亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于GF-1衛(wèi)星數(shù)據(jù)的冬小麥葉片氮含量遙感估算

        2016-12-19 08:53:32李粉玲常慶瑞
        關(guān)鍵詞:模型

        李粉玲,常慶瑞※,申 健,王 力

        (1.西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,楊凌712100; 2. 農(nóng)業(yè)部西北植物營(yíng)養(yǎng)與農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,楊凌 712100)

        基于GF-1衛(wèi)星數(shù)據(jù)的冬小麥葉片氮含量遙感估算

        李粉玲1,2,常慶瑞1,2※,申 健1,王 力1

        (1.西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,楊凌712100; 2. 農(nóng)業(yè)部西北植物營(yíng)養(yǎng)與農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,楊凌 712100)

        以陜西關(guān)中地區(qū)大田和小區(qū)試驗(yàn)下的冬小麥為研究對(duì)象,探討基于國(guó)產(chǎn)高分辨率衛(wèi)星GF-1號(hào)多光譜數(shù)據(jù)的冬小麥葉片氮含量估算方法和空間分布格局?;贕F-1號(hào)光譜響應(yīng)函數(shù)對(duì)地面實(shí)測(cè)冬小麥冠層高光譜進(jìn)行重采樣,獲取GF-1號(hào)衛(wèi)星可見(jiàn)光-近紅外波段的模擬反射率,并構(gòu)建光譜指數(shù),利用與葉片氮含量在0.01水平下顯著相關(guān)的8類光譜指數(shù),分別建立葉片氮含量的一元線性、一元二次多項(xiàng)式和指數(shù)回歸模型。通過(guò)光譜指數(shù)與葉片氮含量的敏感性分析,以及所建模型的綜合對(duì)比分析,獲取適合冬小麥葉片氮含量估算的最佳模型。結(jié)果表明:模擬衛(wèi)星寬波段光譜反射率和衛(wèi)星實(shí)測(cè)光譜反射率間的相關(guān)系數(shù)高于0.95,具有一致性;改進(jìn)型的敏感性指數(shù)綜合考慮了模型的穩(wěn)定性、敏感性和變量的動(dòng)態(tài)范圍,敏感性分析表明比值植被指數(shù)對(duì)葉片氮含量的變化響應(yīng)能力最強(qiáng);綜合模擬方程決定系數(shù)、模型敏感性分析、精度檢驗(yàn)和遙感制圖的結(jié)果,認(rèn)為基于比值植被指數(shù)建立的葉片氮含量估算模型適用性最強(qiáng),模擬結(jié)果與實(shí)際空間分布格局最為接近,為基于GF-1衛(wèi)星數(shù)據(jù)的區(qū)域性小麥氮素營(yíng)養(yǎng)監(jiān)測(cè)提供了理論依據(jù)和技術(shù)支持。

        衛(wèi)星;氮;敏感性分析;GF-1;冬小麥

        0 引言

        基于遙感圖像的作物生化指標(biāo)反演獲取技術(shù)是多平臺(tái)遙感精準(zhǔn)農(nóng)業(yè)信息獲取的重點(diǎn)[1]。高光譜遙感以其豐富的光譜信息在作物生理生化信息提取方面得到了廣泛應(yīng)用,為多光譜衛(wèi)星數(shù)據(jù)估算作物生化參量提供了理論依據(jù)[2-3]。當(dāng)前,國(guó)內(nèi)外專家學(xué)者針對(duì)作物葉面積指數(shù)(LAI)、植被覆蓋度、生物量、葉綠素含量等生長(zhǎng)指標(biāo)的多光譜衛(wèi)星遙感監(jiān)測(cè)能力進(jìn)行了探討[4-7]。氮素營(yíng)養(yǎng)是作物需求量最大的營(yíng)養(yǎng)元素,它對(duì)作物的生命活動(dòng)以及作物品質(zhì)和產(chǎn)量的形成有著極其重要的影響?;谛l(wèi)星遙感信息的冬小麥氮素營(yíng)養(yǎng)狀況監(jiān)測(cè)認(rèn)為,SPOT 5、Landsat TM、HJ-1A/1B等中高空間分辨率數(shù)據(jù)在作物氮素含量的遙感監(jiān)測(cè)中具有較好的適用性[8-10],但對(duì)于選用何種光譜波段和光譜指數(shù)能更有效、可靠地監(jiān)測(cè)小麥氮素營(yíng)養(yǎng)仍存在爭(zhēng)論,而基于中國(guó)自主研制的GF-1號(hào)衛(wèi)星數(shù)據(jù)的冬小麥氮素含量遙感監(jiān)測(cè)能力也有待研究。中國(guó)自2011年高分專項(xiàng)全面啟動(dòng)實(shí)施以來(lái),已經(jīng)成功獲取了來(lái)自GF-1和GF-2號(hào)衛(wèi)星的遙感影像數(shù)據(jù)。GF-1號(hào)衛(wèi)星搭載了2 m全色相機(jī)、8 和16 m多光譜相機(jī),重訪周期為41 d,8 m多光譜數(shù)據(jù)包含藍(lán)(450~520 nm)、綠(520~590 nm)、紅(630~690 nm)和近紅外(770~890 nm)4個(gè)波段。國(guó)內(nèi)學(xué)者就GF-1衛(wèi)星數(shù)據(jù)在作物長(zhǎng)勢(shì)遙感監(jiān)測(cè)中的適用性展開了部分研究工作,黃汝根等[11],李粉玲等[12]基于GF-1遙感影像分別估算了華南地區(qū)亞熱帶典型作物和關(guān)中地區(qū)冬小麥的SPAD值。賈玉秋等[13]研究表明基于GF-1和Landsat 8數(shù)據(jù)的玉米LAI反演結(jié)果具有空間一致性。為了進(jìn)一步研究GF-1數(shù)據(jù)在農(nóng)作物長(zhǎng)勢(shì)監(jiān)測(cè)中的適應(yīng)性,本研究利用不同年份、不同施氮水平和不同品種類型的冬小麥冠層高光譜信息,模擬國(guó)產(chǎn)高空間分辨率GF-1號(hào)衛(wèi)星波段的光譜反射,分析小麥葉片氮含量(leaf nitrogen content,LNC)指標(biāo)與模擬衛(wèi)星波段光譜及光譜指數(shù)的定量關(guān)系,探討光譜指數(shù)對(duì)冬小麥葉片氮含量監(jiān)測(cè)的靈敏性和適用性,以期為基于GF-1衛(wèi)星數(shù)據(jù)的區(qū)域性小麥氮素營(yíng)養(yǎng)監(jiān)測(cè)提供理論依據(jù)和技術(shù)支持。

