田 娟 何 艮 麥康森 周慧慧
(1.中國海洋大學(xué),農(nóng)業(yè)部水產(chǎn)動物營養(yǎng)與飼料重點(diǎn)實(shí)驗(yàn)室,青島266003;2.中國水產(chǎn)科學(xué)研究院長江水產(chǎn)研究所,農(nóng)業(yè)部淡水生物多樣性保護(hù)與利用重點(diǎn)開放實(shí)驗(yàn)室,武漢430223)
?
魚類食欲調(diào)控研究進(jìn)展
田 娟1,2何 艮1*麥康森1周慧慧1
(1.中國海洋大學(xué),農(nóng)業(yè)部水產(chǎn)動物營養(yǎng)與飼料重點(diǎn)實(shí)驗(yàn)室,青島266003;2.中國水產(chǎn)科學(xué)研究院長江水產(chǎn)研究所,農(nóng)業(yè)部淡水生物多樣性保護(hù)與利用重點(diǎn)開放實(shí)驗(yàn)室,武漢430223)
尋找魚粉替代物已成為肉食性魚類養(yǎng)殖可持續(xù)發(fā)展的必然要求,如何提高魚類對魚粉替代物的利用率成為了魚粉替代研究的瓶頸。食欲是影響魚粉替代的重要因素,而食欲調(diào)控網(wǎng)絡(luò)通過各種食欲調(diào)節(jié)因子(包括促進(jìn)食欲因子和抑制食欲因子)的信號傳遞作用和中樞信號通路,對攝食進(jìn)行綜合調(diào)節(jié)。本文綜述了常見食欲調(diào)節(jié)因子和中樞信號通路對食欲的調(diào)控,以期為魚類食欲調(diào)控研究提供參考。
食欲;魚類;食欲調(diào)節(jié)因子;中樞信號通路
漁業(yè)養(yǎng)殖的最終目的是以最少的投入生產(chǎn)出優(yōu)質(zhì)的漁獲物,以獲得最大的經(jīng)濟(jì)效益,并實(shí)現(xiàn)漁業(yè)的可持續(xù)發(fā)展。魚類養(yǎng)殖經(jīng)濟(jì)效益的實(shí)現(xiàn)很大部分依賴于魚類的生長,魚類的生長與其攝食量密切相關(guān),而食欲是取決動物攝食量的一個重要因素,因此深入了解魚類的攝食機(jī)理,對促進(jìn)水產(chǎn)養(yǎng)殖業(yè)的發(fā)展具有重要意義。目前對食欲的研究主要集中在哺乳動物上,關(guān)于魚類食欲的研究相對少且零散,宏觀方面的研究僅停留在攝食率或消化率方面,分子水平的研究也主要是對幾種食欲調(diào)節(jié)因子的基因克隆,而沒有深入的研究食欲調(diào)節(jié)的信號通路。因此,本文主要綜述動物常見食欲調(diào)節(jié)因子和2條信號通路的研究進(jìn)展,以期為魚類食欲調(diào)控研究提供參考。
食欲調(diào)節(jié)因子包括促進(jìn)食欲因子和抑制食欲因子,由中樞神經(jīng)系統(tǒng)或外周調(diào)節(jié)系統(tǒng)分泌(表1)。食欲調(diào)節(jié)因子對食欲的調(diào)節(jié)雖為短期作用,卻非常重要。胃腸道、胰島、肝臟門脈系統(tǒng)及內(nèi)臟脂肪等器官可感知機(jī)體能量狀態(tài),所產(chǎn)生的食欲相關(guān)肽通過神經(jīng)和內(nèi)分泌途徑向中樞傳遞,由下丘腦整合多種信號后對攝食進(jìn)行動態(tài)調(diào)節(jié)。在魚類上研究的食欲調(diào)節(jié)因子目前主要有瘦素(leptin)、神經(jīng)肽Y(NPY)、食欲肽(orexin)、可卡因及安非他明調(diào)節(jié)的轉(zhuǎn)錄因子(CART)和膽囊收縮素(CCK)[1-2]。
1.1 leptin
leptin是由瘦素基因(又稱肥胖基因,obese)編碼,由脂肪細(xì)胞分泌的一種調(diào)節(jié)機(jī)體能量平衡的蛋白質(zhì)類激素,參與能量代謝、神經(jīng)-內(nèi)分泌、血管新生、生殖、免疫應(yīng)答等的調(diào)節(jié),能夠促進(jìn)細(xì)胞損傷的修復(fù),有助于內(nèi)環(huán)境紊亂的恢復(fù)[3]。leptin為一種飽食信號,主要作用于大腦的攝食和飽食中樞[4]。leptin對機(jī)體內(nèi)各種生理功能的調(diào)節(jié)作用均通過與瘦素受體(leptin receptor,LEPR)的結(jié)合來實(shí)現(xiàn),且leptin與LEPR間結(jié)合的比例為1∶1。LEPR是糖尿病基因的產(chǎn)物,屬于Ⅰ型細(xì)胞因子受體家族,存在6種亞型,即LEPRa、LEPRb、LEPRc、LEPRd、LEPRe和LEPRf,它們是由LEPR基因轉(zhuǎn)錄后通過不同剪切而生成的[5]。近年的研究發(fā)現(xiàn)leptin和LEPR在機(jī)體多個組織中有分布,leptin除了存在于常見的脂肪組織中,還存在于消化系統(tǒng)中;而LEPR分布更為廣泛,如腦、心臟、胎盤、肝臟、胃、腸道、味蕾等[6]。研究還發(fā)現(xiàn)leptin通過與味覺細(xì)胞的LEPR結(jié)合,從而抑制對甜味物質(zhì)的反應(yīng)[7]。
表1 食欲調(diào)節(jié)因子Table 1 Appetite regulation factors
由leptin介導(dǎo)的食欲調(diào)節(jié)過程如圖1所示:當(dāng)機(jī)體脂肪含量增加時,leptin在脂肪組織中合成分泌增多,后分泌到血液中與LEPRe結(jié)合形成leptin-Re;leptin-Re將leptin帶入眼周圍的脈絡(luò)膜,在此處與LEPRa結(jié)合,生成leptin-Ra;leptin-Ra將leptin輸送到腦脊液中與廣泛分布在下丘腦的LEPRb結(jié)合,生成leptin-Rb;leptin-Rb在下丘腦誘發(fā)神經(jīng)細(xì)胞阿片黑素促皮質(zhì)素原(POMC)基因表達(dá)加強(qiáng);POMC基因的強(qiáng)表達(dá)導(dǎo)致其分解產(chǎn)物α-促黑素細(xì)胞激素(α-MSH)的濃度升高;α-MSH進(jìn)而與其受體黑素皮質(zhì)素受體-4(MC4R)結(jié)合,產(chǎn)生抑制食欲的生理效應(yīng)。食欲被抑制導(dǎo)致機(jī)體脂肪含量減少,leptin合成分泌下降,通過減少與LEPR的結(jié)合而導(dǎo)致下丘腦神經(jīng)細(xì)胞POMC基因表達(dá)下降;POMC分泌下降導(dǎo)致α-MSH濃度降低,進(jìn)而由于MC4R不被結(jié)合增加而產(chǎn)生食欲升高的生理效應(yīng)[8-10]。通過leptin介導(dǎo)的食欲調(diào)節(jié)使機(jī)體的體重在正常生理?xiàng)l件下穩(wěn)定在一定范圍內(nèi),當(dāng)以上任何基因發(fā)生突變而導(dǎo)致上述反饋過程被打破時,機(jī)體表現(xiàn)為嗜食且導(dǎo)致肥胖[11]。
以前的研究多集中在leptin對陸生動物脂肪沉積影響的研究,而近年關(guān)于leptin調(diào)節(jié)蛋白質(zhì)代謝的作用逐漸受到學(xué)者們的關(guān)注[12]。長期高蛋白質(zhì)飲食會導(dǎo)致人體能量攝入的減少和血清中l(wèi)eptin濃度的升高[13]。Carbó等[14]以生長雌性大鼠為試驗(yàn)動物,通過一次性靜脈注射10μg/kg體重的人leptin,發(fā)現(xiàn)短期大劑量leptin給予降低了骨骼肌內(nèi)蛋白質(zhì)的合成,但對骨骼肌內(nèi)蛋白質(zhì)分解沒有顯著影響。毛湘冰等[15]的研究發(fā)現(xiàn),長期飼喂添加L-亮氨酸的飼糧可提高生長大鼠血漿中l(wèi)eptin濃度,并可顯著調(diào)節(jié)生長大鼠骨骼肌蛋白質(zhì)代謝。另外有研究者發(fā)現(xiàn)亮氨酸可以顯著刺激C2C12肌管LEPR的表達(dá),這種作用呈現(xiàn)劑量依賴性,且亮氨酸對哺乳動物雷帕霉素靶蛋白(mTOR)磷酸化水平的影響與對LEPR表達(dá)的影響呈現(xiàn)了類似的趨勢;用mTOR磷酸化的特異性抑制劑(雷帕霉素,20ng/mL)進(jìn)行處理后,亮氨酸誘導(dǎo)的mTOR磷酸化水平被完全抑制,誘導(dǎo)的LEPR的表達(dá)被顯著抑制。這表明亮氨酸可以誘導(dǎo)C2C12肌管內(nèi)LEPR的表達(dá),且這一過程是通過調(diào)節(jié)mTOR信號通路和LEPRmRNA表達(dá)豐度來完成的[16]。
