(1.安徽農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,合肥230036;2.吉林大學(xué)動(dòng)物醫(yī)學(xué)學(xué)院,長春130062)
奶牛酮病是圍產(chǎn)期奶牛常見的營養(yǎng)代謝性疾病,給奶牛業(yè)造成了巨大的損失。奶牛酮病發(fā)生時(shí),相關(guān)的能量代謝激素也發(fā)生了明顯的變化,主要是胰高血糖素和胰島素。腺苷酸活化蛋白激酶被認(rèn)為是機(jī)體的能量感受器,一些能量代謝激素可以引起其活性的變化。本文就胰高血糖素和胰島素對(duì)腺苷酸活化蛋白激酶信號(hào)轉(zhuǎn)導(dǎo)通路發(fā)生作用機(jī)制做一論述,旨在為下一步研究奶牛酮病提供理論支持。
胰高血糖素;胰島素;腺苷酸活化蛋白激酶;奶牛酮病
奶牛酮病是圍產(chǎn)期奶牛常見的營養(yǎng)代謝性疾病,多見于泌乳初期能量負(fù)平衡的奶牛[1-2],常引起食欲不振、精神沉郁等癥狀,嚴(yán)重的可引起神經(jīng)功能紊亂,常誘發(fā)脂肪肝、皺胃變位、胎衣不下和生產(chǎn)癱瘓等代謝性疾病[3],給奶牛業(yè)帶來巨大的經(jīng)濟(jì)損失。當(dāng)奶牛發(fā)生能量負(fù)平衡時(shí),脂肪大量動(dòng)員,導(dǎo)致肝臟脂代謝紊亂[1,4]。當(dāng)機(jī)體發(fā)生氧化應(yīng)激、低血糖等代謝紊亂時(shí),腺苷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase,AMPK)被磷酸化激活,蛋白質(zhì)、脂肪和糖原合成代謝通路受到抑制,葡萄糖轉(zhuǎn)運(yùn)、脂肪酸氧化及糖酵解等代謝通路得到增強(qiáng)[5-6]。
肝臟是動(dòng)物機(jī)體脂代謝的樞紐,肝臟脂代謝紊亂是造成酮病、脂肪肝和胰島素(insulin,INS)抵抗等能量代謝性疾病的重要原因之一[7]。AMPK是一個(gè)進(jìn)化保守的絲氨酸/蘇氨酸蛋白激酶,由催化亞基α、調(diào)節(jié)亞基β和γ組成,參與細(xì)胞中的多條代謝通路來適應(yīng)能量的變化,在調(diào)節(jié)細(xì)胞和機(jī)體能量穩(wěn)態(tài)上有重要作用,被認(rèn)為是細(xì)胞的能量感受器[8]。它廣泛存在于骨骼肌、肝臟、胰腺和脂肪組織中,可通過對(duì)靶蛋白的磷酸化調(diào)節(jié)代謝通路,影響脂代謝[9]。AMPK在肝臟脂代謝中起著核心作用[9]。對(duì)大鼠的研究表明,AMPK活化后,導(dǎo)致大鼠體內(nèi)β-羥-β-甲基戊二酰輔酶A(β-hydroxy-β-methyl glutaryl coenzyme A,HMG-CoA)合成酶、乙酰輔酶A羧化酶(acetyl-CoA carboxylase,ACC)和甘油-3-磷酸?;D(zhuǎn)移酶活性降低甚至喪失,從而抑制膽固醇、脂肪酸和甘油三酯(triglyceride,TG)的合成,提高脂肪酸的氧化速度[10]。AMPK通過甾醇調(diào)節(jié)元件結(jié)合蛋白Ⅰc(sterol regulatory element-binding protein-Ⅰc,SREBP-Ⅰc)、磷酸化碳水化合物應(yīng)答元件結(jié)合蛋白(carbohydrate responsive element-binding protein,ChREBP)和過氧化物酶體增殖激活受體(peroxisome proliferators-activated receptor,PPAR)α參與脂代謝的調(diào)節(jié)[5,11-12]。SREBP-Ⅰc是一種主要高表達(dá)于肝臟的轉(zhuǎn)錄因子,通過調(diào)控脂肪酸、TG合成和轉(zhuǎn)運(yùn)相關(guān)酶的表達(dá)來促進(jìn)脂合成和轉(zhuǎn)運(yùn)作用[5]。