        1 材料與方法

        1.1 試驗(yàn)設(shè)計(jì)

        2013-2014年在西北農(nóng)林科技大學(xué)農(nóng)作1站進(jìn)行氮、磷肥脅迫小區(qū)試驗(yàn),土壤類型為紅油土,小區(qū)面積12 m2(3 m×4 m),供試品種為小偃22。設(shè)置氮肥和磷肥2個(gè)因素各6個(gè)水平,每個(gè)處理重復(fù)2次,共24個(gè)試驗(yàn)小區(qū),氮肥和磷肥作為底肥一次施入,管理按照大田模式進(jìn)行。2012-2014年在陜西楊凌區(qū)揉谷鎮(zhèn)、扶風(fēng)縣召公鎮(zhèn)巨良農(nóng)場(chǎng)和扶風(fēng)縣杏林鎮(zhèn)馬席村開展冬小麥長(zhǎng)勢(shì)大田觀測(cè)試驗(yàn),共布置大田樣區(qū)39個(gè),最小大田面積為80 m2(10 m×8 m),由農(nóng)戶按照常規(guī)冬小麥種植方式進(jìn)行管理。在冬小麥的返青期、拔節(jié)期、抽穗期和灌漿期進(jìn)行冠層光譜和小麥植株采集。

        1.2 冠層光譜及葉片全氮測(cè)定

        采用美國(guó)SVC HR-1024I型光譜輻射儀測(cè)定冠層光譜,它在350~1 000 nm的光譜分辨率為3.5 nm,采樣間隔為1.5 nm。選擇晴朗無(wú)風(fēng)的天氣,在10:30-14:00之間進(jìn)行光譜測(cè)定。測(cè)量前進(jìn)行標(biāo)準(zhǔn)白板校正,觀測(cè)時(shí)傳感器垂直向下,距離冠層130 cm,視場(chǎng)角25°,設(shè)置1次采樣重復(fù)10次,以其平均值作為該觀測(cè)樣點(diǎn)的光譜反射率。每個(gè)小區(qū)均勻采集3個(gè)樣點(diǎn),大田采集5個(gè)樣點(diǎn),以樣點(diǎn)光譜數(shù)據(jù)的平均值作為該樣區(qū)的冠層光譜反射數(shù)據(jù)。采集光譜的同時(shí),利用差分GPS同步采集樣點(diǎn)經(jīng)緯度坐標(biāo)。在測(cè)量冠層光譜的區(qū)域選取有代表性小麥20株,將其綠色葉片在105℃殺青30 min,80℃烘干后稱質(zhì)量,粉碎后采用凱氏定氮法測(cè)定葉片全氮含量。試驗(yàn)共獲得204個(gè)樣本數(shù)據(jù),其中有效光譜和葉片全氮數(shù)據(jù)樣本192個(gè)。將全氮數(shù)值由小到大進(jìn)行排序,按照4:1的比例抽取訓(xùn)練集(154樣本)和驗(yàn)證集(38樣本)。

        1.3 衛(wèi)星寬波段光譜模擬

        將地面實(shí)測(cè)高光譜數(shù)據(jù)重采樣為1 nm,根據(jù)GF-1衛(wèi)星8 m多光譜相機(jī)的光譜響應(yīng)函數(shù),利用式(1)[14]模擬GF-1衛(wèi)星藍(lán)、綠、紅和近紅外波段的光譜反射。

        式中R是模擬衛(wèi)星寬波段的反射率,λmin,λmax分別為傳感器光譜探測(cè)的起始和終止波長(zhǎng),S(λ)為傳感器在λ波長(zhǎng)的光譜響應(yīng)函數(shù)值,R(λ)是小麥冠層光譜在λ波長(zhǎng)的反射率。

        1.4 GF-1衛(wèi)星數(shù)據(jù)處理

        研究獲取到楊凌地區(qū)2014年3月10日GF-1號(hào)8 m多光譜相機(jī)影像一景,影像獲取時(shí)間與試驗(yàn)的返青期采樣時(shí)間一致。在ENVI5.0下,對(duì)GF-1衛(wèi)星影像進(jìn)行輻射定標(biāo)、大氣校正和正射校正。基于面向?qū)ο蠛椭С窒蛄繖C(jī)分類算法對(duì)圖像進(jìn)行分類,提取影像中冬小麥的覆蓋區(qū)域,冬小麥的用戶和制圖精度均在90%以上。

