史風(fēng)梅,裴占江,王 粟,高亞冰,孫 彬,劉 杰
(黑龍江省農(nóng)業(yè)科學(xué)院農(nóng)村能源研究所,哈爾濱 150086)
活性炭脫除模擬沼氣中H2S的動(dòng)態(tài)試驗(yàn)
史風(fēng)梅,裴占江,王 粟,高亞冰,孫 彬,劉 杰※
(黑龍江省農(nóng)業(yè)科學(xué)院農(nóng)村能源研究所,哈爾濱 150086)
利用動(dòng)態(tài)試驗(yàn),以模擬沼氣為研究對(duì)象,研究了進(jìn)氣中H2S的濃度、進(jìn)氣流速、吸附劑質(zhì)量及吸附劑粒徑等因素對(duì)吸附柱穿透時(shí)間及穿透吸附容量的影響。研究結(jié)果表明,提高進(jìn)氣中的H2S濃度和進(jìn)氣流速,增加活性炭的粒徑可以有效地縮短穿透時(shí)間。當(dāng)其他試驗(yàn)條件保持不變時(shí),進(jìn)氣中H2S的體積分?jǐn)?shù)分別為0.0124%和0.0454%時(shí),其對(duì)應(yīng)的穿透容量分別為1.20和1.86 mg/g;進(jìn)氣速度為0.15 L/min時(shí)的穿透容量為0.30 L/min時(shí)的1.6倍;粒徑0.84~2.00 mm時(shí)的穿透容量只有0.42~0.84 mm時(shí)的58%。因此,提高活性炭對(duì)H2S的穿透吸附容量可以通過(guò)提高進(jìn)氣中H2S的濃度,降低進(jìn)氣速度、減小活性炭的粒徑等方法實(shí)現(xiàn)。通過(guò)Bangham吸附速率方程的模擬可知,未經(jīng)改性的活性炭對(duì)H2S的吸附行為同樣符合Bangham吸附速率方程。該研究可為未改性活性炭沼氣脫硫裝置的放大和實(shí)際應(yīng)用提供參考。
沼氣;吸附;脫硫;活性炭;Bangham吸附速率方程
沼氣是一種以CH4為主要成分的可燃性混合氣體[1]。其中,H2S體積分?jǐn)?shù)約為0~1%[2-3]。H2S是一種酸性的劇毒氣體,在沼氣的凈化、傳輸、儲(chǔ)存和使用過(guò)程中會(huì)因腐蝕引發(fā)安全問(wèn)題[4]。因此,常采用化學(xué)法[5-6]、物理法[7-8]、生物法[9]或以上幾種方法組合[10-11]的形式脫除沼氣中的H2S。其中,活性炭有效處理低濃度的H2S而得到廣泛地研究[12-16]?;钚蕴棵摮鼿2S的效率受其性質(zhì)[3]、孔徑大小[17-18]、水分含量[15]以及沼氣組成[15]等諸多因素的影響。中國(guó)擁有大量生物質(zhì)資源。農(nóng)業(yè)廢棄物、城市污泥以及廢棄的工業(yè)有機(jī)物都可以作為生產(chǎn)沼氣或活性炭的原料[19]。采用活性炭處理沼氣既有利于廢棄物的無(wú)害化處理和資源化。
但是迄今為止,國(guó)內(nèi)外的研究多集中于浸漬活性炭脫H2S的行為和規(guī)律[14-16]。雖然通過(guò)浸漬堿液或金屬鹽溶液進(jìn)行改性的活性炭的脫硫效果在大多數(shù)情況下較未改性的活性炭好,但也有試驗(yàn)數(shù)據(jù)表明改性后的活性炭對(duì)硫化氫的吸附效果有時(shí)未必理想[3]。除改性活性炭的價(jià)格較高外,堿浸漬活性炭在運(yùn)輸、使用和廢棄處理等過(guò)程中還會(huì)產(chǎn)生腐蝕等問(wèn)題。隨著礦產(chǎn)資源的逐漸枯竭,價(jià)格低廉的氧化鐵脫硫劑最終會(huì)退出歷史舞臺(tái)。因此,重新對(duì)未改性活性炭的脫硫效果進(jìn)行研究意義深遠(yuǎn)。通過(guò)孔徑、流速、硫化氫濃度等參數(shù)的控制提高活性炭對(duì)硫化氫的吸附效果是解決上述問(wèn)題的有效方法。
因此,本試驗(yàn)采用動(dòng)態(tài)試驗(yàn),研究粒徑大小、進(jìn)氣濃度、氣體流速等對(duì)活性炭對(duì)模擬沼氣中的H2S脫除功效和穿透吸附容量的影響,所得數(shù)據(jù)可為未改性的活性炭沼氣脫硫裝置的放大和實(shí)際應(yīng)用提供相應(yīng)地?cái)?shù)據(jù)支持。
1.1 所用藥品和試劑