圖1 瘦素對食欲調(diào)節(jié)示意圖Fig.1 Model of leptin regulate appetite
目前關(guān)于魚類leptin的研究主要是對leptin和LEPR基因的克隆,如斑馬魚、草魚、大西洋鮭、羅非魚、大麻哈魚、金魚、河豚、虹鱒、鯽魚、鯉魚、條紋鱸等[1,17],也有關(guān)于leptin基因結(jié)構(gòu)、重組表達(dá)和功能的少量研究[18]。與哺乳類不同的是,某些魚類存在2種亞型的leptin,如青鳉、斑馬魚、石斑魚等。魚類LEPR同樣與哺乳類存在差異,其亞型較少,目前發(fā)現(xiàn)在鯽魚上存在3種亞型[19],在大西洋鮭上存在5種亞型[20]。但在功能上,魚類和哺乳類相似,leptin可降低金魚[21]、虹鱒[22]和草魚[23]等的攝食量,促進(jìn)草魚脂肪分解和β氧化并抑制脂肪合成[24],降低羅非魚肝臟糖原水平[25]。此外,魚類leptin濃度與營養(yǎng)狀況有關(guān),并且對能量平衡具有長期調(diào)控作用[20,26-27]。未見關(guān)于leptin對魚類蛋白質(zhì)和氨基酸吸收代謝的調(diào)節(jié)的報道。
1.2 饑餓素(ghrelin)
ghrelin是生長激素促分泌劑受體(GHS-R)的內(nèi)源性配體,在哺乳動物上主要由胃組織泌酸腺的A樣細(xì)胞分泌,小腸也有少量的分泌,在肺臟、胰腺、下丘腦、腦垂體、腎臟、肝臟、肌肉等組織中也有檢測到,但ghrelin受體即GHS-R主要分布于中樞神經(jīng)組織如下丘腦和腦垂體[28]。ghrelin與機(jī)體的免疫、水平衡、胃排空、胃酸分泌、細(xì)胞增殖、記憶、焦慮、睡眠、能量支出、骨骼代謝、繁殖和心血管的功能相關(guān),其中最重要的功能是調(diào)控能量平衡和生長激素的分泌[29]。ghrelin基因一般有4個外顯子和3個內(nèi)含子,其蛋白含28個氨基酸,在第3個絲氨酸殘基上有1個乙酰化的中長脂肪酸側(cè)鏈,乙酰化的ghrelin才能結(jié)合ghrelin受體,并發(fā)揮生物學(xué)效應(yīng);去乙?;膅hrelin不能結(jié)合GHS-R,不能增加攝食量,但卻能促進(jìn)胰島素(insulin)的分泌,不影響胃酸的分泌,并導(dǎo)致人內(nèi)臟脂肪蓄積增多[30-32]。去乙?;膅hrelin通過增加下丘腦CART和尿皮質(zhì)素(urocortin)的分泌來抑制食欲從而降低攝食[33]。ghrelin的乙?;Q于饑餓素-O-乙?;D(zhuǎn)移酶(ghrelin O-acyltransferase,GOAT)的活力,GOAT基因的長度約13.02kb,同ghrelin一樣廣泛存在于各組織中,其蛋白含435個氨基酸,作用于細(xì)胞膜表面,不同物種間GOAT結(jié)構(gòu)和功能均具有高度的保守型,該酶的適宜外界條件為:37~50℃,pH 7.0~7.5。該酶基因的突變會導(dǎo)致人的神經(jīng)性厭食癥[29,34]。
人在空腹時體內(nèi)ghrelin水平升高,攝食后降低,但其飲水后并不降低,說明胃的擴(kuò)張并不抑制ghrelin的分泌[35]。無論外周還是中樞注射乙?;膅hrelin均可刺激嚙齒類動物快速攝食,且長期注射導(dǎo)致肥胖。ghrelin的分泌與饑餓度和體重有關(guān),ghrelin與饑餓時間呈正相關(guān),與體重呈負(fù)相關(guān)。饑餓時ghrelin乙?;潭鹊?,去乙酰化程度高[36]。肥胖者體內(nèi)ghrelin水平下降,而飲食誘導(dǎo)體重減輕時,ghrelin的水平升高,并不存在ghrelin的抵抗[37]。但也有研究發(fā)肥胖者餐后ghrelin水平不降低或是只有輕微降低,這可能是肥胖者繼續(xù)攝食的原因,也可能是腦腸肽參與肥胖的病理機(jī)制[38]。蛋白質(zhì)、脂肪和碳水化合物均能影響ghrelin的分泌,攝食高水平的碳水化合物和脂肪均能使ghrelin水平降低,但高蛋白質(zhì)食物反而使其水平升高[39]。但也有研究發(fā)現(xiàn)高蛋白質(zhì)飲食并不影響血漿中g(shù)hrelin的水平[40]。ghrelin的水平受中鏈脂肪酸的調(diào)控最為明顯,增加中鏈脂肪酸的攝入會導(dǎo)致其水平明顯增加,并提高ghrelin乙?;潭萚41]。這些結(jié)果表明ghrelin乙?;潭仁艿綘I養(yǎng)狀況(是否攝食)和中鏈脂肪酸含量的調(diào)控。
關(guān)于魚類ghrelin的研究進(jìn)展,馬細(xì)蘭等[42]從結(jié)構(gòu)、分布、功能等方面進(jìn)行了比較詳細(xì)的綜述,魚類的ghrelin結(jié)構(gòu)(外顯子數(shù)目、內(nèi)含子長度、乙酰化等)和分布(魚類主要是集中在消化道內(nèi),而在腦內(nèi)的表達(dá)較弱)與哺乳類存在差異,ghrelin同樣參與魚類的攝食調(diào)節(jié),其主要是通過促進(jìn)生長激素的分泌來實(shí)現(xiàn)促生長作用。在羅非魚[43]和金魚[44]上發(fā)現(xiàn)外源性注射ghrelin均可提高攝食量,但是在虹鱒上發(fā)現(xiàn),外源性向腦部和腹腔注射ghrelin并沒有提高虹鱒的食欲和生長,反而起到抑制作用[45],ghrelin在魚類上可能反而是一種抑制食欲相關(guān)肽,同時在羅非魚上也發(fā)現(xiàn)饑餓時血漿中的ghrelin水平并未出現(xiàn)明顯變化[46]。這表明ghrelin的功能可能存在物種差異,在魚類上是否能促進(jìn)攝食和生長值得進(jìn)一步探討。
因ghrelin本身存在具有活性的乙?;蜔o活性的去乙?;?種狀態(tài),且其功能的發(fā)揮主要在腦部,通過對ghrelin的調(diào)控來實(shí)現(xiàn)對魚類食欲的改善顯得較為困難,反而通過提高GOAT的活性來增加ghrelin的乙?;?,從而促進(jìn)魚類的食欲相對更可靠。
1.3 CCK
CCK是一種由胃腸道黏膜細(xì)胞分泌的多肽類激素,在體內(nèi)分布非常廣泛,具有多種生物學(xué)功能。在消化方面,具有刺激胰液分泌和膽囊收縮、延緩胃排空等作用;在中樞及外周神經(jīng)系統(tǒng)方面,具有抑制攝食、降低體溫和對抗嗎啡和內(nèi)啡肽的鎮(zhèn)痛效應(yīng)[47]。CCK所有的生物學(xué)效應(yīng)均是通過作用于相應(yīng)受體來實(shí)現(xiàn)的。CCK受體分為CCK-A和CCK-B受體2種亞型,兩者都屬于G蛋白偶聯(lián)受體,具有50%的同源性。CCK-A受體主要分布在胰腺腺泡、膽囊、幽門平滑肌、迷走神經(jīng)傳入纖維等處,腦中也有少量分布,且硫化CCK對CCK-A受體的親和力比非硫化CCK大1000倍;CCK-B受體主要分布在腦和胃中,且非硫化CCK和胃泌素對CCK-B受體有較大的親和力。CCK主要通過與CCK-A受體作用發(fā)揮飽感信號功能,而且只有硫化的CCK才能起到食欲抑制作用[48]。CCK受體神經(jīng)元集中于孤束核、腦橋中部、下丘腦等處,向這些部位注射CCK能夠引起明顯的食欲抑制,表明存在于這些部位的CCK可能作為神經(jīng)遞質(zhì)或神經(jīng)調(diào)質(zhì)參與中樞神經(jīng)系統(tǒng)的攝食調(diào)節(jié)[49-50]。研究發(fā)現(xiàn),相對酪蛋白和大豆蛋白,土豆蛋白提取物能抑制大鼠的食欲,并提高血漿CCK水平[51]。大豆蛋白提取物在小鼠上的研究也得出類似的結(jié)果[52]。
魚類的CCK免疫陽性反應(yīng)以及mRNA在其胃腸道、神經(jīng)系統(tǒng)和肝臟等組織中均被檢測到。目前已經(jīng)公布了斑馬魚、大西洋鮭、大西洋鱈、美國紅魚、虹鱒、羅非魚、草魚、白斑角鯊等的CCKmRNA序列,且主要研究了營養(yǎng)狀況(饑餓或投喂)對某些魚類CCK表達(dá)的影響[27,53]。CCK是控制魚類食欲的關(guān)鍵調(diào)控因子,研究發(fā)現(xiàn)給歐洲鱸口服CCK后,可誘發(fā)抑制食欲的效果,能調(diào)控歐洲鱸總的食物和單一營養(yǎng)素的攝入量,且這種作用可以被CCK受體拮抗劑丙谷胺的效果抵消[54]。
1.4 NPY