        1.5 數(shù)據(jù)分析與方法

        基于192個(gè)模擬光譜數(shù)據(jù)構(gòu)建多種光譜指數(shù),選擇和葉片氮含量在0.01水平下顯著相關(guān),且相關(guān)系數(shù)高于0.6的光譜指數(shù)(表1)用于葉片氮含量估算。以訓(xùn)練集為基礎(chǔ),建立基于光譜指數(shù)的小麥葉片氮含量遙感估算模型,并對(duì)模型進(jìn)行敏感性分析。采用驗(yàn)證集對(duì)預(yù)測(cè)模型進(jìn)行精度檢驗(yàn)。通過(guò)綜合評(píng)定給出最優(yōu)的冬小麥葉片氮含量估算模型,并基于最優(yōu)模型進(jìn)行返青期冬小麥葉片氮含量遙感制圖。光譜指數(shù)的計(jì)算以及光譜指數(shù)與葉片氮含量的相關(guān)分析和建模均在Matlab語(yǔ)言環(huán)境下編程實(shí)現(xiàn)。

        表1 遙感光譜指數(shù)及其計(jì)算公式Table 1 Spectral indices and calculation

        2 結(jié)果與分析

        2.1 葉片氮含量和冠層光譜特征分析

        研究區(qū)全生育期葉片氮含量最小值為0.19%,最大值為3.6%,平均值為1.55%,具有中等空間變異性,變異系數(shù)為42.44%??梢?jiàn)光區(qū)的冠層光譜反射率隨葉片氮含量的增加逐漸降低,近紅外波段隨葉片氮含量水平的增加逐漸升高。對(duì)比返青期18個(gè)大田樣區(qū)的模擬光譜反射率和對(duì)應(yīng)GF-1衛(wèi)星的觀測(cè)光譜反射率(圖1),結(jié)果表明模擬GF-1衛(wèi)星的藍(lán)、綠、紅和近紅外寬波段光譜反射率和實(shí)際衛(wèi)星光譜反射率顯著相關(guān),相關(guān)系數(shù)在0.95以上,兩者具有一致性。

        圖1 模擬反射率與衛(wèi)星反射率空間分布Fig.1 Relationship between simulated and satellite reflectance

        2.2 光譜指數(shù)與葉片氮含量的相關(guān)分析

        所篩選的光譜指數(shù)可以分為兩類:兩波段指數(shù),即通過(guò)紅、綠、藍(lán)和近紅外中的任意兩個(gè)波段構(gòu)建的光譜指數(shù);三波段指數(shù),如VARI和TCARI/OSAVI指數(shù)?;?92條樣本光譜,在對(duì)應(yīng)光譜范圍內(nèi)構(gòu)建任意兩波段指數(shù),兩波段指數(shù)和葉片氮含量線性回歸的決定系數(shù)R2分布如圖2。當(dāng)衛(wèi)星的探測(cè)波段和圖2中與葉片氮含量相關(guān)性較好的波長(zhǎng)區(qū)間相一致時(shí),認(rèn)為這些光譜指數(shù)對(duì)GF-1衛(wèi)星數(shù)據(jù)監(jiān)測(cè)葉片氮含量是有效的。NDVI、RVI和MSAVI是由近紅外和紅波段構(gòu)建的光譜指數(shù),其中RVI指數(shù)和葉片氮含量的相關(guān)系數(shù)最高。當(dāng)紅波段取610~690 nm,近紅外取750~900 nm時(shí),RVI與葉片氮含量的決定系數(shù)在0.45以上,GF-1紅波段和近紅外波段的光譜范圍正好包含了此波段區(qū)間。當(dāng)藍(lán)光波段在410~450 nm,紅光波段在600~690 nm時(shí),NPCI指數(shù)與葉片氮含量的R2相對(duì)較高,而GF-1藍(lán)光波段(450~520 nm)、紅光波段(600~690 nm)的波長(zhǎng)不在NPCI對(duì)葉片氮含量響應(yīng)最佳的波長(zhǎng)范圍內(nèi),其R2有所下降,值在0.3~0.4之間。GF-1波段范圍內(nèi)的NRI指數(shù)與葉片氮含量的相關(guān)性優(yōu)于GRVI指數(shù)。衛(wèi)星高度獲取作物冠層光譜反射率的影響因素眾多,考慮衛(wèi)星傳感器光譜響應(yīng)函數(shù),獲取的衛(wèi)星寬波段模擬光譜反射率所構(gòu)建的8類光譜指數(shù)(TCARI/OSAVI、RVI、NPCI、VARI、MSAVI、GRVI、NRI、NDVI)與葉片氮含量的Pearson相關(guān)系數(shù)分別為?0.778、0.759、?0.641、0.632、0.626、0.611、0.613、0.608,RVI光譜指數(shù)表現(xiàn)要優(yōu)于其他兩波段指數(shù),三波段指數(shù)和葉片氮含量的相關(guān)性整體上優(yōu)于兩波段指數(shù)。

        圖2 不同光譜指數(shù)估算葉片氮含量的決定系數(shù)R2分布圖Fig.2 Distribution of determination coefficient of leaf nitrogen content estimated by different spectral indices

        2.3 基于光譜指數(shù)的葉片氮含量估算

        基于154個(gè)訓(xùn)練樣本的光譜指數(shù)和葉片氮含量的空間分布如圖3?;赗2最大原則建立光譜指數(shù)和葉片氮含量的回歸模型,各模型均通過(guò)0.01水平的顯著性檢驗(yàn)。其中NDVI和葉片氮含量表現(xiàn)出顯著的指數(shù)關(guān)系,VARI、MSAVI、GRVI、NPCI、NRI和葉片氮含量的最優(yōu)模型為二次多項(xiàng)式模型,TCARI/OSAVI、RVI和葉片氮含量為線性相關(guān)。TCARI/OSAVI指數(shù)與葉片氮含量的線性模型擬合精度最高,決定系數(shù)達(dá)到0.63;其次是RVI指數(shù),模擬方程決定系數(shù)為0.60。