試驗(yàn)所用的NaOH和酚酞均為分析純;木屑活性炭外購(gòu)于天津天昌活性炭有限公司,篩分出10~20目(0.84~2.00 mm),20~40(0.42~0.84 mm)目的活性炭顆粒用于試驗(yàn)[20]。活性炭的部分性質(zhì)見(jiàn)表1。甲烷標(biāo)氣購(gòu)于哈爾濱市春霖氣體經(jīng)銷(xiāo)有限公司,標(biāo)氣中CH4、CO2和H2S的體積分?jǐn)?shù)分別為63%、36%和1%。為避免氣體分壓變化引起的活性炭對(duì)H2S吸附行為的影響,采用N2氣改變H2S的濃度。通過(guò)文獻(xiàn)可知以城鎮(zhèn)、單位的生活廢水為發(fā)酵原料的大中型沼氣工程穩(wěn)定運(yùn)行時(shí),沼氣中H2S體積分?jǐn)?shù)范圍為0.035%~0.074%[21]。而低于0.01%時(shí)的沼氣可直接用于發(fā)電,因此該試驗(yàn)采用的硫化氫體積分?jǐn)?shù)為0.0124%和0.0454%。
表1 活性炭的性質(zhì)Table 1 Properties of activated carbon of this study
1.2 試驗(yàn)裝置
固定吸附裝置為試驗(yàn)室自制,由沼氣瓶、N2氣瓶、減壓閥、緩沖瓶、流量計(jì)、固定床吸附柱、吸收瓶以及尾氣處理裝置組成,具體如圖1所示。
圖1 固定床吸附裝置Fig.1 Diagram of experimental setup
1.3 試驗(yàn)方法
1)活性炭含水率的測(cè)定
將洗凈的玻璃燒杯在105℃的烘箱內(nèi)烘至恒質(zhì)量,用分析天平稱(chēng)取W的活性炭置于其中,然后在105℃的條件下烘至恒質(zhì)量Wd,按公式(1)計(jì)算活性炭的含水率WP(%)。
本試驗(yàn)所用活性炭的含水率為21%。
2)活性炭pH值的測(cè)定
稱(chēng)取0.4 g活性炭置于潔凈干燥的比色管中,加入2 mL蒸餾水,室溫條件下置放24 h,期間對(duì)其進(jìn)行搖動(dòng)3次,然后利用雷磁pH計(jì)測(cè)定浸泡液的pH值。本試驗(yàn)所用活性炭的pH值為7.01。
3)活性炭結(jié)構(gòu)表征
活性炭噴金后,采用S-3400N 電子掃描電鏡觀察活性炭的表面和斷面結(jié)構(gòu),并采用IPP6.0軟件分析未改性活性炭的孔徑分布[22]。
4)動(dòng)態(tài)吸附試驗(yàn)
稱(chēng)取一定量的活性炭于吸附柱內(nèi)。沼氣標(biāo)準(zhǔn)氣和N2按一定的比例經(jīng)過(guò)減壓閥、緩沖罐后,以設(shè)定的流量從吸附柱底部進(jìn)入,凈化后的氣體經(jīng)過(guò)流量計(jì)2,進(jìn)入盛有10% NaOH水溶液的吸收瓶,尾氣進(jìn)行燃燒處理。在吸收瓶中滴入酚酞試劑,當(dāng)溶液變?yōu)闇\粉時(shí),更換吸收液。吸附硫化氫后的活性炭可做為炭基肥原料或經(jīng)再生后重新利用。填充柱長(zhǎng)度根據(jù)吸附柱長(zhǎng)度確定;氣體流速由自制實(shí)驗(yàn)裝置經(jīng)初步試驗(yàn)得到。表2為吸附試驗(yàn)的參數(shù),每組試驗(yàn)重復(fù)3次。通過(guò)AC1與AC2、AC2與AC3、AC3與AC4、AC2與AC5的試驗(yàn)數(shù)據(jù)對(duì)比可初步獲得H2S的濃度、吸附劑質(zhì)量、吸附劑粒徑及進(jìn)氣流速對(duì)穿透時(shí)間和穿透吸附容量的影響。
表2 吸附試驗(yàn)的參數(shù)Table 2 Experimental parameters of adsorption experiment
采用Gasboard3200L測(cè)定凈化后沼氣中H2S氣體的濃度,當(dāng)吸附后氣體中的H2S濃度達(dá)到進(jìn)氣濃度時(shí)停止試驗(yàn)。吸附后氣體中的H2S濃度達(dá)到進(jìn)氣濃度的90%的時(shí)間定義為穿透時(shí)間。
以H2S濃度對(duì)時(shí)間作圖得到穿透曲線,然后對(duì)穿透曲線進(jìn)行積分可得到活性炭對(duì)H2S的穿透吸附容量。穿透吸附容量的計(jì)算如公式(2)所示:
式中q為吸附容量,mg/g;Q為氣體流量,m3/min;t為吸附時(shí)間,min;C0為吸附柱入口質(zhì)量濃度,mg/m3;C為吸附柱出口質(zhì)量濃度,mg/m3;m為吸附劑質(zhì)量,g。以時(shí)間t為橫坐標(biāo),吸附量q為縱坐標(biāo)作圖,得到吸附曲線。
5)吸附動(dòng)力學(xué)研究
研究表明,H2S在改性活性炭上的吸附行為符合Bangham吸附速率方程[23]。本文也采用該法研究沼氣中的H2S在未改性活性炭上的吸附動(dòng)力學(xué)行為以及各種因素對(duì)吸附過(guò)程的影響。
Bangham吸附速率方程可以表達(dá)為
將方程(3)進(jìn)行積分,得到
將方程(4)兩邊取對(duì)數(shù),得到
式中qm為穿透吸附量,mg/g;k和z為常數(shù)。做曲線,可求取吸附速率方程常數(shù)k和z。
將k和z值代入公式(6)中,即可得到吸附曲線的模擬曲線。N2的進(jìn)氣流量為500 L/h,甲烷標(biāo)氣的進(jìn)氣流量分別為0.10和0.4 L/min時(shí),可得到H2S含量分別為124×10-6和454×10-6的混合氣體。
2.1 活性炭的結(jié)構(gòu)
SEM可以反映活性炭的微觀結(jié)構(gòu)和孔徑的大小。圖2為活性炭表面和斷面SEM圖。
由圖2可知,活性炭的斷面和表面為不規(guī)則海綿狀結(jié)構(gòu),具有大量的孔隙,由IPP6.0軟件可知活性炭的大部分孔徑在0.1~25 μm(圖3),屬于大孔的活性炭。在活性炭的形成過(guò)程中,孔壁的崩塌造成活性炭斷面失去原有的植物構(gòu)造。
圖2 活性炭的SEM圖(500×)Fig.2 SEM pictures of activated carbon (500×)
圖3 活性炭的孔徑分布圖Fig.3 Pore size distribution diagram of activated carbon
2.2 動(dòng)態(tài)吸附試驗(yàn)結(jié)果與分析
在保持其他試驗(yàn)條件不變,分別改變進(jìn)氣中H2S的濃度、吸附劑粒徑大小、吸附劑質(zhì)量和進(jìn)氣速度,得到的穿透曲線如圖4所示。經(jīng)過(guò)公式(2)可得到的穿透吸附容量見(jiàn)表3。
圖4 不同試驗(yàn)條件下的穿透曲線Fig.4 Diagram of concentration of outlet at adsorption time with different operating parameters
從圖4中可以看出,出氣中H2S的濃度隨時(shí)間的變化曲線形狀相似,呈S形。吸附初期,到達(dá)吸附劑表面的氣體分子較少,而吸附劑有大量的羥基等活性點(diǎn)位,可吸附氣中的H2S,使出口中硫化氫的濃度低。當(dāng)大量的氣體分子到達(dá)吸附劑的表面,吸附量迅速增加,活性點(diǎn)位迅速減少,吸附區(qū)逐漸外移減小,出氣中的H2S濃度迅速增加。吸附末期,吸附劑漸漸失去吸附能力,導(dǎo)致出氣中H2S濃度緩慢接近進(jìn)氣濃度。
表3 圖4,5中吸附參數(shù)q、甲烷損失率、z、k及R2值Table 3 q, loss rate of CH4, z, k and R2 obtained from Fig.4 and Fig.5
2.2.1 不同H2S濃度的影響
對(duì)圖4中AC1和AC2進(jìn)行比較,可得到H2S濃度對(duì)穿透曲線的影響。當(dāng)進(jìn)氣中H2S濃度增加時(shí),穿透時(shí)間變短。CH2S為0.0454%和0.0124%時(shí),活性炭的穿透吸附容量分別為1.86和1.20 mg/g?;钚蕴棵摿蚍譃?個(gè)過(guò)程[24]:1)活性炭表面形成水膜;2)H2S和O2溶于水膜并發(fā)生離解等變化;3)在活性炭表面發(fā)生反應(yīng)。研究表明在室溫條件下,在H2S和活性炭之間主要發(fā)生表面的物理吸附[3, 25]。但是,有氧化劑存在時(shí),也會(huì)發(fā)生化學(xué)吸附,H2S中的硫會(huì)被氧化成單質(zhì)硫[26]。