NPY是由36個氨基酸組成的高度保守的活性單鏈多肽,該肽鏈折疊成發(fā)夾結(jié)構(gòu),Y是指分子兩端的酪氨酸殘基,它的結(jié)構(gòu)與36個氨基酸的胰多肽和肽YY(PYY)極其相似,故認(rèn)為同屬胰多肽家族。其作用主要有促進(jìn)動物采食、影響激素分泌、調(diào)節(jié)體溫、生物節(jié)律、性行為及情緒等作用[55]。NPY至少有6種受體亞型(Y1~Y6受體),Y1和Y5受體在食欲控制方面起作用,Y1和T5受體的拮抗劑能抑制采食。將NPY直接注射到小鼠下丘腦和腦心室中,可以提高動物的采食量,增加體重,并減少體熱產(chǎn)生[56-57]。
1.5 食欲肽
食欲肽是下丘腦神經(jīng)元分泌的一種神經(jīng)遞質(zhì)或神經(jīng)調(diào)質(zhì),主要作用是促進(jìn)攝食,增加體重。食欲肽分為2個型:食欲肽A和食欲肽B,食欲肽A的作用大于食欲肽B。向腦室內(nèi)注射或者直接向外側(cè)下丘腦中注射食欲肽都可以增加嚙齒類動物的攝入量,并且有一定的劑量-反應(yīng)關(guān)系[61]。食欲肽與血液中葡萄糖、甘油三酯含量密切相關(guān)。動物試驗(yàn)結(jié)果顯示食欲肽不僅可以抑制腸內(nèi)葡萄糖的吸收,還可以影響胃排空時間[62]。Wortley等[63]通過動物試驗(yàn)研究發(fā)現(xiàn)喂飼高脂膳食后,食欲肽基因表達(dá)增加,并與甘油三酯含量的增加密切相關(guān),提示食欲肽是一種肥胖易感肽,可對周圍血脂的增加作出應(yīng)答。
目前在爪蟾蜍、斑馬魚、河豚、羅非魚、大西洋鮭、金魚、大西洋鱈、青鳉、石斑魚等魚類上報道了食欲肽基因序列,其主要分布于腦部[64]。在金魚上發(fā)現(xiàn)將食欲肽A激動劑注射入金魚腦室可促進(jìn)攝食活動,且提高腦內(nèi)食欲肽A mRNA的表達(dá)豐度[65],并且在斑馬魚上食欲肽A的作用效果優(yōu)于食欲肽B[66]。對布氏海豬魚腦部注射28pmol/g體重的食欲肽A,其食欲顯著提高[67];饑餓能顯著提高石斑魚腦垂體食欲肽前體mRNA的表達(dá)[68]。以上結(jié)果表明食欲肽在魚類上亦能促進(jìn)食欲。
1.6 PYY
PYY,又名酪酪肽,由胃腸道的L細(xì)胞分泌,其免疫活性在直腸最高,小腸較低,在人類下丘腦髓質(zhì)及大鼠中樞神經(jīng)包括下丘腦、脊髓、髓鞘也有表達(dá)。PYY為肽類物質(zhì),具有類激素作用,動物攝食后,PYY釋放隨血液循環(huán)進(jìn)入效應(yīng)器官,抑制胃酸的分泌,延遲胃排空以及食糜在小腸內(nèi)轉(zhuǎn)動,從而起到抑制食欲的作用。PYY在循環(huán)中有2種形式,包括PYY3-36和PYY3-37,兩者具有相同的生物學(xué)作用,其中循環(huán)中的主要形式是PYY3-36[69]。PYY被認(rèn)為是飽食的標(biāo)志性信號,在正常人的試驗(yàn)中發(fā)現(xiàn),高蛋白質(zhì)飲食使血漿和機(jī)體中PYY水平均顯著升高,且PYY水平和飽食感表現(xiàn)出一致性;在小鼠上的長期高蛋白質(zhì)飲食試驗(yàn)亦證明高蛋白質(zhì)飲食可以減輕體重并促進(jìn)PYY的合成,可通過外源注射或攝入PYY來抑制食欲進(jìn)而達(dá)到減肥的目的[70]。研究發(fā)現(xiàn),肥胖者餐后體內(nèi)PYY水平升高平緩,餐后2h沒有明顯的高峰出現(xiàn)[71];高蛋白質(zhì)飲食會導(dǎo)致人餐后體內(nèi)PYY水平顯著升高[72]。
PYY在海鱸腦部大量表達(dá)[73];草魚的前腸PYYmRNA表達(dá)量在攝食3h后達(dá)到最高[74];在西伯利亞鱘上發(fā)現(xiàn)饑餓導(dǎo)致PYYmRNA表達(dá)量顯著降低,注射PYY到魚體后其食欲顯著下降[75]。這表明PYY在魚類上主要起抑制食欲的作用。
1.7 胰高血糖素樣肽-Ⅰ(GLP-Ⅰ)
GLP-Ⅰ是由腸道L細(xì)胞分泌的腸促胰島素,其受體存在于下丘腦,其中在弓狀核(ARC)、室旁核(PVN)及視上核高表達(dá)。GLP-Ⅰ與其受體結(jié)合后,促進(jìn)葡萄糖依賴的胰島素分泌、胰島β細(xì)胞增殖和分化并抑制其凋亡、延遲胃排空,但不引起體重增加和低血糖,從而保護(hù)了胰島β細(xì)胞功能[76]。研究發(fā)現(xiàn),高蛋白質(zhì)飲食會導(dǎo)致人血漿GLP-Ⅰ水平上升[77],但也有人認(rèn)為蛋白質(zhì)飲食不影響人血漿GLP-Ⅰ水平[40]。這可能是套餐飲食中碳水化合物含量不同所導(dǎo)致,GLP-Ⅰ對碳水化合物的調(diào)節(jié)作用更為明顯[78]。
1.8 CART
1.9 胰島素
胰島素是由胰島β細(xì)胞受內(nèi)源性或外源性物質(zhì)如葡萄糖、乳糖、核糖、精氨酸、胰高血糖素等的刺激而分泌的一種蛋白質(zhì)激素,由A、B鏈組成,共含51個氨基酸殘基,能增強(qiáng)細(xì)胞對葡萄糖的攝取利用,對蛋白質(zhì)及脂質(zhì)代謝有促進(jìn)合成的作用。胰島素作為一個肥胖癥信號可能和leptin具有相似的功能[89]。雖然胰島素不是從脂肪細(xì)胞中釋放,但是胰島素的基礎(chǔ)循環(huán)水平和體脂水平有相關(guān)關(guān)系。進(jìn)食含蛋白質(zhì)較多的食物后,血液中氨基酸濃度升高,胰島素分泌也增加[90]。血漿胰島素的水平隨攝入的碳水化合物含量而變化,高碳水化合物會導(dǎo)致血漿胰島素水平升高[70]。不同類型蛋白質(zhì)對胰島素分泌產(chǎn)生的影響有差異。與魚肉蛋白或大豆蛋白相比較,牛奶蛋白能更有效地促使人胰島素的分泌[91],這表明容易消化的蛋白質(zhì)更能刺激胰島素的分泌。此外,研究發(fā)現(xiàn)亮氨酸、酪氨酸、谷氨酸、甜菜堿以及支鏈氨基酸等對胰島素的分泌也有刺激作用[90,92-95]。
目前,對于魚類胰島素的研究主要集中在胰島素與糖代謝關(guān)系上,認(rèn)為魚類血漿胰島素水平不足是造成其高血糖及影響魚類糖利用能力的主要因素,同樣魚類胰島素受到營養(yǎng)狀況、碳水化合物水平、糖源、脂肪水平、精氨酸水平等的影響[96]。在胰島素對魚類食欲調(diào)節(jié)方面,投飼頻率增加會促進(jìn)歐洲鱸魚胰島素的分泌[97];蛋白質(zhì)源和脂肪源均對金頭鯛血漿胰島素水平無顯著影響[98];向南美白對蝦飼料中添加微囊牛胰島素后發(fā)現(xiàn)并不能顯著提高其體增重,但能提高蛋白質(zhì)合成量和免疫力[99]。這表明胰島素對魚類食欲的調(diào)節(jié)因物種或營養(yǎng)狀況并未表現(xiàn)出一致的結(jié)論,或許胰島素并不顯著調(diào)節(jié)魚類的食欲。
動物食欲的生理調(diào)節(jié)是個非常復(fù)雜的神經(jīng)-體液調(diào)節(jié)過程,涉及外周食欲感受裝置和中樞神經(jīng)系統(tǒng)之間的一系列相互作用機(jī)制,即各種外周的食欲相關(guān)物理或化學(xué)信號(包括神經(jīng)沖動如視覺、嗅覺、味覺及觸覺等,以及來自胃腸道各種感受器如機(jī)械、溫度、化學(xué)和滲透壓感受器等的信號,或體液信號如leptin、ghrelin、血糖水平等)通過神經(jīng)系統(tǒng)或體液傳遞途徑到達(dá)相應(yīng)的中樞神經(jīng)系統(tǒng),然后匯聚在大腦皮層的特定區(qū)域形成食欲的感覺,并最終影響動物的采食行為[100],具體見圖2。下丘腦是食欲調(diào)控中一個極為重要的關(guān)鍵區(qū)域,下丘腦各神經(jīng)區(qū)域通過接受、整合、發(fā)放食欲信號相互聯(lián)系,相互影響,從而達(dá)到對食欲的調(diào)節(jié)。有人提出經(jīng)典的“雙重中心理論”,即:“外側(cè)下丘腦”饑餓中心和“腹內(nèi)側(cè)核”飽感中心。下丘腦基底部的一些神經(jīng)核被看作是調(diào)控能量平衡的關(guān)鍵部位,尤其是那些與食欲調(diào)節(jié)相關(guān)的神經(jīng)區(qū)域更引起研究人員的廣泛關(guān)注。這些下丘腦區(qū)域包括孤束核(NTS)、ARC、外側(cè)下丘腦(LH)、PVN、視交叉上核(SCN)、腹內(nèi)側(cè)核(VMN)、背中核(DMN)等。其中NTS的頭端接受味覺纖維,并對進(jìn)食有關(guān)的傳入信息進(jìn)行整合,ARC、LH是食欲信號合成和釋放的區(qū)域,PVN是食欲信號相互作用的區(qū)域,而SCN、VMN、DMN是調(diào)控食欲信號的區(qū)域[101-103]。中樞信號通路對食欲的調(diào)節(jié)為長期作用,下丘腦是中樞信號通路中一個極為重要的關(guān)鍵區(qū)域,現(xiàn)在研究較多的是5′-磷酸腺苷激活蛋白激酶(AMPK)信號通路和雷帕霉素靶蛋白(TOR)信號通路。