        2.4 估算模型的敏感性分析

        決定系數(shù)反映了估算模型對(duì)因變量的解釋程度,是模型精度評(píng)價(jià)的重要參數(shù)。當(dāng)擬合模型呈非線性時(shí),由于光譜指數(shù)對(duì)葉片氮含量的敏感度不再是常數(shù),此時(shí)決定系數(shù)就存在一定的誤導(dǎo)性[23],需要對(duì)所建模型的敏感性進(jìn)行分析。模型的敏感性通常需要考慮3個(gè)因素[5]:光譜指數(shù)應(yīng)具有抗干擾的能力,具備穩(wěn)定性;光譜指數(shù)對(duì)葉片氮含量的變化敏感;光譜指數(shù)應(yīng)具備較寬的動(dòng)態(tài)響應(yīng)范圍。鑒于此,本文在NE指數(shù)[23]和TVI指數(shù)[5]的基礎(chǔ)上提出敏感性指數(shù)S,對(duì)不同光譜指數(shù)反演葉片氮含量模型的適用性給出合理的分析評(píng)價(jià)。

        式中σSI是光譜指數(shù)(SI)的標(biāo)準(zhǔn)差,反應(yīng)了光譜指數(shù)的動(dòng)態(tài)變化范圍;RMSE(SI,LNC)是光譜指數(shù)SI關(guān)于葉片氮含量最優(yōu)擬合模型的均方根誤差,表達(dá)了SI-LNC模擬關(guān)系的穩(wěn)定性;dSI/dLNC是光譜指數(shù)關(guān)于葉片氮含量最優(yōu)擬合模型的一階微分,反映了光譜指數(shù)對(duì)葉片氮含量變化的敏感性,本文對(duì)其取絕對(duì)值。RMSE(SI,LNC)越小,σSI和dSI/dLNC絕對(duì)值越大,S值就越小,表明SI對(duì)葉片氮含量的敏感度和適用性就越強(qiáng)。

        圖3 光譜指數(shù)與葉片氮含量空間分布Fig.3 Relationship between leaf nitrogen content (LNC) and spectral indices

        敏感性分析,如圖4所示,RVI、綜合指數(shù)(TCARI/OSAVI)和GRVI指數(shù)對(duì)葉片氮含量的響應(yīng)能力較強(qiáng),估算模型的適用性較高。GRVI、VARI、MSAVI、NPCI、NRI和葉片氮含量為非線性相關(guān),S值與葉片氮含量呈指數(shù)關(guān)系分布,在葉片氮含量較低時(shí),S值也較低,所建模型的適用性較強(qiáng);之后S值平緩增加,在超過(guò)一定閾值后,S值隨著葉片氮含量的增加迅猛提升,適用性降低。GRVI指數(shù)對(duì)葉片氮含量的敏感性較高,S值低于其他非線性相關(guān)指數(shù)。

        圖4 葉片氮含量估算模型的敏感性分析Fig.4 Sensitivity analysis of simulated leaf nitrogen content models

        VARI、MSAVI指數(shù)構(gòu)建的模型適用性整體要高于NRI和NPCI模型(圖4)。VARI指數(shù)在葉片氮質(zhì)量分?jǐn)?shù)低于2.5%時(shí),適用性強(qiáng)于MSAVI指數(shù),之后相反;NRI指數(shù)在葉片氮含量低于2%時(shí),適用性高于NPCI,之后相反。NDVI指數(shù)構(gòu)建的模型具有較高的決定系數(shù)(R2=0.53),但模型的敏感性(LNC-SI模擬方程一階微分低于0.25)和適用性降低(S值隨葉片氮含量的增加呈倍數(shù)遞增)。綜合指數(shù)(TCARI/OSAVI)、RVI指數(shù)與葉片氮含量呈線性相關(guān),S為常數(shù)(S<0.2),對(duì)葉片氮含量的響應(yīng)具有穩(wěn)定性。RVI、綜合指數(shù)(TCARI/OSAVI)對(duì)LNC-SI模型的一階微分分別為9.44和3.08,模型敏感性S值分別為0.0671和0.1979,因此RVI模型的適用性優(yōu)于綜合指數(shù)(TCARI/OSAVI)。

        2.5 葉片氮含量估算模型檢驗(yàn)