肝臟高表達(dá)SREBP-Ⅰc基因的小鼠,可導(dǎo)致TG的聚集,且脂肪酸的合成速率和相關(guān)酶類表達(dá)升高[5]。ChREBP同樣是調(diào)控肝臟脂代謝的主要轉(zhuǎn)錄因子,與SREBP-Ⅰc相互協(xié)作,共同完成肝臟的脂代謝調(diào)節(jié)[13]。在正常飲食情況下,ChREBP基因敲除小鼠的肝臟中,三磷酸腺苷(adenosine triphosphate,ATP)-檸檬酸裂解酶、ACCⅠ和脂肪酸合成酶的mRNA水平較對(duì)照組小鼠均顯著下降,最終導(dǎo)致其肝臟脂肪酸合成減少[13]。PPARα是PPAR的一種亞型,主要高表達(dá)于具有豐富線粒體和β氧化活性的組織,如肝、心臟[11]。動(dòng)物研究表明,PPARα能與配體結(jié)合而活化,從而增強(qiáng)與脂質(zhì)代謝有關(guān)的酶和基因的轉(zhuǎn)錄,如肉堿脂?;D(zhuǎn)移酶Ⅰ、肉堿脂?;D(zhuǎn)移酶Ⅱ、?;o酶A氧化酶3-羥基-3-甲基戊二酰輔酶A合成酶,使肝臟氧化脂肪酸能力加強(qiáng)[11]。
2.1 GLN與奶牛酮病
當(dāng)發(fā)生酮病時(shí),奶牛參與能量調(diào)節(jié)的內(nèi)分泌激素發(fā)生顯著變化,主要是INS和GLN[7]。酮病奶牛血液中INS含量降低,GLN的含量顯著升高[7]。其中,GLN是由胰島α細(xì)胞分泌的一種多肽激素,由29個(gè)氨基酸殘基組成,主要作用于肝臟,促進(jìn)肝糖原分解,抑制肝糖原合成,促進(jìn)葡萄糖異生、分解和脂肪分解[12]。因此,GLN對(duì)于反芻動(dòng)物的能量代謝至關(guān)重要。近年來對(duì)GLN在脂代謝方面的研究逐年增加。Bobe等[14]研究表明,中度脂肪肝奶牛產(chǎn)犢后2~3周注射GLN(15mg/d),可以緩解由脂肪肝導(dǎo)致的體溫升高,以及減低患乳房炎的風(fēng)險(xiǎn)。他們還指出,環(huán)境低于35℃時(shí),皮下注射GLN,效果更明顯,且無副作用。
2.2 GLN與AMPK信號(hào)轉(zhuǎn)導(dǎo)通路
GLN和環(huán)腺苷酸(cAMP)的增加可導(dǎo)致HMG-CoA還原酶以及ACC的失活,而這2種酶正是AMPK的作用靶點(diǎn)[15-16]。使用GLN刺激鼠的肝細(xì)胞,可以導(dǎo)致ACC磷酸化而失活,最初的研究認(rèn)為這是由cAMP依賴蛋白激酶直接抑制所致,而進(jìn)一步的研究卻發(fā)現(xiàn)這是AMPK的作用結(jié)果[16]。因此,增加GLN的含量或者由條件改變引起GLN的增加,均可導(dǎo)致肝臟AMPK的活化[17]。GLN與AMPK信號(hào)轉(zhuǎn)導(dǎo)通路相互關(guān)系如圖1所示。
為了更清楚地了解GLN的生理作用,必須要知道GLN由胰腺分泌到門靜脈,而門靜脈是肝臟最主要的供血血管[18]。這是GLN對(duì)肝臟起作用的有效通道,但也是試驗(yàn)困難的所在。因?yàn)?,大部分的GLN在肝臟被利用,檢測系統(tǒng)血液并不能反映門靜脈血液中GLN的含量[18]。GLN增加肝臟葡萄糖的輸出、脂肪酸氧化和氨基酸代謝以及尿素生成[7]。近期研究表明,體內(nèi)GLN的升高可以增加單磷酸腺苷(AMP)/ATP,同時(shí)活化AMPK,而且,饑餓和鍛煉時(shí),GLN受體信號(hào)是AMPK活化必不可少的[19]。
在氧氣吸收和脂肪氧化增加時(shí),GLN增加,AMPK活化[20]。三羧酸循環(huán)(tricarboxylic acid cycle,TCA)和糖異生的關(guān)系與ATP生成、消耗的關(guān)系是相對(duì)應(yīng)的。TCA和糖異生的增加會(huì)引起肝臟ATP的消耗,這與鍛煉和饑餓時(shí)引起AMP/ATP的增加是相似的[21]。活化脂肪酸的氧化和氨基酸的糖異生也需要消耗ATP。研究表明,氨基酸和脂肪酸糖異生,每生產(chǎn)1mol葡萄糖分別消耗6和4mol的ATP;乳酸、丙氨酸、丙酮酸以及油酸轉(zhuǎn)移入TCA,AMP也會(huì)增加[22]。也就是說,GLN信號(hào)可通過增加肝臟AMP含量,進(jìn)而活化AMPK。
