景永帥,張丹參,吳蘭芳,戎欣玉,杜紅霞,許偉濤
(1. 河北科技大學(xué)化學(xué)與制藥工程學(xué)院,石家莊 050018;2. 河北中醫(yī)學(xué)院藥學(xué)院,石家莊 050200)
荔枝低分子量多糖的分離純化及抗氧化吸濕保濕性能分析
景永帥1,張丹參1,吳蘭芳2※,戎欣玉1,杜紅霞1,許偉濤1
(1. 河北科技大學(xué)化學(xué)與制藥工程學(xué)院,石家莊 050018;2. 河北中醫(yī)學(xué)院藥學(xué)院,石家莊 050200)
為進一步開發(fā)和利用荔枝中的多糖成分,該文對荔枝低分子量多糖組分進行分離純化,并對其理化性質(zhì)、抗氧化和吸濕保濕性進行研究。采用超聲波輔助提取、分級醇沉、DEAE-cellulose 52和Sephadex G-100柱分離純化荔枝多糖;紫外-可見光譜掃描法、比旋光度法、滲透凝膠色譜法3種方法驗證純度;高效凝膠滲透色譜法測定相對分子量,高效陰離子交換色譜測定單糖組成;清除DPPH自由基和羥基自由基評價體外抗氧化活性;體外法測定吸濕保濕性。結(jié)果表明:荔枝多糖經(jīng)分離純化后獲得組分荔枝多糖PLC-1,經(jīng)3種方法驗證PLC-1為精多糖,相對分子量為2.35×104Da,是由半乳糖、鼠李糖、葡萄糖組成,摩爾比為:1.00∶3.52∶5.89。抗氧化活性研究結(jié)果表明PLC-1對DPPH和羥基自由基呈良好的量效關(guān)系,半數(shù)清除濃度IC50分別為0.41和0.31 mg/mL。吸濕保濕性的結(jié)果表明,PLC-1具有良好的吸濕和保濕性,在32 h時的吸濕率為58.3%,32 h時的失水率為45.3%,荔枝多糖PLC-1為具抗氧化和吸濕保濕活性的多糖,研究結(jié)果可為荔枝的深加工和進一步研究開發(fā)提供一定的理論基礎(chǔ)。
提?。患兓?;柱層析;荔枝;多糖;抗氧化活性;吸濕保濕活性
荔枝(Litchi chinensis Sonn.)為無患子科荔枝屬植物,其果肉富含多糖、多酚、維生素、膳食纖維、礦物質(zhì)等成分,具有較高的營養(yǎng)價值和生物活性[1]。中國是荔枝的主產(chǎn)國,面積與產(chǎn)量均居世界第一,荔枝種植面積約60萬hm2,100多個品種,產(chǎn)量130萬t,分別占世界荔枝總種植面積的84.5%和總產(chǎn)量的70.5%[2]?!侗静菥V目》中記載:“常食荔枝,能補腦健身,治療瘴癘療腫,開胃益脾,干制品能補元氣,為產(chǎn)婦及老弱補品”[3]?,F(xiàn)代研究表明,荔枝多糖具有抗氧化、免疫調(diào)節(jié)、降血糖,抗疲勞等作用[4-5],并且初步明確活性多糖是荔枝重要的保健物質(zhì)之一[6]。
近年來,國內(nèi)外研究者對荔枝果肉多糖已有報道,主要包括提取工藝、分離純化、抗氧化活性研究。如:周董永[7]、吳雅靜[8]和陳衛(wèi)云[9]分別用微波法、超聲波法以及超聲微波酶解協(xié)同提取荔枝粗多糖,并證實在一定條件下能提高多糖得率,其均側(cè)重于提取工藝研究,未進行多糖的結(jié)構(gòu)和活性研究;Kong Fanli[10]和Hu Xuqiao[4]均分離純化了 50%乙醇沉淀的荔枝多糖,制備得到了 4個荔枝精多糖;董周永[7]分離純化80%乙醇沉淀的多糖,采用DEAE-52纖維素柱純化得到1個荔枝精多糖;李巍巍[2]報道4個荔枝多糖組分均有一定的抗氧化能力,其中LCP-2的清除作用最強,其清除.OH、O2-和DPPH的半數(shù)清除率濃度分別為3.8、22.3、14.2 mg/mL;Kong Fanli[10]報道3個荔枝多糖組分均有一定的抗氧化能力,其中LFP-3的清除作用最強,其清除O2-和.OH的半數(shù)清除率濃度分別為0.11和0.44 mg/mL,但均不如對照品維生素C抗氧化效果好。本課題組前期研究發(fā)現(xiàn)蛹蟲草多糖的70%~90%乙醇沉淀多糖部分具有較好的抗氧化效果[11],因此本試驗主要研究荔枝的70%~90%乙醇沉淀的部分,其屬于相對較低分子量的多糖[11],且至今未見關(guān)于荔枝低分子量多糖的文獻報道。
目前抗氧化性多糖作為當(dāng)今熱點,為自由基氧化損傷相關(guān)疾病的治療帶來了新的希望。多糖由于分子結(jié)構(gòu)中存在大量羥基或羧基等極性基團,能與水分子形成氫鍵且相互交聯(lián)呈網(wǎng)狀結(jié)構(gòu),表現(xiàn)出良好的吸濕和保濕性能[12]。抗氧化和吸濕保濕是延緩衰老、保證皮膚健康的重要條件。本課題組前期研究發(fā)現(xiàn)荔枝低分子量粗多糖組分具有較強的抗氧化和吸濕保濕性,但關(guān)于荔枝多糖的吸濕和保濕性未見相關(guān)報道。因此,本文重點研究70%~90%乙醇沉淀荔枝多糖,對荔枝中較低分子量的多糖組分進行提取、分離和純化,并對其理化性質(zhì)及其抗氧化和吸濕保濕性進行系統(tǒng)研究,可進一步對荔枝中含有的多糖組分全面考察,旨在為更好地開發(fā)荔枝的保健產(chǎn)品或化妝品提供理論依據(jù),同時為荔枝多糖作為功能材料在食品或精細化工行業(yè)的應(yīng)用打下良好的前期研究基礎(chǔ)。