        利用驗(yàn)證集(38樣本)對(duì)基于不同光譜指數(shù)變量的模型精度進(jìn)行檢驗(yàn),實(shí)測(cè)值與預(yù)測(cè)值空間分布、擬合方程決定系數(shù)R2、均方根誤差RMSE、平均相對(duì)誤差MRE結(jié)果見(jiàn)圖5,擬合方程均通過(guò)0.01的顯著性檢驗(yàn)。圖5中散點(diǎn)分布越接近1:1線說(shuō)明模型預(yù)測(cè)精度越高。所有方程的斜率均低于1,表明基于以上8類光譜指數(shù)構(gòu)建的葉片氮含量估算模型整體上低估了實(shí)測(cè)值,當(dāng)葉片氮質(zhì)量分?jǐn)?shù)<1.5%時(shí),所有模型的估算值高于或接近于實(shí)測(cè)值,而在葉片氮質(zhì)量分?jǐn)?shù)>1.5%時(shí),所有模型均不同程度低估了實(shí)測(cè)值。8類模型的MRE在25.04%~32.79%,RMSE在0.45~0.56之間?;贛SAVI指數(shù)和GRVI指數(shù)的估算值與實(shí)測(cè)值偏差較大,散點(diǎn)分布較為松散,擬合方程決定系數(shù)較低;NPCI光譜指數(shù)在驗(yàn)證集上表現(xiàn)較為突出,R2達(dá)到0.59,RMSE為0.45;綜合指數(shù)(TCARI/OSAVI)和RVI光譜指數(shù)保持了相對(duì)較高的估算精度。綜合估算模型決定系數(shù),光譜指數(shù)對(duì)葉片氮含量變化的響應(yīng)能力和驗(yàn)證模型的精度,認(rèn)為基于RVI指數(shù)建立的模型LNC =0.0631RVI+0.2811是葉片氮含量估算的最佳模型。

        圖5 基于驗(yàn)證集的葉片氮含量實(shí)測(cè)值與預(yù)測(cè)值分布Fig.5 Distribution of measured and estimated leaf nitrogen content (LNC) based on checking set

        2.6 基于GF-1衛(wèi)星數(shù)據(jù)的LNC制圖

        在ENVI 5.0下,選擇GF-1衛(wèi)星影像相關(guān)波段計(jì)算綜合指數(shù)(TCARI/OSAVI)和RVI指數(shù),利用綜合指數(shù)(TCARI/OSAVI)和RVI指數(shù)所建立的模型進(jìn)行葉片氮含量遙感估算,并以提取的冬小麥覆蓋區(qū)域作為掩膜,獲取冬小麥返青期葉片氮含量遙感監(jiān)測(cè)專題圖(圖6)。在空間分布格局上,實(shí)測(cè)冬小麥葉片氮含量由西南向東北方向逐漸遞增,基于綜合指數(shù)(TCARI/OSAVI)和RVI指數(shù)的葉片氮含量估算結(jié)果與實(shí)際葉片氮含量空間分布趨勢(shì)較為一致。TCARI/OSAVI-LNC模型和RVI-LNC估算模型的平均值分別為0.82和0.91。以同步采集的地面大田實(shí)測(cè)數(shù)據(jù)進(jìn)行精度檢驗(yàn),結(jié)果表明:TCARI/OSAVI-LNC模型和RVI-LNC模型的估算值與實(shí)測(cè)值所建回歸方程的決定系數(shù)R2分別為0.56和0.52,TCARI/OSAVI指數(shù)和RVI指數(shù)的估算模型均在不同程度上低估了實(shí)測(cè)數(shù)值,但基于RVI模型的估算精度略高于TCARI/OSAVI模型。

        3 討論

        利用光譜信息進(jìn)行作物生長(zhǎng)參量的反演是農(nóng)業(yè)遙感研究的核心。依據(jù)地面控制點(diǎn),通過(guò)建立地面實(shí)測(cè)作物生理生化指標(biāo)和衛(wèi)星寬波段光譜指數(shù)的定量關(guān)系進(jìn)行作物生化指標(biāo)估算是目前常用的研究方法[8-10,24-25],但是這種方法通常會(huì)受到地面控制點(diǎn)的定位精度、地面觀測(cè)時(shí)間和影像獲取時(shí)間相互匹配程度的影響。受衛(wèi)星獲取圖像時(shí)間周期和天氣狀況的影響,很難獲取到作物全生育期的圖像,因此基于衛(wèi)星圖像的作物生理參量估算都是對(duì)特定生育期的研究。高空衛(wèi)星探測(cè)的反射光譜不僅受傳感器光譜響應(yīng)函數(shù)的影響,同時(shí)還受大氣狀況、獲取圖像地面分辨率大小等影響。對(duì)GF-1圖像經(jīng)過(guò)輻射定標(biāo)、大氣糾正和正射糾正后,提取了和地面實(shí)測(cè)點(diǎn)位相對(duì)應(yīng)的衛(wèi)星圖像的光譜信息,結(jié)果表明模擬的寬波段光譜反射率和圖像提取的光譜反射率高度一致,可見(jiàn)光、近紅外波段反射率間的相關(guān)系數(shù)均高于0.95。因此,基于衛(wèi)星傳感器的光譜響應(yīng)函數(shù)對(duì)地面實(shí)測(cè)高光譜數(shù)據(jù)進(jìn)行重采樣,獲取和衛(wèi)星傳感器波段一致的模擬光譜反射率構(gòu)建光譜指數(shù),可以進(jìn)行全生育期和分生育期作物生化參量的估算研究。