AMP的增加可以使AMPK磷酸化增加,被認(rèn)為是肝激酶BⅠ(liver kinase BⅠ,LKBⅠ)作用的結(jié)果[23]。GLN也可以增加細(xì)胞質(zhì)內(nèi)鈣離子(Ca2+)的含量,從而活化鈣調(diào)蛋白依賴性蛋白激酶激酶α/β,最終使AMPK磷酸化[24]。Berglund等[21]研究表明,野生型小鼠在饑餓處理18h或運(yùn)動(dòng)到精疲力竭時(shí),分別可以導(dǎo)致AMP/ATP增加5和10倍,而在GLN受體缺陷的小鼠模型中,則不會(huì)出現(xiàn)上述變化。同時(shí),使用高胰高血糖素-正葡萄糖鉗夾技術(shù),可以提高循環(huán)血中GLN卻不會(huì)造成高血糖和高INS血癥。
饑餓時(shí),肝臟AMPK活化,使ACC失活,這一現(xiàn)象在肝臟呈帶狀分布[25]。門靜脈附近組織的糖異生、尿素生成和β-氧化以及酮體生成能力較強(qiáng),這種現(xiàn)象同激素與肝臟底物的含量相對(duì)應(yīng)[26]。饑餓的情況下,AMPK活化主要集中在門靜脈附近,這與GLN在門靜脈附近濃度較高一致[27]。長時(shí)間劇烈運(yùn)動(dòng)也會(huì)導(dǎo)致ACC的失活,降低丙二酰輔酶A含量,增加β-羥基丁酸(beta-hydroxybutyrate,BHBA)的含量,并活化AMPK[28]。GLN介導(dǎo)的AMPK活化可快速抑制肝臟脂肪的從頭合成并促進(jìn)脂肪酸的氧化,通過抑制ACC調(diào)節(jié)丙二酰輔酶A的能力,減少脂肪生成碳底物,并消除對(duì)肉堿棕櫚酰轉(zhuǎn)移酶-Ⅰ(carnitine palmitoyl transterase-Ⅰ,CPTⅠ)的抑制作用[29]。相同地,GLN抑制SREBP-Ⅰc的表達(dá),SREBP-Ⅰ是肝臟脂肪生成的控制器[30]。Li等[5]的研究表明,AMPK磷酸化可以降低SREBP-Ⅰc的活性,缺乏AMPKβⅠ的肝細(xì)胞TG合成能力提升,脂肪酸氧化能力減弱。因此可以推斷GLN通過AMPK抑制了SREBP-Ⅰc的活性。
通過對(duì)肝臟AMPKαⅡ缺乏或過表達(dá)小鼠的研究表明,AMPK活化抑制脂肪生成,促進(jìn)脂肪氧化[31]。對(duì)肝臟缺乏AMPKαⅡ的小鼠進(jìn)行5h的饑餓處理,可導(dǎo)致其血漿游離脂肪酸(free fatty acids,FFAs)、TG的升高和BHBA減少。GLN受體基因敲除小鼠模型在饑餓處理16h后,其血脂狀態(tài)與上述AMPKαⅡ缺乏小鼠相似,TG和FFAs升高[32]。相反地,腺病毒介導(dǎo)的肝臟AMPKαⅡ過表達(dá),可降低血漿TG含量,增加BHBA含量[31]。
長時(shí)間自主和強(qiáng)迫運(yùn)動(dòng),可導(dǎo)致GLN作用增強(qiáng),AMPK活化,這與改善高脂飲食造成小鼠脂肪肝相一致[19]。劇烈和長時(shí)間運(yùn)動(dòng)可以使肝臟AMP/ATP升高,AMPK活化,這依賴GLN受體信號(hào)以及磷酸烯醇丙酮酸羧激酶的含量[21]。AMP/ATP的提高、AMPK活化以及PPARα和成纖維細(xì)胞生長因子(fibroblast growth factor XXI,FGFXXI)的轉(zhuǎn)錄和翻譯伴隨著脂肪肝的改善[19]。在脂肪細(xì)胞中,F(xiàn)GFXXI可增加AMPK活化、煙酰腺嘌呤二核苷酸/還原型煙酰胺腺嘌呤二核苷酸和氧氣消耗;在線粒體中,F(xiàn)GFXXI發(fā)揮作用則主要依賴過氧化物酶體增生物激活受體輔助活化因子Ⅰα、LKBⅠ、AMPK和沉默信息調(diào)節(jié)因子[33]。在肝臟中,F(xiàn)GFXXI介導(dǎo)GLN發(fā)揮著長期的作用。完整的GLN-AMPK信號(hào)網(wǎng)絡(luò)對(duì)肝臟疾病的恢復(fù)可能是至關(guān)重要的。因此可以推測,奶牛酮病肝脂代謝紊亂可能與高GLN狀態(tài)引起的肝臟AMPK信號(hào)通路變化有關(guān)。