而本文中的活性炭含有吸附水,且孔隙中充滿了空氣。因此,活性炭中的H2S主要以氣體分子的形式存在,只有少量的H2S被活性炭孔中存在的氧分子氧化成單質(zhì)硫。在溫度、壓力不變的情況下,氣體分子的擴(kuò)散速度取決于該氣體的濃度梯度。高的進(jìn)氣濃度意味著擴(kuò)散的推動(dòng)力較大,導(dǎo)致氣體分子到活性炭表面及孔隙內(nèi)的擴(kuò)散速度較快,吸附能夠在較短的時(shí)間內(nèi)達(dá)到平衡,吸附劑表面的氣體分子的數(shù)量較多。因此,穿透時(shí)間隨著濃度的增加而縮短,但穿透吸附量是增加的。
2.2.2 不同粒徑尺寸的影響
活性炭的粒徑的大小對(duì)穿透時(shí)間和H2S穿透吸附容量的影響見(jiàn)圖4中的AC3和AC4。在相同填充柱長(zhǎng)和進(jìn)氣速度的情況下,填充料粒徑大的較粒徑小的穿透時(shí)間較短。粒徑為10~20目的活性炭的穿透吸附容量為1.23 mg/g,粒徑為20~40目時(shí)的穿透吸附容量為2.12 mg/g。吸附劑對(duì)氣體發(fā)生物理吸附,其穿透吸附容量受吸附劑表面積大小的影響[27]。小的顆粒意味著大的外比表面積,更多的吸附活性點(diǎn),因此,穿透時(shí)間長(zhǎng),穿透吸附量較大。
2.2.3 不同活性炭填充質(zhì)量的影響
從圖4中的AC2和AC3可知吸附劑質(zhì)量對(duì)穿透曲線的影響。保持其他試驗(yàn)條件不變,僅改變填充劑的質(zhì)量,可顯著影響穿透時(shí)間。H2S的穿透吸附容量分別為1.20和1.23 mg/g,二者相近,即吸附劑的質(zhì)量對(duì)穿透吸附容量影響較小。吸附劑的質(zhì)量決定了吸附柱的長(zhǎng)度,影響氣體分子與吸附質(zhì)的接觸時(shí)間。吸附柱越長(zhǎng),吸附的氣體分子就越多,但是因?yàn)槠胶獾臈l件一樣,所以單位質(zhì)量活性炭的穿透吸附容量變化不大。
2.2.4 不同氣體流入速度的影響
氣體流速對(duì)活性炭吸附H2S的影響的試驗(yàn)結(jié)果見(jiàn)圖4中的AC2和AC5,對(duì)應(yīng)的穿透吸附容量分別為1.20和1.95 mg/g。氣體的流速?zèng)Q定氣體分子與吸附柱中的吸附劑的接觸時(shí)間[20]。低流速保證了H2S氣體分子擴(kuò)散到活性炭?jī)?nèi)部空隙的時(shí)間,使吸附得以順利進(jìn)行,從而H2S的穿透吸附容量比較大。程文煜等[28]利用活性焦固定床吸附SO2的試驗(yàn)結(jié)果顯示高氣體流速可以提高吸附劑對(duì)吸附質(zhì)的吸附速率和穿透吸附容量。二者之間的差異是因其試驗(yàn)所用吸附質(zhì)較大(當(dāng)量直徑約為11.48 mm),氣體分子需要一定的能量往吸附劑內(nèi)部擴(kuò)散。而本試驗(yàn)中所用的活性炭粒徑較小,氣體擴(kuò)分子向內(nèi)部擴(kuò)散不需要太大的動(dòng)能。因此,流速的增加縮短了穿透時(shí)間,也相應(yīng)的降低了穿透吸附容量。
研究表明,孔徑尺寸為納米級(jí)的活性炭吸附硫化氫的效率高[17-18, 29-30]。活性炭的微孔是吸附污染物質(zhì)的主要場(chǎng)所,而介孔和大孔是污染物質(zhì)遷移的通道[31]。因此,本試驗(yàn)中所用的活性炭的孔徑較大,造成硫化氫的吸附效率相對(duì)較低。但試驗(yàn)結(jié)果仍具有較高的借鑒意義。
2.3 吸附動(dòng)力學(xué)研究
利用Bangham吸附速率方程可得到ln(ln(qm/(qm?q)))~lnt曲線(圖5)。所有的ln(ln(qm/(qm?q)))~lnt曲線可分為兩段,在穿透時(shí)間內(nèi)的曲線線性良好,由圖5得到的穿透時(shí)間段內(nèi)的k,z和R2值見(jiàn)表3。
圖5 曲線ln(lnqm/(qm?q))~lntFig.5 Diagram of ln(lnqm/(qm?q))-lnt
由表3中可知,所有的ln(ln(qm/(qm?q)))~lnt線性良好,AC1、AC2、AC3、AC4和AC5的R2分別為0.99、0.97、0.97、0.98和0.98.