        本文從眾多光譜指數(shù)中篩選了8類和葉片氮含量在0.01水平下顯著相關(guān),且相關(guān)系數(shù)高于0.6的光譜指數(shù)進(jìn)行分析。以往研究表明紅邊波段和近紅外波段是氮素最為敏感的波段[26-28],本文研究同樣發(fā)現(xiàn),沒(méi)有近紅外波段參與的VARI、NPCI和NRI光譜指數(shù)所構(gòu)建的LNC估算模型精度要低于其它光譜指數(shù)?;诘刃г肼暎∟E)的改進(jìn)型敏感性指標(biāo)S值,不僅考慮了模型的穩(wěn)定性和敏感性,還考慮了光譜指數(shù)對(duì)葉片氮含量的響應(yīng)范圍,提高了模型精度判別的合理性。綜合指數(shù)(TCARI/OSAVI)、RVI、GRVI指數(shù)對(duì)模型的敏感性和穩(wěn)定性較好,適用性較強(qiáng),其他光譜指數(shù)對(duì)葉片氮含量低值的敏感性和精度要優(yōu)于葉片氮含量高值。RVI光譜指數(shù)具有較寬的數(shù)據(jù)變化范圍,S值較低,模型的適用性要優(yōu)于決定系數(shù)更高的綜合指數(shù)(TCARI/OSAVI),這在基于GF-1圖像的葉片氮含量制圖中表現(xiàn)突出。綜合分析認(rèn)為基于RVI指數(shù)建立的模型是葉片氮含量估算的最佳模型。任意兩波長(zhǎng)RVI指數(shù)與葉片氮含量相關(guān)分析的R2分布表明:紅波段取610~690 nm,近紅外取750~900 nm時(shí),RVI與葉片氮含量的決定系數(shù)在0.45以上,而多光譜衛(wèi)星紅光波段和近紅外波段的探測(cè)區(qū)間一般都在此范圍內(nèi),因此,RVI光譜指數(shù)在其它多光譜衛(wèi)星的應(yīng)用上也應(yīng)該具備一定的潛力。

        雖然本文所建的全生育期葉片氮含量模型均通過(guò)了顯著性檢驗(yàn),但驗(yàn)證集中實(shí)測(cè)值和預(yù)測(cè)值分布偏離1:1線,所有模型整體上低估了實(shí)測(cè)值。在返青期的葉片氮含量遙感制圖中,相對(duì)較高的葉片氮含量被低估,導(dǎo)致整體上葉片氮含量值偏低?;赗VI指數(shù)的葉片氮含量空間分布趨勢(shì)與實(shí)際吻合,精度略高于綜合指數(shù)(TCARI/OSAVI),但是RVI指數(shù)在其他生育期圖像的制圖表現(xiàn)仍需要探討。光譜指數(shù)的選擇影響著模型的精度,模型的構(gòu)建方法也是影響模型精度的重要因素,因此,在以后的研究中嘗試基于多個(gè)光譜指數(shù)的偏最小二乘法以及機(jī)器學(xué)習(xí)算法的應(yīng)用,彌補(bǔ)多光譜波段數(shù)目有限的不足,進(jìn)一步提高模型的估算精度,并對(duì)分生育期葉片氮含量估算模型進(jìn)行探討。文中返青期的模擬光譜反射率和衛(wèi)星實(shí)測(cè)反射率之間的相關(guān)性較好,而其他生育期則有待探討。

        4 結(jié)論

        本文基于大田和小區(qū)試驗(yàn)下的實(shí)測(cè)冬小麥冠層高光譜信息,利用光譜響應(yīng)函數(shù)模擬國(guó)產(chǎn)高分辨率衛(wèi)星GF-1號(hào)可見(jiàn)光-近紅外波段的冠層反射率,構(gòu)建了基于光譜指數(shù)的冬小麥全生育期葉片氮含量估算模型,并進(jìn)行模型敏感性分析、精度檢驗(yàn)和衛(wèi)星遙感制圖。結(jié)果表明:模擬衛(wèi)星寬波段光譜反射率和衛(wèi)星實(shí)測(cè)光譜反射率間的相關(guān)系數(shù)高于0.95,具有一致性;改進(jìn)型的敏感性指數(shù)S綜合考慮了模型的穩(wěn)定性、敏感性和變量的動(dòng)態(tài)范圍,敏感性分析表明基于RVI光譜指數(shù)的估算模型適用性最強(qiáng);綜合模擬方程決定系數(shù)、模型敏感性分析、精度檢驗(yàn)和遙感制圖的結(jié)果,確定基于GF-1衛(wèi)星數(shù)據(jù)的葉片氮含量最佳估算模型,R2為0.6。

        [1] 趙春江. 精準(zhǔn)農(nóng)業(yè)研究與實(shí)踐[M]. 北京:科學(xué)出版社,2009:17-18.

        [2] Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2 500 nm) at leaf and canopy scales[J]. Remote Sensing of Environment, 1995, 53(3): 199-211.

        [3] Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment, 2003, 86(4): 542-553.

        [4] Eitel J U H, Vierling L A, Litvak M E, et al. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland[J]. Remote Sensing of Environment, 2011, 115(12): 3640-3646.

        [5] Wu J, Wang D, Bauer M E. Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies[J]. Field Crops Research, 2007, 102(1): 33-42.

        [6] Gitelson A A, Peng Y, Masek J G, et al. Remote estimation of crop gross primary production with Landsat data[J]. Remote Sensing of Environment, 2012, 121(138): 404-414.

        [7] Zhang X, Liao C, Li J, et al. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21(4): 506-512.

        [8] 譚昌偉,王紀(jì)華,趙春江,等. 利用 Landsat TM 遙感數(shù)據(jù)監(jiān)測(cè)冬小麥開花期主要長(zhǎng)勢(shì)參數(shù)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(5):224-230. Tan Changwei, Wang Jihua, Zhao Chunjiang, et al. Monitoring wheat main growth parameters at anthesis stage by Landsat TM[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2011, 27(5): 224-230. (in Chinese with English abstract)

        [9] 王備戰(zhàn),馮曉,溫暖,等. 基于SPOT-5影像的冬小麥拔節(jié)期生物量及氮積累量監(jiān)測(cè)[J]. 中國(guó)農(nóng)業(yè)科學(xué),2012,45(15):3049-3057. Wang Beizhan, Feng Xiao, Wen Nuan, et al. Monitoring biomass and N accumulation at jointing stage in winter wheat based on Spot-5 images[J]. Scientia Agricltura Sinica, 2012, 45(15): 3049-3057. (in Chinese with English abstract)