2.1 AMPK信號通路
下丘腦的各個區(qū)域(ARC、PVN、DMN、VMN和LH)都有AMPK的表達(dá),AMPK是一個異源三聚體,包括催化亞基α、調(diào)節(jié)亞基β和γ亞基的絲氨酸/蘇氨酸蛋白激酶,α、β亞基均存在2個亞型,γ亞基存在3個亞型。其中α亞基N端存在1個激酶激活域,C端是與β和γ亞基結(jié)合的部位;β亞基中心的保守區(qū)域則被認(rèn)為是糖原結(jié)合域;γ亞基的N端后面有4個串聯(lián)重復(fù)序列,每個串聯(lián)重復(fù)序列由60個氨基酸構(gòu)成,被命名為CBS,每1對形成1個Bateman域,可以結(jié)合1分子的AMP[104]。
圖2 動物食欲調(diào)節(jié)機(jī)制以及攝食調(diào)控示意圖Fig.2 Schematic diagram of appetite-regulating mechanism and feeding regulation
在正常生理情況下,為了維持基本的代謝需要,細(xì)胞中保持著高水平的ATP。在多數(shù)真核細(xì)胞中,ATP與ADP的比值約為10∶1,而且在很小的范圍內(nèi)變化,AMPK處于失活狀態(tài)。只有當(dāng)代謝性應(yīng)激引起細(xì)胞內(nèi)AMP與ATP的比值升高時,如當(dāng)細(xì)胞缺血、缺氧、葡萄糖缺乏等[105],AMPK才被激活,激活后磷酸化下游的信號分子,關(guān)閉消耗ATP的合成代謝途徑,開啟產(chǎn)生ATP的分解代謝途徑,即抑制糖類、脂質(zhì)和膽固醇的合成等,促進(jìn)脂肪酸氧化和葡萄糖的轉(zhuǎn)運(yùn);反之,當(dāng)AMP與ATP的比值降低時,AMPK則促進(jìn)合成代謝。由此可見,AMP是調(diào)節(jié)AMPK的關(guān)鍵,其作用過程為AMP通過結(jié)合AMPK的γ亞基引起AMPK的構(gòu)象改變,一方面可以直接增加酶的活性,另一方面可以使其構(gòu)象改變,更有利于AMPK激酶對其磷酸化,同時拮抗蛋白磷酸酶的去磷酸化作用,進(jìn)而增加AMPK活性,這個過程可被高水平的ATP抑制。因此,AMPK被稱為細(xì)胞能量感受器,廣泛參與細(xì)胞內(nèi)的物質(zhì)代謝。最開始認(rèn)為,AMP與ATP的比值升高是激活A(yù)MPK的經(jīng)典途徑,隨著研究的深入,后來發(fā)現(xiàn)許多激素、細(xì)胞因子以及某些胞外配體,都參與了AMPK信號途徑[106]。leptin能夠選擇性地激活骨骼肌中的AMPK-α2亞基,包括直接對骨骼肌的快速激活作用和依賴于下丘腦-交感神經(jīng)系統(tǒng)的長期激活作用,同時leptin對肌肉脂肪酸代謝的調(diào)控作用需要通過AMPK的調(diào)節(jié)來實(shí)現(xiàn)[107]。黑皮質(zhì)素受體激動劑能抑制AMPK的活性,但是野鼠相關(guān)蛋白能提高其活性[108]。
AMPK對攝食的調(diào)節(jié)也起到非常關(guān)鍵的作用,其下丘腦和外周組織的主要調(diào)節(jié)途徑是:AMPK→乙酰輔酶A羧化酶(ACC)→丙二酰輔酶A→肉堿棕櫚?;D(zhuǎn)移酶1(CPT1)[109]。激活下丘腦的AMPK可增加下丘腦ARCNPY的表達(dá),增加食物的攝入,減少能量消耗;而抑制下丘腦的AMPK可以減少NPY的表達(dá),減少食物的攝入,增加能量消耗[110]。leptin和ghrelin均可作用于下丘腦,通過AMPK調(diào)節(jié)食欲:leptin可抑制下丘腦的AMPK,使NPY釋放減少,減少食物攝入;ghrelin則可激活下丘腦的AMPK,使NPY釋放增加,增加食物的攝入[111-112]。
目前在魚類上也有關(guān)于AMPK信號通路的報道。在虹鱒上,AMPK信號通路是調(diào)節(jié)肝臟能量平衡的主要信號通路[113],盡管飼料脂肪水平對虹鱒攝食量無顯著影響,但高脂組的虹鱒下丘腦AMPK蛋白磷酸化水平較低脂組顯著升高,因此認(rèn)為AMPK信號通路主要影響了虹鱒對脂肪酸的利用率[114];另外,高碳水化合物水平可顯著抑制AMPK蛋白磷酸化水平[115]。在鰨上的研究發(fā)現(xiàn),高脂組AMPK的活性較低脂組顯著上升,但是否缺氧對其無顯著影響[116];同樣,金魚各組織中AMPK蛋白磷酸化水平在低氧條件下無顯著變化[117];在石斑魚上,饑餓3周使AMPK蛋白磷酸化水平顯著上升,短期投喂使其顯著下降,但長期投喂對其反而無顯著影響[118]。以上結(jié)果表明,魚類AMPK信號通路受外界環(huán)境的影響與哺乳類存在差異,如缺氧并不能導(dǎo)致其被激活,但在對能量的調(diào)節(jié)上類似。關(guān)于AMPK信號通路對食欲的調(diào)節(jié)有待進(jìn)一步研究。
2.2 TOR信號通路
TOR是一種絲/蘇氨酸蛋白激酶,是共有2549個氨基酸的蛋白,從酵母到哺乳動物其廣泛存在,且存在于各種細(xì)胞中,進(jìn)化十分保守。因?yàn)樵赥OR的C末端有1個激酶結(jié)構(gòu)域(kinase domain),約有234個氨基酸,因此TOR屬于磷脂酰肌醇3-激酶相關(guān)激酶(phosphatidylinositol 3-kinase-related kinase,PIKK)蛋白家族[91]。TOR的N端有20個串聯(lián)的HEAT重復(fù)序列(即huntignton、EF3、PP2A的1個亞基、TOR1),C末端的FATC結(jié)構(gòu)域(focal adhesion targeting domain of C-ternimal)被認(rèn)為與FAT結(jié)構(gòu)域(FRAP-ATM-TRAP domain)相互作用,從而暴露出激酶結(jié)構(gòu)域[119]。
TOR在營養(yǎng)物質(zhì)感知、調(diào)節(jié)細(xì)胞生長和增殖、調(diào)控細(xì)胞周期等多個方面起到重要作用[120]。TOR與其他蛋白結(jié)合,形成了2種復(fù)合體TORC1和TORC2,前者對雷帕霉素敏感,后者不敏感[121]。TORC1能促進(jìn)細(xì)胞的蛋白質(zhì)合成與代謝以及核酸的合成與轉(zhuǎn)錄,并抑制自體吞噬,TORC2可能參與了細(xì)胞骨架的形成。目前對TORC1的研究較多,且認(rèn)為TOR信號通路的上游刺激因子主要有生長因子與胰島素、營養(yǎng)因子、能量以及壓力[122]。
TOR信號通路其上游效應(yīng)器主要有Rheb(Ras homolog enriched in brain)、結(jié)節(jié)性硬化癥1(tuberous sclerosis complex 1,TSC1)和結(jié)節(jié)性硬化癥2(tuberous sclerosis complex 2,TSC2),其中Rheb是具有GTP酶(GTPase)活性的蛋白,其活性狀態(tài)為Rheb-GTP,可結(jié)合于TOR,并對TOR進(jìn)行正調(diào)節(jié),同時其活性受到TSC1和TSC2的調(diào)節(jié)[123]。TSC1和TSC2形成復(fù)合物對TOR信號通路的下游進(jìn)行調(diào)節(jié),TSC2是GTPase激活蛋白,可使Rheb-GTP水解形成Rheb-GDP狀態(tài),從而失活,對TOR進(jìn)行負(fù)調(diào)節(jié)。TOR下游效應(yīng)器主要有4E結(jié)合蛋白(4E-binding proteins,4E-BPs)和核糖體S6蛋白激酶(ribosomal protein S6kinases,S6Ks),前者是真核細(xì)胞翻譯起始因子,結(jié)合于mRNA的5′-cap的真核翻譯起始因子4G(eIF4G),進(jìn)而啟動5′-cap mRNA的翻譯,后者是核糖體蛋白激酶,哺乳動物中存在2種形式,其主要影響細(xì)胞的蛋白質(zhì)合成和生長[123]。