通過(guò)AC1和AC2的k值大小的比較,可知提升進(jìn)氣中H2S的濃度可提高活性炭對(duì)H2S的吸附速率常數(shù);入口H2S濃度的增加,加速了H2S分子在活性炭?jī)?nèi)部的擴(kuò)散,提高了活性炭對(duì)H2S的吸附速率[32]。而AC3和AC4 的k值表明:在進(jìn)氣速率和濃度一定的條件下,減小吸附劑的粒徑可有效地降低吸附速率常數(shù);AC2和AC3的k值的大小意味著填充柱的增長(zhǎng)卻降低了H2S的吸附速率常數(shù)。而AC2和AC5相比,AC2曲線ln(ln(qm/(qm?q)))~lnt比較陡峭,表明該流速時(shí),在活性炭表面的H2S氣體始終保持較高的濃度梯度,有利于H2S的吸附,吸附速率常數(shù)較大。而當(dāng)流速較慢時(shí),活性炭表面的H2S濃度隨著H2S分子的運(yùn)動(dòng)不斷減小,濃度梯度也呈減小的趨勢(shì),導(dǎo)致吸附速率常數(shù)逐漸降低。
將從表3中的k和z的值分別帶入公式(6)中,得到AC1~AC5的H2S吸附量的模擬曲線(圖6)。由圖6可知,利用Bangham吸附速率方程可對(duì)不同粒徑、流速、不同吸附劑質(zhì)量以及H2S濃度時(shí)的活性炭對(duì)H2S的吸附行為進(jìn)行很好地描述。
圖6 不同試驗(yàn)條件下吸附試驗(yàn)及模擬曲線Fig.6 Experimental and fitting curve of adsorption capacity with different operating times
另外,表3中也列出了每組試驗(yàn)的CH4損失率,在該試驗(yàn)條件下,CH4的損失率均小于6%,H2S穿透吸附容量大的,CH4的損失率也較大,這表明活性炭同樣吸附CH4,CH4與H2S的吸附規(guī)律相似,后續(xù)試驗(yàn)會(huì)對(duì)H2S/CH4和H2S/CO2的競(jìng)爭(zhēng)吸附規(guī)律進(jìn)行深入研究。
本文利用動(dòng)態(tài)試驗(yàn)研究了流速、H2S濃度、填充劑質(zhì)量和填充劑粒徑大小對(duì)穿透時(shí)間、穿透吸附容量的影響,并采用Bangham吸附速率方程對(duì)活性炭吸附H2S的動(dòng)力學(xué)行為進(jìn)行了研究。研究結(jié)果表明:活性炭粒徑為0.84~2.00 mm,填充質(zhì)量為2.0 g,進(jìn)氣流速為0.30 L/min,進(jìn)氣中H2S的濃度為0.0454%和0.0124%時(shí),活性炭對(duì)H2S的穿透吸附容量分別為1.86和1.20 mg/g;活性炭粒徑為0.84~2.00 mm,進(jìn)氣中H2S的濃度為0.0124%,進(jìn)氣流速為0.30 L/min,填充質(zhì)量為2.0和1.0 g時(shí),活性炭對(duì)H2S的穿透吸附容量分別為1.20和1.23 mg/g;保持進(jìn)氣中H2S體積分?jǐn)?shù)為0.0124%,進(jìn)氣流速為0.30 L/min,填充質(zhì)量為1.0 g不變,活性炭粒徑為0.84~2.00和0.42~0.84 mm時(shí),活性炭對(duì)H2S的穿透吸附容量分別為1.23 和2.12 mg/g;保持活性炭粒徑為0.84~2.00 mm,進(jìn)氣中H2S體積分?jǐn)?shù)為0.0124%,填充質(zhì)量為2.0 g不變,進(jìn)氣流速為0.30和0.15 L/min時(shí),活性炭對(duì)H2S的穿透吸附容量分別為1.20和1.95 mg/g。因此,提高進(jìn)氣中硫化氫濃度,減小吸附劑粒徑、降低進(jìn)氣速度有助于提高活性炭對(duì)H2S的穿透吸附容量,而吸附劑填充劑質(zhì)量的影響不明顯。
Bangham吸附速率方程常數(shù)k分別為0.046、0.011、0.022、0.011和0.0037;相關(guān)系數(shù)分別為0.99、0.97、0.97、0.98和0.98。因此,Bangham吸附速率方程可較好地描述H2S在未改性活性炭上的吸附動(dòng)力學(xué)行為。
[1] Ozturk B, Demirciyeva F. Comparison of biogas upgrading performances of different mixed matrix membranes[J]. Chemical Engineering Journal, 2013, 222: 209-217.