        [10] 譚昌偉,楊昕,馬昌,等. 基于HJ-1A/1B影像的冬小麥開花期主要生長(zhǎng)指標(biāo)遙感定量監(jiān)測(cè)研究[J]. 麥類作物學(xué)報(bào),2015,35(3):427-435. Tan Changwei, Yang Xin, Ma Chang, et al. Quantitative remote sensing monitoring of major growth indices of winter wheat at anthesis stage based on HJ-1A/1B images[J]. Journal of Triticeae Crops, 2015, 35(3): 427-435. (in Chinese with English abstract)

        [11] 黃汝根,劉振華,胡月明,等. 基于高分一號(hào)遙感影像反演華南地區(qū)亞熱帶典型作物冠層SPAD[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,36(4):105-111. Huang Rugen, Liu Zhenhua, Hu Yueming, et al. Retrieval of typical subtropical crop canopy SPAD value in South China using GF-1 remote sensing image[J]. Journal of South China Agricultural University, 2015, 36(4): 105-111. (in Chinese with English abstract)

        [12] 李粉玲,王力,劉京,等. 基于高分一號(hào)衛(wèi)星數(shù)據(jù)的冬小麥葉片SPAD值遙感估算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(9):273-281. Li Fenling, Wang Li, Liu Jing, et al. Remote sensing estimation of SPAD value for wheat leaf based on GF-1 data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9): 273-281. (in Chinese with English abstract)

        [13] 賈玉秋,李冰,程永政,等. 基于GF-1與Landsat-8 多光譜遙感影像的玉米LAI反演比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(9):173-179. Jia Yuqiu, Li Bing, Cheng Yongzheng, et al. Comparison between GF-1 images and Landsat-8 images in monitoring maize LAI[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 173-179. (in Chinese with English abstract)

        [14] Trigg S, Flasse S. Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry[J]. International Journal of Remote Sensing, 2000, 21(16): 3161-3168.

        [15] Rouse J W, Haas R H, Schell J A, et al. Monitoring the vernal advancements and retrogradation of natural vegetation[R]. NASA/GSFC, Final Report, Greenbelt, MD, USA, 1974.

        [16] Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4): 663-666.

        [17] Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 2002, 80(1): 76-87.

        [18] Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994, 48(2): 119-126.

        [19] Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003, 160(3): 271-282.

        [20] Penuelas J, Gamon J A, Fredeen A L, et al. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves[J]. Remote Sensing of Environment, 1994, 48(2): 135-146.

        [21] Schleicher T D, Bausch W C, Delgado J A, et al. Evaluation and refinement of the nitrogen reflectance index (NRI) for site-specific fertilizer management[C]//2001 ASAE Annual International Meeting, St-Joseph, MI, USA. ASAE Paper. 2001 (01-11151).

        [22] Haboudane D, Miller J R, Tremblay N, et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 2002, 81(2): 416-426.

        [23] Gitelson A A. Remote estimation of crop fractional vegetation cover: The use of noise equivalent as an indicator of performance of vegetation indices[J]. International Journal of Remote Sensing, 2013, 34(17): 6054-6066.

        [24] 袁金國(guó),牛錚. 基于Hyperion高光譜圖像的氮和葉綠素制圖[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(4):172-178. Yuan Jinguo, Niu Zheng. Nitrogen and chlorophyll mapping based on Hyperion hyperspectral image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(4): 172-178. (in Chinese with English abstract)

        [25] 武婕,李玉環(huán),李增兵,等. 基于SPOT-5遙感影像估算玉米成熟期地上生物量及其碳氮累積量[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(1):64-74. Wu Jie, Li Yuhuan, Li Zengbing, et al. Estimation of biomass and C and N accumulation at the maturity stage of corn using synchronous SPOT 5 spectral parameters[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 64-74. (in Chinese with English abstract)

        [26] Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2001, 76(2): 156-172.

        [27] 姚霞,朱艷,田永超,等. 小麥葉層氮含量估測(cè)的最佳高光譜參數(shù)研究[J]. 中國(guó)農(nóng)業(yè)科學(xué),2009,42(8):2716-2725. Yao Xia, Zhu Yan, Tian Yongchao, et al. Research of the optimum hyperspectral vegetation indices on monitoring the nitrogen content in wheat leaves[J]. Scientia Agricultura Sinica, 2009, 42(8): 2716-2725. (in Chinese with English abstract)

        [28] Schlemmer M, Gitelson A, Schepers J, et al. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 25(4): 47-54.

        Remote sensing estimation of winter wheat leaf nitrogen content based on GF-1 satellite data

        Li Fenling1,2, Chang Qingrui1,2※, Shen Jian1, Wang Li1
        (1. College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; 2. Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China)