1.1 材料與試劑
荔枝干購自河北安國藥材市場,經(jīng)河北中醫(yī)學(xué)院嚴(yán)玉平教授鑒定為無患子科植物荔枝(妃子笑)的干燥果肉;DEAE-cellulose 52柱,英國Whatman公司分裝;Sephadex G-100、Sephacryl S-300 HR柱,美國GE Healthcare公司;標(biāo)準(zhǔn)品葡聚糖Dextran系列T4、T7、T10、T70、T200和藍葡聚糖、各標(biāo)準(zhǔn)單糖、1,1-二苯基-2-苦肼基(2,2-diphenyl-1-picrylhydrazyl,DPPH)、維生素C (Vitamin C),美國Sigma公司;其他化學(xué)試劑為進口或國產(chǎn)分析純。
1.2 試驗儀器
DBS-100自動部分收集器、恒流泵(上海滬西分析儀器廠有限公司)、EYELA N-1000旋轉(zhuǎn)蒸發(fā)儀(日本東京理化器械公司)、TU- 2450紫外-可見分光光度計(日本島津公司);傅里葉變換紅外吸收光譜儀(德國Bruker公司);WZZ-2B自動旋光儀(上海精密科學(xué)儀器廠);Dionex ICS-2500高效離子色譜(美國戴安公司);3110型酶標(biāo)儀(美國Thermo公司)。
1.3 試驗方法
1.3.1 荔枝多糖的提取
依據(jù)本課題組前期優(yōu)化的提取純化工藝制備荔枝低分子量精多糖,具體操作如下:取荔枝果實,去殼去核,充分干燥(至含水率為5%),粉碎,過60目篩,稱量(1 000 g),使用10倍體積的體積分?jǐn)?shù)為95%食用乙醇浸提12 h,醇提后進行抽濾,提取液使用旋轉(zhuǎn)蒸發(fā)儀減壓濃縮回收乙醇,荔枝殘渣晾干至無醇味。稱量醇提后的荔枝果肉(880 g),加入10倍體積的蒸餾水提取,在超聲波輔助(功率為280 W)的條件下,80℃恒溫提取3次,每次1 h,合并水提液,用旋轉(zhuǎn)蒸發(fā)儀減壓濃縮至一定體積,乙醇沉淀(乙醇最終體積分?jǐn)?shù)為70%),4℃下靜置24 h,離心(25℃,5 000×g),沉淀為粗多糖PLC70(另作他用),剩余的上清液減壓濃縮至一定體積,乙醇沉淀(乙醇最終體積分?jǐn)?shù)為90%),4℃下靜置24 h,離心(25℃,5 000×g),沉淀為荔枝粗多糖(PLC90)。PLC90使用木瓜蛋白酶結(jié)合Sevag法脫蛋白,用AB-8型大孔樹脂進行靜置脫色處理[13],分別用自來水、蒸餾水各透析48 h(500 Da透析袋),減壓濃縮,真空冷凍干燥(溫度為?50℃,真空度為10 Pa)后得到荔枝粗多糖PLC。
1.3.2 荔枝多糖的分離純化
將粗多糖溶于少量蒸餾水中,配制成50 mg/mL多糖溶液,在多糖分離純化系統(tǒng)上,采用DEAE-cellulose 52柱(4.0 cm×80.0 cm)以0~1.0 mol/L的NaCl線性洗脫,根據(jù)線性洗脫結(jié)果確定梯度洗脫的條件為0~0.8 mol/L 的NaCl,流速為0.5 mL/min,自動部分收集(每管收集5.0 mL),以苯酚-硫酸法檢測各梯度中多糖組分的位置,分別收集相應(yīng)梯度的多糖組分,透析脫鹽后濃縮凍干(溫度為?50℃,真空度為10 Pa)得純化后多糖樣品。隨后采用Sephadex G-100柱(2.6 cm×100.0 cm)以雙蒸水為洗脫液,自動部分收集(每管收集3.0 mL),以苯酚-硫酸法檢測多糖洗脫情況,分別收集相應(yīng)的多糖組分,透析后濃縮凍干(溫度為?50℃,真空度為10 Pa)得純化后多糖樣品。具體提取純化過程見圖1。
圖1 荔枝多糖PLC-1提取純化工藝流程圖Fig.1 Process flow chart of extraction and purification of PLC-1
1.3.3 荔枝多糖的純度驗證
1)紫外光譜分析
將純化后的多糖樣品制成1 mg/mL的溶液,在200~700 nm波長范圍內(nèi)進行掃描,觀察其在260、280、620 nm處有無吸收[11]。
2)比旋光度法驗證荔枝多糖的純度
在20℃鈉光下測定30%、60%、80%體積分?jǐn)?shù)的乙醇沉淀物的旋光度值[14]。
3)凝膠滲透色譜法驗證荔枝多糖的純度
純化后的多糖樣品配成5.0 mg/mL溶液,上樣于Sephacryl S-300 HR凝膠柱,以水為洗脫液,流速為0.2 mL/min,每管2 mL,苯酚-硫酸法檢測多糖洗脫情況,以流出液的管數(shù)為橫坐標(biāo),吸光度值為縱坐標(biāo),繪制洗脫曲線[5]。