TOR調(diào)控營養(yǎng)物質(zhì),如葡萄糖、氨基酸和脂肪酸等的攝入,并影響激素的分泌,TOR信號通路的激活能抑制機(jī)體的攝食量[124-125]。TOR對食欲調(diào)節(jié)主要是通過磷脂酰肌醇3-激酶(PIK3)→ 3-磷酸肌醇依賴性蛋白激酶1(PDK1)→蛋白激酶B(PKB/Akt)→TSC1/TSC2→Rheb→TORC1→4E-BPs這條途徑,最終通過抑制NPY/野鼠相關(guān)蛋白(AgRP)的活性來實(shí)現(xiàn)對食欲的抑制調(diào)節(jié)[126]。關(guān)于營養(yǎng)物質(zhì)對TOR信號通路的調(diào)節(jié),目前對氨基酸的研究較多,氨基酸主要作用于TORC1,且主要是抑制TORC1信號通路來降低食欲[127]。如亮氨酸可以直接激活下丘腦TOR信號通路發(fā)揮食欲調(diào)節(jié)作用,主要是通過抑制AgRP的活性來實(shí)現(xiàn)[124,128]。
魚類TOR基因與人類的同源性達(dá)到90%以上,鯉魚與斑馬魚的TOR基因同源性達(dá)到97%以上[129-130],目前魚類TOR信號通路研究還處在初步階段。在虹鱒上的研究發(fā)現(xiàn),雷帕霉素抑制TOR信號通路中的TORC1及下游因子(S6、S6K1和4E-BP1)的蛋白磷酸化水平,但不影響上游的Akt及TORC2的蛋白磷酸化水平[131],同時碳水化合物水平顯著激活了TOR磷酸化[113]。關(guān)于營養(yǎng)狀況對其影響的研究發(fā)現(xiàn),短期饑餓使石斑魚TOR磷酸化被顯著抑制,而恢復(fù)投喂后無論時間長短均使TOR被顯著激活[118]。國內(nèi)學(xué)者也開展了營養(yǎng)素對TOR信號通路轉(zhuǎn)錄水平的影響研究:對鯽魚的研究發(fā)現(xiàn),飼料中添加0.54%精氨酸顯著降低了肝臟和肌肉中TOR和S6K1的mRNA表達(dá)量,但不影響4E-BP2mRNA的表達(dá)量[132];隨飼料亮氨酸水平的升高,團(tuán)頭魴肝臟中TORmRNA的表達(dá)量亦顯著升高[133];色氨酸抑制了建鯉肌肉和肝臟中TORmRNA的表達(dá),促進(jìn)了中腸和后腸TOR和4E-BPmRNA的表達(dá)[134];亮氨酸和精氨酸可提高饑餓處理后的中國對蝦TOR和S6K1蛋白磷酸化水平及其mRNA的表達(dá)量[135]。這些研究均顯示氨基酸對水產(chǎn)動物TOR信號通路的關(guān)鍵因子在轉(zhuǎn)錄水平上有顯著影響,而在高等動物上的結(jié)果大多體現(xiàn)在蛋白水平上,因此需要進(jìn)一步通過蛋白水平來確認(rèn)魚類與哺乳類的差異。
3.1 魚類食欲調(diào)節(jié)因子的功能研究
綜上所述,在魚類上目前僅圍繞個別食欲調(diào)節(jié)因子如leptin、NPY和ghrelin,開展了其對食欲調(diào)控研究,并且大多研究僅限于基因克隆,未進(jìn)行進(jìn)一步的功能研究,特別是缺乏對相關(guān)調(diào)節(jié)因子的受體的研究。因此,需要從食欲調(diào)節(jié)因子的功能及其受體進(jìn)一步深入研究其在魚類食欲調(diào)控中的作用,基于此方面的研究,開發(fā)出促進(jìn)魚類食欲的專用生理調(diào)控劑。
3.2 魚類食欲調(diào)控信號通路
目前關(guān)于魚類食欲調(diào)節(jié)的中樞信號通路并未見完整的報道,同時由于在進(jìn)化上魚類遠(yuǎn)遠(yuǎn)低于哺乳類,因此魚類的信號通路不可完全借鑒高等動物。如何在現(xiàn)有研究的基礎(chǔ)上開展魚類食欲調(diào)控信號通路的研究,找出關(guān)鍵的調(diào)控位點(diǎn),理清各因子的作用途徑及其交互作用,理順魚類特有的食欲調(diào)控信號通路,這是現(xiàn)今魚類食欲調(diào)控研究的難點(diǎn),也是有效調(diào)控魚類攝食行為的前提和保障。
[1] MALCOLM J,ANDERS A,CHRIS N,et al.Appetite and feed intake[M]//FELICITY H,MALCOLM J,SUNIL K.Aquaculture and behavior.New York:Wiley-Blackwell,2012:183-219.
[2] VOLKOFF H.The role of neuropeptide Y,orexins,cocaine and amphetamine-related transcript,cholecystokinin,amylin and leptin in the regulation of feeding in fish[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2006,144(3):325-331.
[3] ZHANG Y Y,PROENCA R,MAFFEI M,et al.Positional cloning of the mouseobesegene and its human homologue[J].Nature,1994,372(6505):425-432.
[4] ZHANG F M,BASINSKI M B,BEALS J M,et al.Crystal structure of theobeseprotein leptin-E100[J].Nature,1997,387(6629):206-209.
[5] DEVOS R,GUISEZ Y,VAN DER HEYDEN J,et al.Ligand-independent dimerization of the extracellular domain of the leptin receptor and determination of the stoichiometry of leptin binding[J].Journal of Biological Chemistry,1997,272(29):18304-18310.
[6] 李海艷,陳萌,孔祥玉.瘦素及其受體與消化系統(tǒng)關(guān)系的研究進(jìn)展[J].承德醫(yī)學(xué)院學(xué)報,2012,29(2):187-189.
[7] SHIGEMURA N,OHTA R,KUSAKABE Y,et al.Leptin modulates behavioral responses to sweet substances by influencing peripheral taste structures[J].Endocrinology,2004,145(2):839-847.
[8] 張崇本.瘦蛋白介導(dǎo)的人食欲與體重調(diào)節(jié)機(jī)制[J].生命的化學(xué),2004,24(3):274-275.
[9] SCHWARTZ M W,WOODS S C,PORTE D,et al.Central nervous system control of food intake[J].Nature,2000,404(6778):661-671.
[10] SCHWARTZ M W.Central nervous system regulation of food intake[J].Obesity,2006,14(Suppl.2):1S-8S.
[11] MORTON G J,CUMMINGS D E,BASKIN D G,et al.Central nervous system control of food intake and body weight[J].Nature,2006,443(7109):289-295.
[12] PéREZ-PéREZ A,GAMBINO Y,MAYMJ,et al.MAPK and PI3K activities are required for leptin stimulation of protein synthesis in human trophoblastic cells[J].Biochemical and Biophysical Research Communications,2010,396(4):956-960.
[13] WEIGLE D S,BREEN P A,MATTHYS C C,et al.A high-protein diet induces sustained reductions in appetite,adlibitumcaloric intake,and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations[J].The American Journal of Clinical Nutrition,2005,82(1):41-48.
[15] 毛湘冰,曾祥芳,蔡傳江,等.日糧中添加亮氨酸對生長大鼠血漿瘦素水平和骨骼肌蛋白質(zhì)代謝的影響[J].中國畜牧雜志,2011,47(15):26-30.