        Nitrogen is a major element for plant growth and yield formation in agronomic crops. Crop nitrogen content estimation by remote sensing technique has been being a topic research in remote sensing monitoring of agricultural parameters. Hyper-spectral remote sensing with wealth of spectral information has been widely used in crop physiological and biochemical information extraction. It provides theoretical basis for estimating crop biochemical parameters based on multi-spectral satellite data. In terms of multi-spectral satellite remote sensing, spectral reflectances and spectral indices are effective ways to establish estimation models of biochemical parameters, but which bands and spectral indices are more effective and reliable for leaf nitrogen concentration monitoring in winter wheat is still debatable. In this article, ground-based canopy spectral reflectance and leaf nitrogen content (LNC) of winter wheat were measured from field and plot experiments including varied nitrogen fertilization levels and winter wheat varieties across the whole growth stages. Multi-spectral broadband reflectance was simulated by using the measured hyper-spectral reflectance and spectral response functions of multi-spectral camera of GF-1 satellite with a spatial resolution of 8 m, and then, they were used for the establishment of spectral index (SI). Eight spectral indices significantly correlated with LNC at the 0.01 probability level were used to construct the LNC estimation models in a linear, quadratic polynomial and exponential regression model respectively. Considering the influence factors in evaluating the efficiency of the SI–LNC model, i.e., the stability of the SI to other perturbing factors, the sensitivity of the SI to a unit change of LNC, and the dynamic range of the SI, the improved sensitivity index was proposed based on the NE and TVIindex models. The optimal LNC estimation model was given according to the sensitivity and accuracy analysis, and the model was used to inverse the LNC in greenup growth period based on the GF-1 satellite image. The results showed that: 1) The simulated multi-spectral reflectance was highly correlated with the spectral reflectance from remote sensing images in visible and near infrared bands. They were consistent with each other keeping a correlation coefficient of greater than 0.95. It was concluded that the simulated broadband SI considering the spectral response function could be used to analyze the quantitative relationship with leaf nitrogen in both different growth periods and whole growth stage. 2) The SI based on the simulated spectral reflectance was significantly related with the LNC at 0.01 probability level with the correlation coefficient of greater than 0.6. A different pattern of the best combinations was found for 6 two-band spectral indices. The selection of 610-690 nm paired with 750-900 nm was the most effective two-band combination in RVI index, which was also the center wavelengths of the red and near infrared bands for GF-1 satellite data. 3) The sensitivity analysis indicated that all the regression models of selected SI passed the significance test at 0.01 probability level. The TCARI/OSAVI and RVI indices linearly related with LNC implied a stable response to the LNC changes. The first-order differentials of RVI and TCARI/OSAVI with respect to LNC were 9.44 and 3.08, and the sensitivity indices were 0.0671 and 0.1979 respectively. The RVI index was regarded as the most suitable index for LNC estimation. 4) The TCARI/OSAVI and RVI indices performed well in accuracy test, and the RVI index was more excellent in remote sensing mapping based on the GF-1 satellite image. Taking all factors into consideration, we believed the model based on the RVI index was optimal for LNC estimation with the determination coefficient of 0.6.

        satellites; nitrogen; sensitivity analysis; GF-1; winter wheat

        10.11975/j.issn.1002-6819.2016.09.022

        TP79; S127

        A

        1002-6819(2016)-09-0157-08

        李粉玲,常慶瑞,申 健,王 力. 基于GF-1衛(wèi)星數(shù)據(jù)的冬小麥葉片氮含量遙感估算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):157-164.

        10.11975/j.issn.1002-6819.2016.09.022 http://www.tcsae.org

        Li Fenling, Chang Qingrui, Shen Jian, Wang Li. Remote sensing estimation of winter wheat leaf nitrogen content based on GF-1 satellite data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 157-164. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.022 http://www.tcsae.org

        2015-11-06

        2016-03-02

        國(guó)家863計(jì)劃項(xiàng)目(2013AA102401)。

        李粉玲,講師,博士生,主要從事農(nóng)業(yè)遙感技術(shù)研究。楊凌 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,712100。Email:fenlingli@nwsuaf.edu.cn

        ※通信作者:常慶瑞,教授,主要從事土地資源與空間信息技術(shù)。楊凌 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,712100。Email:changqr@nwsuaf.edu.cn

        猜你喜歡
        模型
        一半模型
        一種去中心化的域名服務(wù)本地化模型
        適用于BDS-3 PPP的隨機(jī)模型
        提煉模型 突破難點(diǎn)
        函數(shù)模型及應(yīng)用
        p150Glued在帕金森病模型中的表達(dá)及分布
        函數(shù)模型及應(yīng)用
        重要模型『一線三等角』
        重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
        3D打印中的模型分割與打包
        国产高潮精品久久AV无码| 亚洲av无码专区亚洲av网站| 亚洲色欲久久久综合网| 日韩二三区| 男女视频网站免费精品播放| 美女很黄很色国产av| 无码少妇一区二区性色av | 日日摸天天碰中文字幕你懂的| 国产成人综合在线视频| 真实国产网爆门事件在线观看| 在线视频自拍视频激情| 一本大道熟女人妻中文字幕在线| 大陆极品少妇内射aaaaa| 99JK无码免费| 免费av一区男人的天堂| 国产精品毛片va一区二区三区| 在线观看国产成人av片| 人妻少妇看A偷人无码电影| 亚洲丰满熟女乱一区二区三区| 国产精品99无码一区二区| 粗大的内捧猛烈进出在线视频 | 亚洲福利第一页在线观看| 国产av一区二区三区在线播放| 一区二区三区国产| 国产一区二区三区小说| 牛仔裤人妻痴汉电车中文字幕| 精品亚洲国产成人蜜臀av| 无码熟妇人妻av在线影片| а的天堂网最新版在线| 亚洲第一女人的天堂av| 三年片大全在线观看免费观看大全| 91福利视频免费| 在线观看国产av一区二区| 日本三级吃奶头添泬| 国产成人久久777777| 久久久精品人妻一区二区三区日本| 久久亚洲中文字幕乱码| 国产无遮挡又黄又爽在线观看| 国产成人免费一区二区三区| 青青草是针对华人绿色超碰| 色一情一乱一伦一视频免费看|