當(dāng)奶牛發(fā)生酮病時(shí),另一能量代謝激素INS水平降低[13]。INS是由胰島β細(xì)胞分泌的一種蛋白質(zhì)激素,是機(jī)體內(nèi)唯一降低血糖的激素,主要作用于肝臟,可促進(jìn)糖原、脂肪和蛋白質(zhì)合成。
INS和AMPK信號(hào)通路通過在關(guān)鍵信號(hào)位點(diǎn)進(jìn)行重疊,來共同維持器官的穩(wěn)態(tài)[34]。在很多病理狀態(tài)下,可以檢測到INS和AMPK信號(hào)通路的失衡,例如糖尿病、肥胖、營養(yǎng)缺乏[5]。已有研究證明,INS可降低肝臟AMPK的活性。經(jīng)INS前期處理,絲氨酸/蘇氨酸蛋白激酶/蛋白激酶B可以使AMPKαⅠ第485位絲氨酸(Ser485)和AMPKαⅡ第491位絲氨酸(Ser491)磷酸化,而AMPKα第172位蘇氨酸(Thr172)磷酸化減少[35]。前面提到,AMPK可抑制脂肪合成,促進(jìn)脂肪氧化,可通過增加cAMP,GLN和腎上腺素來活化AMPK,從而迅速使ACC失活。與此相反,INS降低AMPK的活性,同時(shí)增加ACC的活性[36]。INS介導(dǎo)的ACC活化的具體機(jī)制仍未明確,可能是共價(jià)以及變構(gòu)修飾的結(jié)果[37]。
GLN和AMPK共同降低SREBP-Ⅰc的表達(dá)與活化,GLN間歇地刺激活化AMPK,例如,定期的運(yùn)動(dòng)能調(diào)節(jié)氧化應(yīng)激、肝臟抗脂肪生成區(qū)域,活化PPARα,抑制雷帕霉素靶蛋白復(fù)合物Ⅰ和SREBP-Ⅰc[30]。相反,INS增強(qiáng)SREBP-Ⅰc的編碼和轉(zhuǎn)錄以及靶基因的表達(dá)[38]。機(jī)體在正?;蛘叽嬖贗NS抵抗的狀況下,INS通過對(duì)SREBP-Ⅰc的控制,介導(dǎo)肝臟中脂肪的合成[39]。AMPK對(duì)機(jī)體的調(diào)節(jié)并不是單一的,而是與許多代謝通路和調(diào)節(jié)信號(hào)組成的復(fù)雜網(wǎng)絡(luò)而發(fā)揮作用。GLN和INS與AMPK信號(hào)轉(zhuǎn)導(dǎo)通路調(diào)控的相互關(guān)系如圖1所示。
奶牛酮病的特點(diǎn)是高非酯化脂肪酸、高BHBA和低血糖,存在能量負(fù)平衡,體內(nèi)代謝紊亂。而AMPK信號(hào)轉(zhuǎn)導(dǎo)通路在調(diào)節(jié)糖酵解、葡萄糖轉(zhuǎn)換、脂類代謝過程中發(fā)揮著重要的作用。已有研究通過培養(yǎng)牛肝細(xì)胞,添加BHBA和AMPK抑制劑(Compound C,Cpd C)來檢測BHBA在AMPK信號(hào)轉(zhuǎn)導(dǎo)通路中發(fā)揮的作用。結(jié)果表明,當(dāng)BHBA含量達(dá)到1.2mmol/L時(shí),AMPK信號(hào)通路被激活,SREBP-Ⅰc及其目的基因的表達(dá)下降。沒有添加Cpd C組中,PPARα、ChREBP及其目的基因的表達(dá)顯著升高。這說明BHBA可以激活A(yù)MPK信號(hào)轉(zhuǎn)導(dǎo)通路,調(diào)控AMPK脂代謝相關(guān)基因[40]。Mahmoudi等[41]研究表明,通過調(diào)控AMPKγⅠ 3′非編碼區(qū)基因的突變,血清中BHBA含量明顯升高,說明AMPKγⅠ基因在酮體生成過程中發(fā)揮著重要的作用。
圖1 GLN和INS與AMPK信號(hào)轉(zhuǎn)導(dǎo)通路調(diào)控的相互關(guān)系Fig.1 The correlation between GLN and INS, and AMPK signal transduction pathways