[2] García G, Cascarosa E, ábrego J, et al. Use of different residues for high temperature desulphurisation of gasification gas[J]. Chemical Engineering Journal, 2011, 174(2/3): 644-651.
[3] Sitthikhankaew R, Predapitakkun S, Kiattikomol R, et al. Comparative study of hydrogen sulfide adsorption by using alkaline impregnated activated carbons for hot fuel gas purification[J]. Energy Procedia, 2011, 9: 15-24.
[4] 羅新愛(ài). 天然氣脫硫裝置中硫化氫對(duì)設(shè)備的腐蝕問(wèn)題淺析[J].四川化工,2014(3):26-29. Luo Xin’ai. Analysis of corruption in nature gas desulfurization plant caused by hydrogen sulfide[J]. Sichuan Chemical Industry, 2014(3): 26-29. (in Chinese with English abstract)
[5] Tippayawong N, Thanompongchart P. Biogas quality upgrade by simultaneous removal of CO2and H2S in a packed column reactor[J]. Energy, 2010, 35(12): 4531-4535.
[6] Krischan J, Makaruk A, Harasek M. Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas[J]. Journal of Hazardous Materials, 2012, 215/216: 49-56.
[7] Lucrédio A F, Assaf J M, Assaf E M. Reforming of a modelsulfur-free biogas on Ni catalysts supported on Mg(Al)O derived from hydrotalcite precursors: Effect of La and Rh addition[J]. Biomass and Bioenergy, 2014, 60: 8-17. [8] Kárászová M, Vejra?ka J, Vesely V, et al. A water-swollen thin film composite membrane for effective upgrading of raw biogas by methane[J]. Separation and Purification Technology, 2012, 89: 212-216.
[9] Fernández M, Ramírez M, Gómez J M, et al. Biogas biodesulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam[J]. Journal of Hazardous Materials, 2014, 264: 529-535.
[10] Charnnok B, Suksaroj T, Boonswang P, et al. Oxidation of hydrogen sulfide in biogas using dissolved oxygen in the extreme acidic biofiltration operation[J]. Bioresource Technology, 2013, 131: 492-499.
[11] Ho Kuoling, Lin Weichih, Chung Yingchien, et al. Elimination of high concentration hydrogen sulfide and biogas purification by chemical–biological process[J]. Chemosphere, 2013, 92(10): 1396-1401.
[12] Pipatmanomai S, Kaewluan S, Vitidsant T. Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm[J]. Applied Energy, 2009, 86(5): 669-674.
[13] Esteves I A A C, Lopes M S S, Nunes P M C, et al. Adsorption of natural gas and biogas components on activated carbon[J]. Separation and Purification Technology, 2008, 62(2): 281-296.
[14] Sitthikhankaew R, Chadwick D, Assabumrungrat S, et al. Effects of humidity, O2, and CO2on H2S adsorption onto upgraded and KOH impregnated activated carbons[J]. Fuel Processing Technology, 2014, 124: 249-257.
[15] Huang Chenchia, Chen Chienhung, Chu Shumin. Effect of moisture on H2S adsorption by copper impregnated activated carbon[J]. Journal of Hazardous Materials, 2006, 136(3): 866-873.
[16] K?chermann J, Schneider J, Matthischke S, et al. Sorptive H2S removal by impregnated activated carbons for the production of SNG[J]. Fuel Processing Technology, 2015, 138: 37-41.
[17] Bagreev A, Menendez JA, Dukhno I, et al. Bituminous coal-based active carbons modified with nitrogen as adsorbents of hydrogen sulfide[J]. Carbon, 2004, 42: 469-472.