[16] MAO X B,ZENG X F,WANG J J,et al.Leucine promotes leptin receptor expression in mouse C2C12myotubes through the mTOR pathway[J].Molecular Biology Reports,2011,38(5):3201-3206.
[17] JOHNSON R M,JOHNSON T M,LONDRAVILLE R L.Evidence for leptin expression in fishes[J].The Journal of Experimental Zoology,2000,286(7):718-724.
[18] 李觀貴.草魚瘦素的基因結(jié)構(gòu)、重組表達(dá)與功能研究[D].碩士學(xué)位論文.廣州:暨南大學(xué),2010.
[19] CAO Y B,XUE J L,WU L Y,et al.The detection of 3leptin receptor isoforms in crucian carp gill and the influence of fasting and hypoxia on their expression[J].Domestic Animal Endocrinology,2011,41(2):74-80.
[20] R?NNESTAD I,NILSEN T O,MURASHITA K,et al.Leptin and leptin receptor genes in Atlantic salmon:cloning,phylogeny,tissue distribution and expression correlated to long-term feeding status[J].General and Comparative Endocrinology,2010,168(1):55-70.
[21] DE PEDRO N,MARTNEZ-LVAREZ R,DELGADO M J.Acute and chronic leptin reduces food intake and body weight in goldfish (Carassiusauratus)[J].Journal of Endocrinology,2006,188(3):513-520.
[22] MURASHITA K,UJI S,YAMAMOTO T,et al.Production of recombinant leptin and its effects on food intake in rainbow trout (Oncorhynchusmykiss)[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2008,150(4):377-384.
[23] LI G G,LIANG X F,XIE Q L,et al.Gene structure,recombinant expression and functional characterization of grass carp leptin[J].General and Comparative Endocrinology,2010,166(1):117-127.
[24] LU R H,LIANG X F,WANG M,et al.The role of leptin in lipid metabolism in fatty degenerated hepatocytes of the grass carpCtenopharyngodonidellus[J].Fish Physiology and Biochemistry,2012,38(6):1759-1774.
[25] BALTZEGAR D A,READING B J,DOUROS J D,et al.Role for leptin in promoting glucose mobilization during acute hyperosmotic stress in teleost fishes[J].Journal of Endocrinology,2014,220(1):61-72.
[26] FRANCIS D S,THANUTHONG T,SENADHEERA S P S D,et al.n-3LC-PUFA deposition efficiency and appetite-regulating hormones are modulated by the dietary lipid source during rainbow trout grow-out and finishing periods[J].Fish Physiology and Biochemistry,2014,40(2):577-593.
[27] TIAN J,HE G,MAI K S,et al.Effects of postprandial starvation on mRNA expression of endocrine-,amino acid and peptide transporter-,and metabolic enzyme-related genes in zebrafish (Daniorerio)[J].Fish Physiology and Biochemistry,2015,41(3):773-787.
[28] GNANAPAVAN S,KOLA B,BUSTIN S A,et al.The Tissue distribution of the mRNA of ghrelin and subtypes of its receptor,GHS-R,in humans[J].The Journal of Clinical Endocrinology & Metabolism,2002,87(6):2988-2991.
[29] MASSADI O A,TSCH?P M H,TONG J.Ghrelin acylation and metabolic control[J].Peptides,2011,32(11):2301-2308.
[30] GRANATA R,SETTANNI F,BIANCONE L,et al.Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic β-cells and human islets:involvement of 3’,5’-cyclic adenosine monophosphate/protein kinase A,extracellular signal-regulated kinase 1/2,and phosphatidyl inositol 3-kinase/akt signaling[J].Endocrinology,2007,148(2):512-529.
[31] BALDANZI G,FILIGHEDDU N,CUTRUPI S,et al.Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2and PI 3-kinase/AKT[J].The Journal of Cell Biology,2002,159(6):1029-1037.
[33] ASAKAWA A,INUI A,FUJIMIYA M,et al.Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin[J].Gut,2005,54(1):18-24.
[34] GUTIERREZ J A,SOLENBERG P J,PERKINS D R,et al.Ghrelin octanoylation mediated by an orphan lipid transferase[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(17):6320-6325.
[35] SHIIYA T,NAKAZATO M,MIZUTA M,et al.Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion[J].The Journal of Clinical Endocrinology & Metabolism,2002,87(1):240-244.
[36] LIU J H,PRUDOM C E,NASS R,et al.Novel ghrelin assays provide evidence for independent regulation of ghrelin acylation and secretion in healthy young men[J].The Journal of Clinical Endocrinology & Metabolism,2008,93(5):1980-1987.
[37] TSCH?P M,SMILEY D L,HEIMAN M L.Ghrelin induces adiposity in rodents[J].Nature,2000,407(6806):908-913.
[38] ENGLISH P J,GHATEI M A,MALIK I A,et al.Food fails to suppress ghrelin levels in obese humans[J].The Journal of Clinical Endocrinology & Metabolism,2002,87(6):2984-2987.
[39] ERDMANN J,LIPPL F,SCHUSDZIARRA V.Differential effect of protein and fat on plasma ghrelin levels in man[J].Regulatory Peptides,2003,116(1/2/3):101-107.
[40] SMEETS A J,SOENEN S,LUSCOMBE-MARSH N D,et al.Energy expenditure,satiety,and plasma ghrelin,glucagon-like peptide 1,and peptide tyrosine-tyrosine concentrations following a single high-protein lunch[J].The Journal of Nutrition,2008,138(4):698-702.
[41] KIRCHNER H,GUTIERREZ J A,SOLENBERG P J,et al.GOAT links dietary lipids with the endocrine control of energy balance[J].Nature Medicine,2009,15(7):741-745.
[42] 馬細(xì)蘭,劉曉春,周立斌,等.魚類ghrelin研究進(jìn)展[J].水生生物學(xué)報,2009,33(3):546-551.
[43] RILEY L G,FOX B K,KAIYA H,et al.Long-term treatment of ghrelin stimulates feeding,fat deposition,and alters the GH/IGF-I axis in the tilapia,Oreochromismossambicus[J].General and Comparative Endocrinology,2005,142(1/2):234-240.
[44] MATSUDA K,MIURA T,KAIYA H,et al.Regulation of food intake by acyl and des-acyl ghrelins in the goldfish[J].Peptides,2006,27(9):2321-2325.
[45] J?NSSON E,KAIYA H,BJ?RNSSON B T.Ghrelin decreases food intake in juvenile rainbow trout (Oncorhynchusmykiss) through the central anorexigenic corticotropin-releasing factor system[J].General and Comparative Endocrinology,2010,166(1):39-46.
[46] RILEY L G,FOX B K,BREVES J P,et al.Absence of effects of short-term fasting on plasma ghrelin and brain expression of ghrelin receptors in the tilapia,Oreochromismossambicus[J].Zoological Science,2008,25(8):821-827.
[47] LIDDLE R A.Cholecystokinin cells[J].Annual Review of Physiology,1997,59:221-242.
[48] REHFELD J F.Cholecystokinin[J].Best Practice & Research Clinical Endocrinology & Metabolism,2004,18(4):569-586.
[49] REHFELD J F,FRIIS-HANSEN L,GOETZE J P,et al.The biology of cholecystokinin and gastrin peptides[J].Current Topics in Medicinal Chemistry,2007,7(12):1154-1165.
[50] WANK S A.Cholecystokinin receptors[J].The American Journal of Physiology,1995,269(5):G628-G646.
[52] HIDAYAT M,LADI J E.Increasing of plasma cholecystokinin level and jejunum histological changes after treatment with soybean extracts protein[J].HAYATI Journal of Biosciences,2012,19(2):53-59.
[53] FENG K,ZHANG G R,WEI K J,et al.Molecular characterization of cholecystokinin in grass carp (Ctenopharyngodonidellus):cloning,localization,developmental prodfle,and effect of fasting and refeeding on expression in the brain and intestine[J].Fish Physiology and Biochemistry,2012,38(6):1825-1834.
[54] RUBIO V C,SNCHEZ-VZQUEZ F J,MADRID J A.Role of cholecystokinin and its antagonist proglumide on macronutrient selection in European sea bassDicentrarchuslabrax,L[J].Physiology & Behavior,2008,93(4/5):862-869.
[55] TATEMOTO K,CARLQUIST M,MUTT V.Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide[J].Nature,1982,296(5858):659-660.
[56] RAPOSINHO P D,CASTILLO E,D’ALLEVES V,et al.Chronic blockade of the melanocortin 4receptor subtype leads to obesity independently of neuropeptide y action,with no adverse effects on the gonadotropic and somatotropic axes[J].Endocrinology,2000,141(12):4419-4427.
[57] GRUNDEMAR L,JONAS S E,M?RNER N,et al.Characterization of vascular neuropeptide Y receptors[J].British Journal of Pharmacology,1992,105(1):45-50.
[58] MATSUDA K,SAKASHITA A,YOKOBORI E,et al.Neuroendocrine control of feeding behavior and psychomotor activity by neuropeptide Y in fish[J].Neuropeptides,2012,46(6): 275-283.