奶牛酮病的發(fā)生,是一個(gè)十分復(fù)雜的過程,盡管在過去的一段時(shí)間內(nèi),有關(guān)奶牛酮病的研究報(bào)道已經(jīng)很多,但主要集中在奶牛酮病的防治上,其發(fā)生的分子機(jī)制目前為止還不清楚。近年來,AMPK信號(hào)通路已經(jīng)逐漸成為生命科學(xué)研究的熱點(diǎn)。但是,多數(shù)有關(guān)這方面的報(bào)道主要集中在小鼠和人,有關(guān)反芻動(dòng)物,尤其是奶牛,這方面文獻(xiàn)報(bào)道的資料還知之甚少。因此,研究奶牛酮病發(fā)生過程中,GLN和INS如何調(diào)控AMPK信號(hào)轉(zhuǎn)導(dǎo)通路中關(guān)鍵酶、基因,非編碼RNA的表達(dá),將具有十分重要的意義。
[1] 張輝,王哲.圍產(chǎn)期奶牛能量代謝障礙性疾病概述[J].中國獸醫(yī)雜志,2007,43(4):72-74.
[2] 黃克和.奶牛酮病和脂肪肝綜合癥研究進(jìn)展[J].中國乳業(yè),2008(6):62-66.
[3] VAN KNEGSEL A T M,VAN DEN BRANDA H,DIJKSTRA J,et al.Effect of dietary energy source on energy balance,production,metabolic disorders and reproduction in lactating dairy cattle[J].Reproduction Nutrition Development,2005,45(6):665-688.
[4] 孫玉成.圍產(chǎn)期奶牛肝VLDL組裝與分泌主要相關(guān)蛋白基因表達(dá)的調(diào)控[D].博士學(xué)位論文.長春:吉林大學(xué),2006.
[5] LI Y,XU S Q,MIHAYLOVA M M,et al.AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice[J].Cell Metabolism,2011,13(4):376-388.
[6] 陳雷.AMP激活蛋白質(zhì)激酶(AMPK)調(diào)控機(jī)制的研究[D].博士學(xué)位論文.北京:清華大學(xué),2010.
[7] 李鵬.酮病奶牛肝臟脂肪酸氧化代謝特征及其調(diào)控[D].博士學(xué)位論文.長春:吉林大學(xué),2012.
[8] HARDIE D G,HAWLEY S A.AMP-activated protein kinase:the energy charge hypothesis revisited[J].BioEssays,2001,23(12):1112-1119.
[9] FORETZ M,VIOLLET B.Regulation of hepatic metabolism by AMPK[J].Journal of Hepatology,2011,54(4):827-829.
[10] BROWNING J D,HORTON J D.Molecular mediators of hepatic steatosis and liver injury[J].The Journal of Clinical Investigation,2004,114(2):147-152.
[11] UYEDA K,YAMASHITA H,KAWAGUCHI T.Carbohydrate responsive element-binding protein (ChREBP):a key regulator of glucose metabolism and fat storage[J].Biochemical Pharmacology,2002,63(12):2075-2080.
[12] 張永宏,高妍,孫玉成,等.神經(jīng)內(nèi)分泌因子、代謝產(chǎn)物對(duì)體外培養(yǎng)新生犢牛肝細(xì)胞胰高血糖素受體mRNA豐度的影響[J].中國草食動(dòng)物,2007,27(6):3-6.