1.3.4 多糖樣品分子量測定
采用凝膠滲透色譜法(GPC法)測定荔枝多糖的相對分子量(M)[15]。以標(biāo)準(zhǔn)品葡聚糖Dextran系列(T4、T7、T10、T70、T200)制作標(biāo)準(zhǔn)曲線,用相對分子量為200萬的藍葡聚糖確定凝膠柱的空體積V0,以葡萄糖確定凝膠柱的總柱體積Vt,以有效分配系數(shù)Kav為縱坐標(biāo),lgM為橫坐標(biāo)作標(biāo)準(zhǔn)曲線,分配系數(shù)Kav由以下公式求得
式中Ve為待測樣品的洗脫體積,V0為色譜柱空體積,Vt為色譜柱總體積,Ve,V0,Vt單位均為mL。
取適量荔枝多糖樣品配制成質(zhì)量濃度為2.0 mg/mL的溶液,0.22 μm微孔濾膜濾過,上Sephacyl S-300 HR凝膠柱,根據(jù)出峰洗脫體積,計算Kav,代入上述標(biāo)準(zhǔn)曲線中,計算得到多糖PLC-1的相對分子量。
1.3.5 荔枝多糖的理化性質(zhì)研究
以葡萄糖為標(biāo)準(zhǔn)品,采用硫酸-苯酚法測定總糖含量[16]。以牛血清蛋白為標(biāo)準(zhǔn)品,采用Folin-酚法測定蛋白含量[17]。以葡萄糖醛酸作為標(biāo)準(zhǔn)品,采用咔唑-硫酸法測定糖醛酸含量[18]。以硫酸鉀為標(biāo)準(zhǔn)品,采用氯化鋇-明膠比濁法測定硫酸根含量[19]。將荔枝多糖配制成10 mg/mL溶液,在20℃下用1 dm的旋光管測定其旋光度[5]。
1.3.6 紅外光譜分析
取1.0 mg荔枝多糖PLC-1,以100 mg的KBr混合研磨成粉,壓片,在4 000~500 cm-1范圍內(nèi)掃描紅外光譜掃描[5]。
1.3.7 荔枝多糖的單糖組成分析
精密稱量各標(biāo)準(zhǔn)單糖(L-阿拉伯糖、L-鼠李糖、D-果糖、D-甘露糖、D-葡萄糖和D-半乳糖)1.0 mg,加蒸餾水配成1.0 mg/mL的標(biāo)準(zhǔn)品溶液,取20.0 μL進行高效陰離子交換色譜(HPAEC-PAD)測定。取荔枝多糖樣品5.0 mg,加入5.0 mL的2.0 mol/L的三氟乙酸(TFA),封管后于110℃條件下水解6 h,冷卻后減壓濃縮蒸干。反復(fù)加甲醇蒸干,除去剩余的TFA。取水解后的樣品,蒸餾水溶解,取20.0 μL進行HPAEC-PAD測定,并根據(jù)各峰的保留時間和峰面積比計算出各單糖的組成和摩爾比[11]。高效離子色譜分析條件為:帶在線自動脫氣的四元梯度泵;脈沖安培檢測器(PAD);Carbo PAC TMPA10分析色譜柱(2.0 mm×250 mm);進樣量為20.0 μL;流速為0.2 mL/min;柱溫為25℃;流動相為A[H2O(92%)]+B[200 mmol/L NaOH(8%)]。
1.3.8 荔枝多糖的掃描電子顯微鏡(SEM)分析
取適量的干燥荔枝多糖樣品,黏著于電鏡專用的銅臺上,置于離子濺射儀中鍍一層導(dǎo)電金膜后,在Philips XL-30掃描電鏡下觀察。工作條件:加速電壓5.0 kV,放大倍數(shù)(1 000和20 000倍),選擇相應(yīng)的視野照相記錄[20]。
1.3.9 荔枝多糖的抗氧化活性測試
荔枝多糖清除DPPH、OH自由基的測定參照文獻方法進行測定[21-22]。
1.3.10 吸濕保濕活性測定
吸濕性能評價選用飽和硫酸銨溶液置于干燥器中,環(huán)境溫度為20℃。選用甘油為陽性對照品,測定荔枝多糖PLC-1的吸濕率。將樣品干燥至恒質(zhì)量后稱其質(zhì)量,置于相對濕度為80%的干燥器中,放置2、4、8、16 h,稱其質(zhì)量變化,試驗設(shè)3次重復(fù)。
式中M0為樣品起始質(zhì)量g;Mt為放置一定時間后樣品質(zhì)量g。
采用體外法對荔枝多糖PLC-1的保濕性能與甘油進行比較。將荔枝多糖、甘油分別配成5%水溶液,選用7.5 cm×7.5 cm的玻璃板,貼一層醫(yī)用透氣膠帶,吸取200 μL樣品,均勻涂敷在透氣膠帶上,放進干燥器中一定時間(2、4、8、16 h)后分別稱量,計算失水率。一定時間內(nèi),失水率越小,保濕效果越好,試驗設(shè)3次重復(fù)[23]。
1.3.11 數(shù)據(jù)處理
試驗數(shù)據(jù)的統(tǒng)計使用Oringe8.5軟件,試驗數(shù)據(jù)的差異性分析使用SPSS 18.0軟件,其結(jié)果表示為平均值±標(biāo)準(zhǔn)差(x±s,n=3)。
2.1 荔枝多糖的提取、分離和純化