[18] 譚小耀,吳迪鏞,袁權(quán).浸漬活性炭脫硫過(guò)程中孔結(jié)構(gòu)及氣體濕度的影響[J].化工學(xué)報(bào),1997,48(2):237-240. Tan Xiaoyao, Wu Diyong, Yuan Quan. Influence of the pore structure and gas humidity on desulfurization by impregnated activated carbon[J]. Journal of Chemical Industry and Engineering(China), 1997, 48(2): 237-240. (in Chinese with English abstract)
[19] 王寧,侯艷偉,彭靜靜,等. 生物炭吸附有機(jī)污染物的研究進(jìn)展[J]. 環(huán)境化學(xué),2012,31(3):287-295. Wang Ning, Hou Yanwei, Peng Jingjing, et al. Research progess on sorption of organic contaminants to biochar[J]. Environmental Chemistry, 2012, 31(3): 287-295. (in Chinese with English abstract)
[20] 郭紅娜. 活性炭吸附低濃度甲烷的研究[D].大連:大連理工大學(xué),2013. Guo Hongna. Research of Adsorbing Low Concentration Methane with Activated Carbon[D]. Dalian: Dalian University of Technology, 2013. (in Chinese with English abstract)
[21] 黎良新. 大中型沼氣工程的沼氣凈化技術(shù)研究[D]. 南寧:廣西大學(xué),2007. Li Liangxin. Biogas Purifying Technology in Large and Medium Scale Biogas Projects[D]. Nanning: Guangxi University, 2007. (in Chinese with English abstract)
[22] 石瑩瑩. 多孔介質(zhì)結(jié)構(gòu)特征圖像分析研究:煙煤與碎石堆[D]. 呼和浩特:內(nèi)蒙古科技大學(xué),2014. Shi Yingying. Study on Structure Characteristics of Porous Media Based on Image Analysis: Bituminous Coal and Rubble[D]. Huhot: Inner Mongolia University of Science&Technolog, 2014. (in Chinese with English abstract)
[23] Wang Li, Cao Bin, Wang Shudong, et al. H2S Catalytic oxidation on impregnated activated carbon: Experiment and modeling[J]. Chemical Engineering Journal, 2006, 118(3): 133-139.
[24] 吳浪,張永春,張安峰,等. 活性炭脫除低濃度硫化氫研究進(jìn)展[J]. 低溫與特氣,2005,23(2):5-9. Wu Lang, Zhang Yongchun, Zang Anfeng, et al. The development of the research in removal of low concentration of H2S by activated carbon[J]. Low Temperature and Specialty Gases, 2005, 23(2): 5-9.(in Chinese with English abstract)
[25] Mochizuki T, Kubota M, Matsuda H, et al. Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation[J]. Fuel Processing Technology, 2016, 144: 164-169.
[26] Guo Jia, Luo Ye, Lua Aik Chong, et al. Adsorption of hydrogen sulphide (H2S) by activated carbons derived from oil: Palm shell[J]. Carbon, 2007, 45: 330-336.
[27] 張?zhí)燔?,許鴻杰,李樹(shù)剛,等. 粒徑大小對(duì)煤吸附甲烷的影響[J]. 湖南科技大學(xué)學(xué)報(bào):自然科學(xué)版,2009,24(1):9-12. Zhang Tianjun, Xu Hongjie, Li Shugang, et al. The effect of particle size on adsorption of methane on coal[J]. Journal of Hunan University of Science & Technology: Natural Science Edition, 2009, 24(1): 9-12. (in Chinese with English abstract)
[28] 程文煜,邢德山,樊騰飛,等. 活性焦固定床的吸附過(guò)程和穿透曲線預(yù)測(cè)[J]. 電力科學(xué)與工程,2015,31(2):1-5. Cheng Wenyu, Xing Deshan, Fan Tengfei, et al. Adsorption process and prediction of breakthrough curve in fixed bed of activated coke[J]. Electric Power Science and Engineering, 2015, 31(2): 1-5. (in Chinese with English abstract)
[29] Steijins M, Berks F, Werloop A, et al. The mechanism of the catalytic oxidation of hydrogen sulfide[J]. Journal of Catalysis, 1976,42: 87-95.
[30] Sreeramamurthy R, Menon P G. Oxidation of H2S on activated carbon[J]. Journal of Catalysis, 1975, 37(2): 287-296.