[13] BARRETO-TORRES G,PARODI-RULLN R,JAVADOV S.The role of PPARα in metformin-induced attenuation of mitochondrial dysfunction in Acute Cardiac Ischemia/ reperfusion in rats[J].International Journal of Molecular Sciences,2012,13(6):7694-7709.
[14] BOBE G,AMETAJ B N,YOUNG J W,et al.Effects of exogenous glucagon on lipids in lipoproteins and liver of lactating dairy cows[J].Journal of Dairy Science,2003,86(9):2895-2903.
[15] HOLLAND R,WITTERS L A,HARDIE D G.Glucagon inhibits fatty acid synthesis in isolated hepatocytes via phosphorylation of acetyl-CoAcarboxylase by cyclic-AMP-dependent protein kinase[J].European Journal of Biochemistry,1984,140(2):325-333.
[16] SIM A T R,HARDIE D G.The low activity of acetyl-CoA carboxylase in basal and glucagon- stimulated hepatocytes is due to phosphorylation by the AMP-activated protein kinase and not cyclic AMP-dependent protein kinase[J].FEBS Letters,1988,233(2):294-298.
[17] BERGLUND E D,KANG L,LEE-YOUNG R S,et al.Glucagon and lipid interactions in the regulation of hepatic AMPK signaling and expression ofPPARαandFGF21transcriptsinvivo[J].American Journal of Physiology:Endocrinology and Metabolism,2010,299(4):E607-E614.
[18] WASSERMAN D H,LACY D B,BRACY D P.Relationship between arterial and portal vein immunoreactive glucagon during exercise[J].Journal of Applied Physiology,1993,75(2):724-729.
[19] BERGLUND E D,LUSTIG D G,BAHEZA R A,et al.Hepatic glucagon action is essential for exercise-induced reversal of mouse fatty liver[J].Diabetes ,2011,60(11):2720-2729.
[20] KIMMIG R,MAUCH T J,KERZL W,et al.Actions of glucagon on flux rates in perfused rat liver[J].The FEBS Journal,1983,136(3):609-616.
[21] BERGLUND E D,LEE-YOUNG R S,LUSTIG D G,et al.Hepatic energy state is regulated by glucagon receptor signaling in mice[J].The Journal of Clinical Investigation,2009,119(8):2412-2422.
[22] HEMS R,ROSS B D,BERRY M N,et al.Gluconeogenesis in the perfused rat liver[J].Biochemical Journal,1966,101(2):284-292.
[23] HAWLEY S A,BOUDEAU J,REID J L,et al.Complexes between the LKB1tumor suppressor,STRADα/β and MO25α/β are upstream kinases in the AMP- activated protein kinase cascade[J].Journal of Biology,2003,2(4):28.
[24] CHAREST R,BLACKMORE P F,BERTHON B,et al.Changes in free cytosolic Ca2+in hepatocytes following α1-adrenergic stimulation.Studies on Quin-2-loaded hepatocytes[J].The Journal of Biological Chemistry,1983,258(14):8769-8773.
[25] MUNDAY M R,MILIC M R,TAKHAR S,et al.The short-term regulation of hepatic acetyl-CoA carboxylase during starvation and re-feeding in the rat[J].Biochemical Journal,1991,280(3):733-737.
[26] JUNGERMANN K,KEITZMANN T.Zonation of parenchymal and nonparenchymal metabolism in liver[J].Annual Review of Nutrition,1996,16(1):179-203.
[27] WITTERS L A,GAO G,KEMP B E,et al.Hepatic 5′-AMP-activated protein kinase:zonal distribution and relationship to acetyl-CoA carboxylase activity in varying nutritional states[J].Archives of Biochemistry and Biophysics,1994,308(2):413-419.
[28] CARLSON C L,WINDER W W.Liver AMP-activated protein kinase and acetyl-CoAcarboxylase during and after exercise[J].Journal of Applied Physiology,1999,86(2):669-674.
[29] HALLOWS K R.Emerging role of AMP-activated protein kinase in coupling membrane transport to cellular metabolism[J].Current Opinion in Nephrology & Hypertension,2005,14(5):464-471.
[30] FORETZ M,PACOT C,DUGAIL I,et al.ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose[J].Molecular and Cellular Biology,1999,19(5):3760-3768.