1 000 g的荔枝果肉經(jīng)乙醇除脂、超聲波提取、分級醇沉、除蛋白、除色素、透析凍干后,得到荔枝粗多糖PLC樣品25.5 g,得率為2.55%。多糖PLC經(jīng)DEAE-cellulose 52離子交換柱分離,分別在水洗脫與梯度鹽洗脫部分得到2個主峰(如圖2所示),收集第2個主峰樣品進行下一步純化,經(jīng)Sephadex G-100凝膠柱純化,得到對稱的單峰組分,命名為PLC-1。
圖2 PLC經(jīng)DEAE-cellulose 52 柱層析的洗脫曲線Fig.2 Curve of PLC in DEAE-cellulose 52 column chromatography
2.2 荔枝多糖PLC-1的純度驗證
紫外-可見分光光度計檢測結(jié)果顯示,PLC-1在260 和280 nm處均無明顯特征吸收,提示多糖中不含有蛋白質(zhì)和核酸,在620 nm處無吸收峰則表明不含色素類物質(zhì),純度較高。采用比旋光度法對荔枝多糖PLC-1進行純度鑒定,在乙醇體積分?jǐn)?shù)分別為30%,60%,80%條件下,測定PLC-1的比旋光度值基本相同,分別為:+52°,+52°, +53°,表明其為相對均一多糖。由圖3洗脫曲線可知,分離純化后的PLC-1在Sephacryl S-300 HR凝膠柱層析中獲得單一、對稱的洗脫峰。
圖3 PLC-1的Sephacryl S-300 HR凝膠柱層析洗脫曲線Fig.3 Curve of PLC-1 in Sephacryl S-300 HR column chromatography
經(jīng)過紫外-可見光譜掃描法、旋光度法、凝膠滲透色譜法(GPC)驗證多糖PLC-1的純度,結(jié)果表明多糖PLC-1為均一性良好的精多糖。
2.3 荔枝多糖的理化性質(zhì)
多糖的理化性質(zhì)為其進一步的結(jié)構(gòu)鑒定和活性篩選提供重要的參考價值。通過高效凝膠滲透色譜法測定荔枝精多糖PLC-1相對分子量為2.35×104Da。荔枝多糖PLC-1的總糖質(zhì)量分?jǐn)?shù)為94.7%,比旋光度平均值為+52.33°,且不含有蛋白、糖醛酸和硫酸根的中性多糖。
2.4 荔枝多糖紅外光譜分析
荔枝多糖PLC-1的紅外光譜如圖4所示,3 335 cm-1附近處強吸收峰為-OH的伸縮振動峰;在2 950、1 640、1 420、1 095 cm-1波長處的吸收均為多糖的特征吸收,824 和894 cm-1處的吸收顯示在結(jié)構(gòu)中同時含有α和β 2種糖苷鍵構(gòu)型存在,在1 740 cm-1波長處無吸收顯示在多糖樣品中沒有糖醛酸的結(jié)構(gòu)存在[24]。
圖4 荔枝多糖PLC-1的紅外光譜圖Fig.4 FT-IR spectrum of PLC-1
2.5 荔枝多糖的單糖組成分析
經(jīng)與標(biāo)準(zhǔn)單糖的高效離子色譜保留時間和峰面積對照分析,結(jié)果表明PLC-1由半乳糖、鼠李糖、葡萄糖組成,其摩爾比為:1.00∶3.52∶5.89。
2.6 荔枝多糖的掃描電鏡分析
荔枝多糖PLC-1的掃描電鏡圖像如圖5所示,從外觀形態(tài)和超微結(jié)構(gòu)上看,荔枝多糖主要由自由分布的不規(guī)則球形體和片狀體組成,比較粗糙,有凹陷和空隙,有隨機分布的不規(guī)則粒子存在,直徑約為1.8~3.0 μm,這些可能是由于多糖的性質(zhì)、結(jié)構(gòu)和分支結(jié)構(gòu)等原因形成的,也和多糖在提取、分離和純化的過程中,使用的方法不同引起不一樣的超微結(jié)構(gòu)。
圖5 荔枝多糖PLC-1的掃描電鏡圖Fig.5 SEM images of PLC-1
2.7 荔枝多糖PLC-1的抗氧化測定結(jié)果
由圖6a可知,荔枝多糖PLC-1對DPPH自由基有一定的清除作用,且清除率隨多糖的劑量增加而升高,具有濃度依賴性。其中,在質(zhì)量濃度為0.8 mg/mL時,荔枝多糖的清除率為62.8%。荔枝多糖PLC-1和維生素C對DPPH自由基清除率的IC50值分別為0.41和0.12 mg/mL。李巍巍等[2]報道4個荔枝多糖組分均有一定的清除DPPH自由基能力,其半數(shù)清除率的IC50值分別為20.0、14.2、18.5和18.1 mg/mL;孔凡利[25]報道在質(zhì)量濃度為0.85 mg/mL時,荔枝多糖LFP1、LFP2、LFP3和LFP4對DPPH自由基的清除率分別為23.4%、32.5%、22.5%和29.2%。本試驗純化得到的荔枝多糖PLC-1的清除DPPH自由基能力明顯優(yōu)于前人報道的荔枝多糖組分的能力。