[59] DE PEDRO N,LPEZ-PATIO M A,GUIJARRO A I,et al.NPY receptors and opioidergic system are involved in NPY-induced feeding in goldfish[J].Peptides,2000,21(10):1495-1502.
[60] YOKOBORI E,AZUMA M,NISHIGUCHI R,et al.Neuropeptide Y stimulates food intake in the zebrafish,Daniorerio[J].Journal of Neuroendocrinology,2012,24(5):766-773.
[61] DUBE M G,KALRA S P,KALRA P S.Food intake elicited by central administration of orexins/hypocretins:identification of hypothalamic sites of action[J].Brain Research,1999,842(2):473-477.
[62] EHRSTR?M M,LEVIN F,KIRCHGESSNER A L,et al.Stimulatory effect of endogenous orexin A on gastric emptying and acid secretion independent of gastrin[J].Regulatory Peptides,2005,132(1/2/3):9-16.
[63] WORTLEY K E,CHANG G Q,DAVYDOVA Z,et al.Orexin gene expression is increased during states of hypertriglyceridemia[J].American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,2003,284(6):R1454-R1465.
[64] MATSUDA K,AZUMA M,KANG K S. Chapter eighteen-orexin system in teleost fish[J].Vitamins & Hormones,2012,89:341-361.
[65] MIURA T,MARUYAMA K,SHIMAKURA S I,et al.Regulation of food intake in the goldfish by interaction between ghrelin and orexin[J].Peptides,2007,28(6):1207-1213.
[66] WONG K K Y,NG S Y L,LEE L T O,et al.Orexins and their receptors from fish to mammals:a comparative approach[J].General and Comparative Endocrinology,2011,171(2):124-130.
[67] FACCIOLO R M,CRUDO M,GIUSI G,et al.Light- and dark-dependent orexinergic neuronal signals promote neurodegenerative phenomena accounting for distinct behavioral responses in the teleostThalassomapavo[J].Journal of Neuroscience Research,2009,87(3):748-757.
[68] BUCKLEY C,MACDONALD E E,TUZIAK S M,et al.Molecular cloning and characterization of two putative appetite regulators in winter flounder (Pleuronectesamericanus):preprothyrotropin-releasing hormone (TRH) and preproorexin (OX)[J].Peptides,2010,31(9):1737-1747.
[69] UENO H,YAMAGUCHI H,MIZUTA M,et al.The role of PYY in feeding regulation[J].Regulatory Peptides,2008,145(1/2/3):12-16.
[70] BATTERHAM R L,HEFFRON H,KAPOOR S,et al.Critical role for peptide YY in protein-mediated satiation and body-weight regulation[J].Cell Metabolism,2006,4(3):223-233.
[71] MITTELMAN S D,KLIER K,BRAUN S,et al.Obese adolescents show impaired meal responses of the appetite-regulating hormones ghrelin and PYY[J].Obesity,2010,18(5):918-925.
[72] LEIDY H J,ARMSTRONG C L H,TANG M H,et al.The influence of higher protein intake and greater eating frequency on appetite control in overweight and obese men[J].Obesity,2010,18(9):1725-1732.
[74] CHEN Y,PANDIT N P,FU J J,et al.Identification,characterization and feeding response of peptide YYb (PYYb) gene in grass carp (Ctenopharyngodonidellus)[J].Fish Physiology and Biochemistry,2014,40(1):45-55.
[75] CHEN H,ZHANG X,HAO J,et al.Molecular cloning,expression analysis,and appetite regulatory effect of peptide YY in Siberian sturgeon (Acipenserbaerii)[J].Gene,2015,563(2):172-179.
[76] TURTON M D,O’SHEA D,GUNN I,et al.A role for glucagon-like peptide-1in the central regulation of feeding[J].Nature,1996,379(6560):69-72.
[77] LEJEUNE M P,WESTERTERP K R,ADAM T C M,et al.Ghrelin and glucagon-like peptide 1concentrations,24-h satiety,and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber[J].The American Journal of Clinical Nutrition,2006,83(1):89-94.
[78] VELDHORST M,SMEETS A,SOENEN S,et al.Protein-induced satiety:effects and mechanisms of different proteins[J].Physiology & Behavior,2008,94(2):300-307.
[79] MOMMSEN T P.Glucagon-like peptide-1in fishes:the liver and beyond[J].American Zoologist,2000,40(2):259-268.
[80] SILVERSTEIN J T,BONDAREVA V M,LEONARD J B K,et al.Neuropeptide regulation of feeding in catfish,Ictaluruspunctatus:a role for glucagon-like peptide-1(GLP-1)?[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2001,129(2/3):623-631.
[81] POLAKOF S,MGUEZ J M,SOENGAS J L.Evidence for a gut-brain axis used by glucagon-like peptide-1to elicit hyperglycaemia in fish[J].Journal of Neuroendocrinology,2011,23(6):508-518.
[82] BUSBY E R,MOMMSEN T P.Glucagon-like peptide-1in fishes:The liver and beyond[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,1999,124(Suppl.1):S89.
[83] SOENGAS J L.Contribution of glucose- and fatty acid sensing systems to the regulation of food intake in fish.a review[J].General and Comparative Endocrinology,2014,205:36-48.
[84] STANLEY S A,SMALL C J,MURPHY K G,et al.Actions of cocaine- and amphetamine-regulated transcript (CART) peptide on regulation of appetite and hypothalamo-pituitary axesinvitroandinvivoin male rats[J].Brain Research,2001,893(1/2):186-194.
[85] ORLANDO G,BRUNETTI L,NISIO C D,et al.Effects of cocaine- and amphetamine-regulated transcript peptide,leptin and orexins on hypothalamic serotonin release[J].European Journal of Pharmacology,2001,430(2/3):269-272.
[86] SUBHEDAR N,BARSAGADE V G,SINGRU P S,et al.Cocaine- and amphetamine-regulated transcript peptide (CART) in the telencephalon of the catfish,Clariasgariepinus:distribution and response to fasting,2-deoxy-D-glucose,glucose,insulin,and leptin treatments[J].Journal of Comparative Neurology,2011,519(7):1281-1300.
[87] MURASHITA K,KUROKAWA T,EBBESSON L O E,et al.Characterization,tissue distribution,and regulation of agouti-related protein (AgRP),cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) in Atlantic salmon (Salmosalar)[J].General and Comparative Endocrinology,2009,162(2):160-171.
[88] KEHOE A S,VOLKOFF H.The effects of temperature on feeding and expression of two appetite-related factors,neuropeptide y and cocaine- and amphetamine-regulated transcript,in atlantic cod,GadusMorhua[J].Journal of the World Aquaculture Society,2008,39(6):790-796.
[89] PORTE D,Jr,BASKIN D G,SCHWARTZ M W.Leptin and insulin action in the central nervous system[J].Nutrition Reviews,2002,60(Suppl.10):S20-S29.
[90] NEWGARD C B,MATSCHINSKY F M.Substrate control of insulin release[M]//POLLOCK D M.Comprehensive physiology.New York:John Wiley & Sons,Inc.,2010.
[91] VON POST-SKAGEG?RD M,VESSBY B,KARLSTR?M B.Glucose and insulin responses in healthy women after intake of composite meals containing cod-,milk-,and soy protein[J].European Journal of Clinical Nutrition,2006,60(8):949-954.
[92] DANGIN M,BOIRIE Y,GARCIA-RODENAS C,et al.The digestion rate of protein is an independent regulating factor of postprandial protein retention[J].American Journal of Physiology:Endocrinology and Metabolism,2001,280(2):E340-E348.
[93] ISHIYAMA N,RAVIER M A,HENQUIN J C.Dual mechanism of the potentiation by glucose of insulin secretion induced by arginine and tolbutamide in mouse islets[J].American Journal of Physiology:Endocrinology and Metabolism,2006,290(3):E540-E549.
[94] FLOYD J C,Jr,FAJANS S S,CONN J W,et al.Stimulation of insulin secretion by amino acids[J].The Journal of Clinical Investigation,1966,45(9):1487-1502.
[95] VAN LOON L J,SARIS W H M,VERHAGEN H,et al.Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate[J].The American Journal of Clinical Nutrition,2000,72(1):96-105.
[96] 高進(jìn),燕磊,艾慶輝.魚類胰島素及胰高血糖素類激素的研究進(jìn)展[J].河北漁業(yè),2010(12):41-44.
[97] MESSINA M,SNCHEZ-GURMACHES J,NAVARRO I,et al.Feeding frequency differently affects post prandial patterns of plasma glucose,insulin and insulin-like growth factor Ⅰ in European Sea bass (Dicentrarchuslabrax)[J].Turkish Journal of Fisheries and Aquatic Sciences,2014,14:921-928.
[98] BOURAOUI L,SNCHEZ-GURMACHES J,CRUZ-GARCIA L,et al.Effect of dietary fish meal and fish oil replacement on lipogenic and lipoprotein lipase activities and plasma insulin in gilthead sea bream (Sparusaurata)[J].Aquaculture Nutrition,2011,17(1):54-63.
[99] GONZALEZ J P,FARNéS O C,GAXIOLA G,et al.The effects of microencapsulated bovine insulin given toLitopenaeusvannameijuveniles as a feed additive on growth,metabolism,and digestive enzyme activities[J].Aquaculture,2010,306(1/2/3/4):252-258.