[31] FORETZ M,ANCELLIN N,ANDREELLI F,et al.Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver[J].Diabetes,2005,54(5):1331-1339.
[32] LONGUET C,SINCLAIR E M,MAIDA A,et al.The glucagon receptor is required for the adaptive metabolic response to fasting[J].Cell Metabolism,2008,8(5):359-371.
[33] CHAU M D L,GAO J P,YANG Q,et al.Fibroblast growth factor 21regulates energy metabolism by activating the AMPK-SIIRT1-PGC-1α pathway[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(28):12553-12558.
[34] HASENOUR C M,BERGLUND E D,WASSERMAN D H.Emerging role of AMP-activated protein kinase in endocrine control of metabolism in the liver[J].Molecular and Cellular Endocrinology,2013,366(2):152-162.
[35] MORALES-ALAMO D,PONCE-GONZLEZ J G,GUADALUPE-GRAU A,et al.Increased oxidative stress and anaerobic energy release,but blunted Thr172-AMPKα phosphorylation,in response to sprint exercise in severe acute hypoxia in humans[J].Journal of Applied Physiology,2012,113(6):917-928.
[36] WITTERS L A,KEMP B E.Insulin activation of acetyl-CoA carboxylase accompanied by inhibition of the 5′-AMP-activated protein kinase[J].The Journal of Biological Chemistry,1992,267(5):2864-2867.
[37] BROWNSEY R W,BOONE A N,ELLIOTT J E,et al.Regulation of acetyl-CoA carboxylase[J].Biochemical Society Transactions,2006,34:223-227.
[38] LI S,BROWN M S,GOLDSTEIN J L.Bifurcation of insulin signaling pathway in rat liver:mTORC1required for stimulation of lipogenesis,but not inhibition of gluconeogenesis[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(8):3441-3446.
[39] BROWN M S,GOLDSTEIN J L.Selective versus total insulin resistance:a pathogenic paradox[J].Cell Metabolism,2008,7(2):95-96.
[40] DENG Q H,LIU G W,LIU L,et al.BHBA influences bovine hepatic lipid metabolism via AMPK signaling pathway[J].Journal of Cellular Biochemistry,2015,116(6):1070-1079.
[41] MAHMOUDI A,ZARGARAN A,AMINI H R,et al.A SNP in the 3′-untranslated region of AMPKγ1may associate with serum ketone body and milk production of Holstein dairy cows[J].Gene,2015,574(1):48-52.
(責(zé)任編輯 王智航)
Adenosine Monophosphate-Activated Protein Kinase Signal Transduction Pathways: Regulation Mechanism in Process of Cow Ketosis Occurrence and Development
DONG Jihong1WU Jinjie1WANG Xichun1FENG Shibin1DING Hongyan1LIU Guowen2LI Xinwei2LI Xiaobing2WANG Zhe2LI Yu1*
(1.CollegeofAnimalScienceandTechnology,AnhuiAgriculturalUniversity,Hefei230036,China;2.CollegeofVeterinaryMedicine,JilinUniversity,Changchun130062,China)
Cow ketosis is a common nutritional and metabolic disease during perinatal, which has caused tremendous losses to the dairy industry. Related energy metabolic hormones have undergone tremendous changes when ketosis occurs, mainly including glucagon and insulin. Adenosine monophosphate-activated protein kinase (AMPK) is considered to be an energy sensor, some energy metabolic hormones can cause changes of AMPK activity. This article focused on the role of glucagon and insulin in AMPK signal transduction pathways aimed at providing theoretical support for further research in cow ketosis.[ChineseJournalofAnimalNutrition, 2016, 28(4):1035-1041]
glucagon; insulin; adenosine monophosphate-activated protein kinase; cow ketosis
10.3969/j.issn.1006-267x.2016.04.010
2015-10-15
安徽農(nóng)業(yè)大學(xué)青年科學(xué)基金項(xiàng)目(2014zr008);國家自然科學(xué)基金項(xiàng)目(31172372,31502136)
董記紅(1991—),女,山東濟(jì)南人,碩士研究生,從事畜禽營養(yǎng)代謝病研究。E-mail: Jihongdong91@163.com
*通信作者:李 玉,講師,E-mail: lydhy2014@ahau.edu.cn
S823
A
1006-267X(2016)04-1035-07
*Corresponding author, lecturer, E-mail: lydhy2014@ahau.edu.cn
動(dòng)物營養(yǎng)學(xué)報(bào)2016年4期