如圖6b所示,荔枝多糖PLC-1對羥基自由基有一定的清除作用,且清除率隨多糖的劑量增加而升高,呈現(xiàn)一定的量效關(guān)系。其中,在質(zhì)量濃度為0.8 mg/mL時,荔枝多糖的清除率為65.3%。荔枝多糖PLC-1和維生素C對羥基自由基清除率的IC50值分別為0.38和0.15 mg/mL。李巍巍等[2]報道4個荔枝多糖組分均有一定的清除羥基自由基能力,其半數(shù)清除率的IC50值分別為6.0、3.8、5.8 和5.9 mg/mL;孔凡利[25]報道在質(zhì)量濃度為0.8 mg/mL時,荔枝多糖LFP1、LFP2、LFP3和LFP4對羥基自由基的清除率分別為15.3%、49.5%、12.5%和42.3%。本試驗純化得到的荔枝多糖PLC-1的清除羥基自由基能力均優(yōu)于前人報道的荔枝多糖組分的抗氧化能力。
圖6 荔枝多糖PLC-1和維生素C抗氧化活性結(jié)果Fig.6 Antioxidant activity of PLC-1 and Vitamin C
2.8 荔枝多糖PLC-1的吸濕保濕性測定結(jié)果
吸濕性試驗結(jié)果如圖7a所示,樣品的吸濕率均隨時間逐漸增加而增加,具有較強的吸濕能力,32 h時的吸濕率,荔枝多糖PLC-1和甘油分別為58.3%和70.2%,荔枝多糖PLC-1吸濕性能低于甘油,經(jīng)SPSS 18.0軟件分析,二者存在顯著性差異(P<0.05)。
保濕性試驗結(jié)果如圖7b所示,樣品的失水率均隨時間增加而有所下降,多糖樣品具有良好的保濕性能,32 h時的失水率,荔枝多糖PLC-1和甘油分別為45.3%和53.7%,荔枝多糖PLC-1的保濕性能優(yōu)于甘油,經(jīng)SPSS 18.0軟件分析,二者存在顯著性差異(P<0.05)。荔枝多糖PLC-1以其來源天然、優(yōu)良的抗氧化能力以及吸濕保濕性將會在醫(yī)藥、保健品及化妝品工業(yè)中擁有廣泛的應(yīng)用。
圖7 荔枝多糖PLC-1和甘油的吸濕保濕活性Fig.7 Hygroscopicity and moisture retention activity of PLC-1 and Glycerol
1)采用超聲波輔助提取法、經(jīng)過分級醇沉、除蛋白、除色素、透析、冷凍干燥后得到荔枝粗多糖。荔枝粗多糖經(jīng)DEAE-cellulose 52和Sephadex G-100柱依次分離純化獲得多糖組分荔枝多糖PLC-1,采用3種方法驗證了其純度,表明PLC-1為均一精多糖。
2)通過高效凝膠滲透色譜法測定其相對分子量為2.35×104Da,單糖組成分析表明PLC-1由半乳糖、鼠李糖、葡萄糖組成,其摩爾比為:1.00∶3.52∶5.89。
3)抗氧化活性研究結(jié)果表明,荔枝多糖PLC-1在一定的濃度范圍內(nèi)對1,1-二苯基-2-苦肼基和羥基自由基均具有明顯的劑量效應(yīng),半數(shù)清除濃度分別為0.41和0.31 mg/mL。吸濕保濕性的研究表明,荔枝多糖PLC-1具有良好的吸濕和保濕性,在32 h時的吸濕率為58.3%,32 h時的失水率為45.3%,荔枝多糖PLC-1的保濕性能優(yōu)于甘油,吸濕性能低于甘油。
[1] 黃菲,張瑞芬,劉慧娟,等. 荔枝多糖級分的溶液性質(zhì)研究[J]. 食品安全質(zhì)量檢測學(xué)報,2015,6(5):1770-1775. Huang Fei, Zhang Ruifen, Liu Huijuan, et al. Study on the solution properties of polysaccharide fractions from litchi pulp[J]. Journal of Food Safety and Quality, 2015, 6(5): 1770-1775. (in Chinese with English abstract)
[2] 李巍巍. 荔枝多糖的提取分離純化及其免疫調(diào)節(jié)作用研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2009. Li Weiwei. Studies on extraction, separation, purification and immunomodulating activities of Litchi polysaccharide[D]. Wuhan: Huazhong Agricultural University, 2009. (in Chinese with English abstract)
[3] 周濃. 荔枝粗多糖提取工藝的研究[J]. 現(xiàn)代食品科技,2009,22(3):121-123. Zhou Nong. The extracting techniques of crude Litchi polysaccharide[J]. Modern Food Science and Technology, 2009, 22(3): 121-123. (in Chinese with English abstract)