[100]陳黎龍,肖世平,劉萬平.促食欲飼用生理調(diào)控劑的研究與開發(fā)[J].飼料與畜牧,2009(3):41-44.
[101]槐瑞托,牛麗靜,管振龍.孤束核的結(jié)構(gòu)與功能[J].河北師范大學(xué)學(xué)報:自然科學(xué)版,2003,27(2):185-188.
[102]張?jiān)撇?那曉琳.食欲調(diào)節(jié)機(jī)制的研究進(jìn)展[J].國外醫(yī)學(xué)衛(wèi)生學(xué)分冊,2008,35(2):97-100.
[103]BERTHOUD H R.Multiple neural systems controlling food intake and body weight[J].Neuroscience & Biobehavioral Reviews,2002,26(4):393-428.
[104]TOWLER M C,HARDIE D G.Amp-activated protein kinase in metabolic control and insulin signaling[J].Circulation Research,2007,100(3):328-341.
[105]KAHN B B,ALQUIER T,CARLING D,et al.AMP-activated protein kinase:ancient energy gauge provides clues to modern understanding of metabolism[J].Cell Metabolism,2005,1(1):15-25.
[106]LIM C T,KOLA B,KORBONITS M.AMPK as a mediator of hormonal signalling[J].Journal of Molecular Endocrinology,2010,44(2):87-97.
[107]MINOKOSHI Y,KIM Y B,PERONI O D,et al.Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase[J].Nature,2002,415(6869):339-343.
[108]MINOKOSHI Y,ALQUIER T,FURUKAWA N,et al.AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus[J].Nature,2004,428(6982):569-574.
[109]XUE B Z,KAHN B B.AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues[J].The Journal of Physiology,2006,574(1):73-83.
[110]CHAU-VAN C,GAMBA M,SALVI R,et al.Metformin inhibits adenosine 5′-monophosphate-activated kinase activation and prevents increases in neuropeptide Y expression in cultured hypothalamic neurons[J].Endocrinology,2007,148(2):507-511.
[111]KOHNO D,SONE H,MINOKOSHI Y,et al.Ghrelin raises [Ca2+]ivia AMPK in hypothalamic arcuate nucleus NPY neurons[J].Biochemical and Biophysical Research Communications,2008,366(2):388-392.
[112]MOUNTJOY P D,BAILEY S J,RUTTER G A.Inhibition by glucose or leptin of hypothalamic neurons expressing neuropeptide Y requires changes in AMP-activated protein kinase activity[J].Diabetologia,2007,50(1):168-177.
[113]POLAKOF S,PANSERAT S,CRAIG P M,et al.The metabolic consequences of hepatic AMP-kinase phosphorylation in rainbow trout[J].PLoS One,2011,6(5):e20228.
[115]KAMALAM B S,MEDALE F,KAUSHIK S,et al.Regulation of metabolism by dietary carbohydrates in two lines of rainbow trout divergently selected for muscle fat content[J].Journal of Experimental Biology,2012,215(15):2567-2578.
[116]MAZURAIS D,FERRARESSO S,GATTA P P,et al.Identification of hypoxia-regulated genes in the liver of common sole (Soleasolea) fed different dietary lipid contents[J].Marine Biotechnology,2014,16(3):277-288.
[117]JIBB L A,RICHARDS J G.AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish,Carassiusauratus[J].Journal of Experimental Biology,2008,211(19):3111-3122.
[118]FUENTES E N,SAFIAN D,EINARSDOTTIR I E,et al.Nutritional status modulates plasma leptin,AMPK and TOR activation,and mitochondrial biogenesis:implications for cell metabolism and growth in skeletal muscle of the fine flounder[J].General and Comparative Endocrinology,2013,186:172-180.
[119]HAY N,SONENBERG N.Upstream and downstream of mTOR[J].Genes & Development,2004,18(16):1926-1945.
[120]SCHMELZLE T,HALL M N.TOR,a central controller of cell growth[J].Cell,2000,103(2):253-262.
[121]LOEWITH R,JACINTO E,WULLSCHLEGER S,et al.Two TOR complexes,only one of which is rapamycin sensitive,have distinct roles in cell growth control[J].Molecular Cell,2002,10(3):457-468.
[122]WULLSCHLEGER S,LOEWITH R,HALL M N.TOR Signaling in growth and metabolism[J].Cell,2006,124(3):471-484.
[123]王志剛,吳應(yīng)積,旭日干.mTOR信號通路與細(xì)胞生長調(diào)控[J].生物物理學(xué)報,2007,23(5):333-342.
[124]COTA D,PROULX K,SMITH K A B,et al.Hypothalamic mTOR signaling regulates food intake[J].Science,2006,312(5775):927-930.
[125]WICZER B M,THOMAS G.The role of the mTOR pathway in regulating food intake[J].Current Opinion in Drug Discovery & Development,2010,13(5):604-612.
[126]劉磊,宋志剛.動物食欲調(diào)節(jié)的中樞信號通路[J].動物營養(yǎng)學(xué)報,2012,24(2):226-231.
[127]AVRUCH J,LONG X M,ORTIZ-VEGA S,et al.Amino acid regulation of TOR complex 1[J].American Journal of Physiology:Endocrinology and Metabolism,2009,296(4):E592-E602.
[128]MORRISON C D,XI X C,WHITE C L,et al.Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism[J].American Journal of Physiology:Endocrinology and Metabolism,2007,293(1):E165-E171.
[129]鄧會玲,劉國華,劉寧.氨基酸介導(dǎo)的TOR信號傳導(dǎo)通路研究進(jìn)展[J].動物營養(yǎng)學(xué)報,2011,23(4):529-535.
[130]王嘉,薛敏,吳秀峰,等.魚類對不同蛋白質(zhì)源飼料選擇性攝食調(diào)控機(jī)制的研究進(jìn)展[J].動物營養(yǎng)學(xué)報,2014,26(4):833-842.
[131]DAI W W,PANSERAT S,MENNIGEN J A,et al.Post-prandial regulation of hepatic glucokinase and lipogenesis requires the activation of TORC1signalling in rainbow trout (Oncorhynchusmykiss)[J].Journal of Experimental Biology,2013,216(23):4483-4492.
[132]TU Y Q,XIE S Q,HAN D,et al.Dietary arginine requirement for gibel carp (Carassisauratusgibeliovar.CASⅢ) reduces with fish size from 50g to 150g associated with modulation of genes involved in TOR signaling pathway[J].Aquaculture,2015,449:37-47.
[133]REN M C,HABTE-TSION H M,LIU B,et al.Dietary leucine level affects growth performance,whole body composition,plasma parameters and relative expression of TOR and TNF-ɑ in juvenile blunt snout bream,Megalobramaamblycephala[J].Aquaculture,2015,448:162-168.
[134]TANG L,FENG L,SUN C Y,et al.Effect of tryptophan on growth,intestinal enzyme activities and TOR gene expression in juvenile Jian carp (Cyprinuscarpiovar.Jian):studiesinvivoandinvitro[J].Aquaculture,2013,412-413:23-33.
[135]SUN S J,WANG B J,JIANG K Y,et al.Target of rapamycin (TOR) inFenneropenaeuschinensis:cDNA cloning,characterization,tissue expression and response to amino acids[J].Aquaculture Nutrition,2015,21(1):1-9.
(責(zé)任編輯 菅景穎)
Appetite Regulation in Fishes
TIAN Juan1,2HE Gen1*MAI Kangsen1ZHOU Huihui1
(1.KeyLaboratoryofAquacultureNutritionofMinistryofAgriculture,OceanUniversityofChina,Qingdao266003,China; 2.KeyLaboratoryofFreshwaterBiodiversityConservationandUtilizationofMinistryofAgriculture,YangtzeRiverFisheriesResearchInstitute,ChineseAcademyofFisherySciences,Wuhan430223,China)
Finding the replacement of fish meal has become an inevitable requirement for sustainable development of fish farming, therefore, how to improve the utilization of fish meal substitutes becomes the bottle-neck of fish meal substitution study. Appetite is an important factor affecting fish meal replacement, and appetite regulation network through a variety of appetite regulation factors (including appetitive factors and appetite-suppressing factors) and central signal pathway to adjust feed intake. Therefore, this paper from the perspective of appetite regulation of fishes, reviews the recent advances towards appetite regulated keys and central signaling pathway on the appetite regulation.[ChineseJournalofAnimalNutrition, 2016, 28(4):984-998]
appetite; fishes; appetite regulation factors; central signaling pathway
10.3969/j.issn.1006-267x.2016.04.004
2015-10-30
國家自然科學(xué)基金面上項(xiàng)目(31572627);國家自然科學(xué)基金優(yōu)秀青年基金(31222055)
田 娟(1983—),女,湖北蘄春人,助理研究員,博士研究生,主要從事魚類營養(yǎng)學(xué)研究。E-mail: tianjuan0303@163.com
*通信作者:何 艮,教授,博士生導(dǎo)師,E-mail: hegen@ouc.edu.cn
S963.7
A
1006-267X(2016)04-0984-15
*Corresponding author, professor, E-mail: hegen@ouc.edu.cn