[31] 李坤權(quán),鄭正,李燁. 高比表面微孔活性炭的制備及其對(duì)對(duì)硝基苯胺的吸附[J]. 環(huán)境工程學(xué)報(bào),2010,4(7):1478-1482. Li Kunquan, ZhengZheng, LiYe. Preparation of high surface area microporous carbons and their adsorption of nitroaniline[J]. Chinese Journal of Environmental Engineering, 2010, 4(7): 1478-1482. (in Chinese with English abstract)
[32] 殷操,盧晗鋒,王罡,等. 高分子吸附樹(shù)脂對(duì)VOCs的動(dòng)態(tài)吸附及其穿透模型[J]. 浙江工業(yè)大學(xué)學(xué)報(bào),2012,40(4):422-427. Yin Cao, Lu Hanfeng, Wang Gang, et al. The dynamic adsorption and breakthrough model of polymer resin for VOCs[J]. Journal of Zhejiang University of Technology, 2012, 40(4): 422-427. (in Chinese with English abstract)
Dynamic experiment of biogas desulfurization by activated carbon
Shi Fengmei, Pei Zhanjiang, Wang Su, Gao Yabing, Sun Bin, Liu Jie※
(Rural Energy Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)
The world suffers the fossil energy crisis, and biogas gains more and more attention for it is a kind of reproducible, clean and environmental-friendly energy. Biogas comes from the anaerobic fermentation of organic materials in agriculture, industry and household waste at certain temperature and pressure. The concentration of H2S in biogas varies from 10 to 2 000 ×10-6or even more, which is different with the type, concentration of organic materials and the operation of anaerobic digestion process. In order to use biogas safely, the H2S in biogas which is hazardous to the equipment or human health should be removed from the biogas. Purification methods of H2S vary from simple physical or chemical technology to complex process including chemical, physical or biological treatment units, which depended on the use purpose of biogas. Activated carbon is a highly porous material, and known as an efficient media for low-concentration H2S removal by adsorption process. Moreover, activated carbon is easily available and cheap in price, because it is produced from biomass such as agricultural waste, wood, bamboo, coconut shells, and almond shells, which is abundant in China. Currently, most efforts are made in the study on H2S adsorption by modified activated carbon such as impregnated activated carbon with alkali or heavy metal salts. The modified active carbon has the better performances in most cases, but it is proved to have negative effects on the removal of H2S. For example, active carbon’s absorption capacity of H2S will decrease when the crystals of alkali or metal salts block the pores which act as adsorption site. The price of impregnated active carbon is higher than unmodified activated carbon and the corrosion often occurs inevitably. It is necessary to study the most efficient way to improve the performance of unmodified active carbon. Thus, the effects of the inflow rate, the concentration of H2S, the size of unmodified activated carbon and the length of the fixed adsorption bed on activated carbon’s adsorption capacity of H2S and the breakthrough time through fixed adsorption column were investigated. The adsorption capacity of H2S was 1.20 and 1.86 mg/g when the effluent H2S concentration was 0.0124% and 0.0454% respectively. The adsorption capacity of H2S with the effluent rate of 0.15 L/min was 1.6 times that with the effluent rate of 0.30 L/min, and the adsorption capacity of H2S with the particle size of 0.84-2.00 mm was only 58% of that with the particle size of 0.42-0.84 mm. Therefore, it could enhance activated carbon’s adsorption capacity of H2S by increasing the inlet concentration of H2S, decreasing the inflow rate and utilizing the small-size particles. The adsorption process was modeled by Bangham equation. The H2S adsorption capacity of unmodified activated carbon could be well described by Bangham equation.
biogas; adsorption; desulfurization; activated carbon; Bangham equation
10.11975/j.issn.1002-6819.2016.09.026
S216.4
A
1002-6819(2016)-09-0187-06
史風(fēng)梅,裴占江,王 粟,高亞冰,孫 彬,劉 杰. 活性炭脫除模擬沼氣中H2S的動(dòng)態(tài)試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):187-192.
10.11975/j.issn.1002-6819.2016.09.026 http://www.tcsae.org
Shi Fengmei, Pei Zhanjiang, Wang Su, Gao Yabing, Sun Bin, Liu Jie. Dynamic experiment of biogas desulfurization by activated carbon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 187-192. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.026 http://www.tcsae.org
2015-10-07
2016-02-19
黑龍江省農(nóng)業(yè)科技創(chuàng)新工程重點(diǎn)項(xiàng)目(2013ZD001);哈爾濱市青年科技創(chuàng)新人才(2013RFQYJ17);哈爾濱市創(chuàng)新人才研究專(zhuān)項(xiàng)資金(2015RAQXJ056);黑龍江省農(nóng)業(yè)科學(xué)院引進(jìn)博士人員科研啟動(dòng)金(201507-37)
史風(fēng)梅,女(漢族),山東莒縣人,副研究員,博士,從事沼氣的凈化及利用研究。哈爾濱 黑龍江省農(nóng)業(yè)科學(xué)院農(nóng)村能源研究所,150086。Email:ocean-water@126.com
※通信作者:劉杰,男(漢族),研究員,博士,從事生物質(zhì)能源的生產(chǎn)與利用研究。哈爾濱 黑龍江省農(nóng)業(yè)科學(xué)院農(nóng)村能源研究所,150086。Email:Liujie@163.com