[4] Hu Xuqiao, Huang Yuanyuan, Dong Quanfeng, et al. Structure characterization and antioxidant activity of a novel polysaccharide isolated from pulp tissues of Litchi chinensis[J]. Journal of Agricultural and Food Chemistry, 2011, 59(21): 11548-11552.
[5] Jing Yongshuai, Huang Lijiao, Lü Wenjie, et al. Structure characterization of a novel polysaccharide from pulp tissues of Litchi chinensis and its immnunomodulatory activity[J]. Journal of Agricultural and Food Chemistry, 2014, 62(4): 902 -911.
[6] Chen Weiyun, Zhang Mingwei, Liao Sentai. et al. Optimization of ultrasonic-microwave-enzyme synergistic extraction technology of polysaccharides from Litchi pulp[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(5): 77-84.
[7] 周董永. 荔枝多糖的提取、分離純化及抗氧化活性研究[D].楊凌:西北農(nóng)林科技大學(xué),2006. Zhou Dongyong. Study on extraction, purification and antioxidant activity of polysaccharide isolated from Litchi flesh[D]. Yangling: Northwest A&F University, 2006. (in Chinese with English abstract)
[8] 吳雅靜,張名位,孫明遠,等. 荔枝多糖的超聲波輔助提取工藝優(yōu)化研究[J]. 華南師范大學(xué)學(xué)報,2007(2):120-124. Wu Yajing, Zhang Mingwei, Sun Yuanming, et al. Investigation on the ultrasonic wave-assisted extraction technology for Litchi polysaccharides[J]. Journal of South China Normal University, 2007(2): 120-124. (in Chinese with English abstract)
[9] 陳衛(wèi)云,張名位,廖森泰,等. 荔枝多糖超聲微波酶解協(xié)同提取工藝優(yōu)化[J]. 中國食品學(xué)報,2013,13(5):77-84. Chen Weiyun, Zhang Mingwei, Liao Sentai, et al. Optimization of ultrasonic-microwave-enzyme synergistic extraction technology of polysaccharides from Litchi pulp[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(5): 77-84. (in Chinese with English abstract)
[10] Kong Fanli, Zhang Mngwei, Kuang Ruibin, et al. Antioxidant activities of different fractions of polysaccharides purified from pulp tissue of litchi Lichi chinensis Sonn[J]. Carbohydrate Polymers, 2010, 81(3): 612-616.
[11] Jing Yongshuai, Cui Xinlu, Chen Zhiyan, et al. Elucidation and biological activities of a new polysaccharide from cultured Cordyceps militaris[J]. Carbohydrate Polymers, 2014, 102(1): 288-296.
[12] 李萬芬,汪超,李紅斌,等. 魔芋葡甘聚糖-丙烯酸接枝共聚物的吸濕特性研究[J]. 農(nóng)業(yè)工程學(xué)報,2006,22(11):228-231. Li Wanfen, Wang Chao, Li Hongbin, et al. Moisture absorption characteristics of konjac glucomannan grafted acrylic acid[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(11): 228-231. (in Chinese with English abstract)
[13] 黎英,陳雪梅,嚴(yán)月萍,等. 超聲波輔助酶法提取紅腰豆多糖工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(15):293-301. Li Ying, Chen Xuemei, Yan Yueping, et al. Optimal extraction technology of polysaccharides from red kindey bean using ultrasonic assistant with enzyme[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 293-301. (in Chinese with English abstract)
[14] 劉金花,李富奎,賈得儒,等. 中國被毛孢發(fā)酵蟲草菌絲體多糖的提取、純化及其理化性質(zhì)[J]. 食品與發(fā)酵工業(yè),2014,40(3):222-226. Liu Jinhua, Li Fukui, Jia Deru, et al. Research on extraction,purification and physicochemical properties of mycelia polysaccharides of Hirsutella sinensis[J]. Food and Fermentation Industries, 2014, 40(3): 222-226. (in Chinese with English abstract)
[15] Yuan Fei, Yu Rongmin, Yin Yin, et al. Structure characterization and antioxidant activity of a novel polysaccharide isolated from Ginkgo biloba[J]. International Journal of Biological Macromolecules, 2010, 46(4): 436-439.
[16] 朱振元,連紅玉,陳 婧,等. 雪蓮果水溶性粗多糖提取分離工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(增刊1):397-401. Zhu Zhenyuan, Lian Hongyu, Chen Jing, et al. Process optimization of extraction and separation of water-soluble crude polysaccharide in yacon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.1): 397-401. (in Chinese with English abstract)
[17] 曲文娟,馬海樂,王婷,等. 交替雙頻逆流超聲輔助提取條斑紫菜蛋白和多糖[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(1):285-292. Qu Wenjuan, Ma Haile, Wang Ting, et al. Alternating two-frequency countercurrent ultrasonic-assisted extraction of protein and polysaccharide from Porphyra yezoensis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 285-292. (in Chinese with English abstract)
[18] Wang Lishan, Hu Xianjing, Bi Sixue, et al. A novel polysaccharide isolated from Litchi chinensis by using a simulated gastric medium and its immunomodulatory activity[J]. Drug Discoveries & Therapeutics, 2015, 9(2): 107-115.
[19] Jin Mingliang, Lu Zeqing, Huang, Ming, et al. Sulfated modification and antioxidant activity of exopolysaccahrides produce by Enterobacter cloacae Z0206[J]. International Journal of Biological Macromolecules, 2011, 48(4): 607-612.
[20] Chen Shuhai, Chen Haixia, Tian Jingge, et al. Chemical modification, antioxidant and α-amylase inhibitory activities of corn silk polysaccharides[J]. Carbohydrate Polymers, 2013, 98(1): 428-437.
[21] Jing Yongshuai, Zhu Jianhua, Liu Ting, et al. Structural characterization and biological activities of a novel polysaccharide from cultured Cordyceps militaris and its sulfated derivative[J]. Journal of Agricultural and Food Chemistry. 2015, 63(13): 3464-3471.
[22] 王振斌,劉加友,馬海樂,等. 無花果多糖提取工藝優(yōu)化及其超聲波改性[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(10):262-269. Wang Zhenbin, Liu Jiayou, Ma Haile, et al. Extraction process optimization and ultrasonic modification of polysaccharide from Ficus carica L.[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(10): 262-269. (in Chinese with English abstract)
[23] 劉新,王令充,吳皓,等. 四角蛤蜊多糖的吸濕保濕性及體外抗氧化性研究[J]. 食品工業(yè)科技,2012,33(24):85-88. Liu Xin, Wang Lingchong, Wu Hao, et al. Study on moisture absorption, moisture retention and antioxidant activity in vitro of Mactra veneriformis polysaccharide[J]. Science and Technology of Food Industry, 2012, 33(24): 85-88. (in Chinese with English abstract)
[24] Hu Xuqiao, Wang Jinlin, Jing Yongshuai, et al. Structural elucidation and in vitro antioxidant activities of a new heteropolysaccharide from Litchi chinensis[J]. Drug Discoveries & Therapeutics, 2015, 9(2): 116-122.
[25] 孔凡利. 荔枝果肉多糖的分離純化與結(jié)構(gòu)表征及抗氧化活性研究[D]. 廣州:華南理工大學(xué),2010. Kong Fanli. Studies on isolation, purification, structure and antioxidant activity of polysaccharides from pulp tissue of Litchi[D]. Guangzhou: South China University of Technology, 2010. (in Chinese with English abstract)
Purification, antioxidant, hygroscopicity and moisture retention activity of low molecular weight polysaccharide from Litchi chinensis
Jing Yongshuai1, Zhang Danshen1, Wu Lanfang2※, Rong Xinyu1, Du Hongxia1, Xu Weitao1
(1. College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; 2. College of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang 050200, China)
Litchi (Litchi chinensis Sonn.), a tropical/subtropical fruit originally from China, is cultivated all over the world with warm climates. It has become one of the most popular fruits in the world due to its delicious flavor and abundant nutrition. As a good source of minerals, dietary fiber, and phytochemicals, litchi has been employed in traditional Chinese medicine. In addition, litchi has also been used to produce various types of health products and foods, such as medicinal beverages, drinks, or soups. Litchi fruit’s pericarp tissues contain a lot of flavonoids, polysaccharides, and various proteins. Polysaccharides are a kind of biomacromolecules composed of more than 10 monosaccharide units, which generally exist in plants, animals, algae and microorganisms such as fungi and bacteria. Some investigations have indicated that Litchi chinensis polysaccharides have strong antioxidative activity and can be explored as novel potential antioxidants. Plant polysaccharides are excellent candidates for health and therapeutics, and searching for polysaccharides with antioxidant activity from plant resources has become a hot research topic. Furthermore, the polysaccharides exhibit good hygroscopicity and moisture retention activity due to the presence of a large number of hydroxyl or carboxyl polar groups, which can form hydrogen bonds with water molecules and cross-linked reticular structure. Antioxidant activity and hygroscopicity and moisture retention activity are important for healthcare to protect mankind from the attack of free radicals and retard the initiation of many chronic diseases. Therefore, it is necessary to more effectively purify and determine the physicochemical properties of polysaccharides from Litchi chinensis. In the current research, crude polysaccharides were extracted from Litchi chinensis to obtain the polysaccharide fraction (PLC). PLC was further purified and a kind of homogenous hetero polysaccharide (PLC-1) was isolated. The physicochemical properties, antioxidant activity, hygroscopicity and moisture retention activity of PLC-1 were analyzed. The polysaccharides of Litchi chinensis were extracted and purified by ultrasonic-assisted extraction, alcohol precipitation, deprotein, decolouring, dialysis, DEAE-cellulose 52 and Sephadex G-100 gel column chromatography. Purity was determined by ultraviolet-visible spectral scanning, spin spectrophotometry and gel filtration chromatography (GPC). The relative molecular mass was determined by high-performance gel permeation chromatography. The monosaccharide composition was analyzed by HPAEC-PAD. The antioxidant activity was evaluated on the basis of DPPH, OH free radical scavenging activity. The hygroscopicity and moisture retention activity was evaluated by adopting the in vitro method. PLC-1 was isolated and purified from Litchi chinensis, which was a kind of homogeneous polysaccharide. The relative molecular mass of PLC-1 was 2.35 × 104Da. The monosaccharide of PLC-1 included galactose, rhamnose and glucose with a molar ratio of 1.00:3.52:5.89. The antioxidant activity showed PLC-1 had a good dose-effect relationship on DPPH radical and hydroxyl radical in a certain concentration range, and the 50% inhibiting concentration (IC50) of DPPH and hydroxyl radical scavenging activity was 0.41 and 0.31 mg/mL, respectively. The hygroscopicity and moisture retention activity indicated PLC-1 had good effect. Due to the physicochemical properties, antioxidant activity, hygroscopicity and moisture retention activity, PLC-1 has a good prospect in the preparation of functional food and cosmetics.
extraction; purification; column chromatography; Litchi chinensis; physicochemical property; antioxidant activity; hygroscopicity and moisture retention activity
10.11975/j.issn.1002-6819.2016.09.039
TS218
A
1002-6819(2016)-09-0277-07
景永帥,張丹參,吳蘭芳,戎欣玉,杜紅霞,許偉濤. 荔枝低分子量多糖的分離純化及抗氧化吸濕保濕性能分析[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(9):277-283.
10.11975/j.issn.1002-6819.2016.09.039 http://www.tcsae.org
Jing Yongshuai, Zhang Danshen, Wu Lanfang, Rong Xinyu, Du Hongxia, Xu Weitao. Purification, antioxidant, hygroscopicity and moisture retention activity of low molecular weight polysaccharide from Litchi chinensis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 277-283. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.039 http://www.tcsae.org
2016-01-08
2016-03-22
國家級大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃項目(201510082002);河北省食藥監(jiān)局食品藥品安全科技項目(QN2015016);河北科技大學(xué)五大平臺開放基金項目(2014PT96);河北科技大學(xué)博士啟動項目(1181184)
景永帥,男,河北石家莊人,河北科技大學(xué)講師,博士,主要從事藥食資源開發(fā)與利用研究。石家莊 河北科技大學(xué)化學(xué)與制藥工程學(xué)院,050018。Email:cjys1985@126.com
※通信作者:吳蘭芳,女,福建壽寧人,河北中醫(yī)學(xué)院講師,博士,主要從事農(nóng)副產(chǎn)品加工與利用研究。石家莊 河北中醫(yī)學(xué)院藥學(xué)院,050200。Email:wulanfang757@163.com