亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Ca2+信號(hào)在植物與環(huán)境微生物互相作用中的分子調(diào)控機(jī)制

        2016-12-17 02:12:34鞏雪峰宋占鋒苗明軍李躍建
        西北植物學(xué)報(bào) 2016年10期
        關(guān)鍵詞:植物信號(hào)

        鞏雪峰,宋占鋒*,苗明軍,李躍建

        (1 四川省農(nóng)業(yè)科學(xué)院園藝研究所,成都 610066;2四川省農(nóng)業(yè)科學(xué)院,成都 610066)

        ?

        Ca2+信號(hào)在植物與環(huán)境微生物互相作用中的分子調(diào)控機(jī)制

        鞏雪峰1,宋占鋒1*,苗明軍1,李躍建2

        (1 四川省農(nóng)業(yè)科學(xué)院園藝研究所,成都 610066;2四川省農(nóng)業(yè)科學(xué)院,成都 610066)

        自然界植物與環(huán)境微生物之間的相互關(guān)系除了脅迫以外,同時(shí)也有互利互惠的共生互作關(guān)系。無(wú)論是能對(duì)植物造成脅迫傷害的植物-病原菌互作體系,還是能夠?yàn)橹参锾峁I(yíng)養(yǎng)的植物-微生物共生互作體系,其細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)通路中Ca2+信號(hào)的分子調(diào)控對(duì)兩種互作體系都有著非常重要的作用。該文對(duì)近年來(lái)國(guó)內(nèi)外有關(guān)植物-病原菌和植物-微生物互作體系在細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中Ca2+信號(hào)上游的分子調(diào)控機(jī)制分別進(jìn)行了綜述。

        Ca2+信號(hào);內(nèi)共生;病原菌;細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)

        自然界中,植物與動(dòng)物的本質(zhì)區(qū)別之一是沒(méi)有自然行走的能力,它們一旦固定了生長(zhǎng)環(huán)境,一生都不可更換。那么,當(dāng)植物在遭受環(huán)境帶來(lái)的不適時(shí),它們就不能用移動(dòng)或者遷移的方式躲避傷害。通常植物既要面對(duì)由環(huán)境氣候改變而帶來(lái)的各種逆境刺激,如干旱、寒冷、高溫、高濕等非生物脅迫;也要面對(duì)其所在自然生物群落中各種外源微生物的侵染,如由病原菌導(dǎo)致的生物脅迫。植物為了生存,只能通過(guò)將外界脅迫信息整合到內(nèi)在細(xì)胞中,再通過(guò)完整、精確的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)體系實(shí)現(xiàn)對(duì)自身機(jī)制的調(diào)節(jié)。在這個(gè)過(guò)程中,外源脅迫刺激被細(xì)胞膜識(shí)別進(jìn)入細(xì)胞質(zhì),并以特異的信號(hào)形式傳遞給細(xì)胞核,隨后轉(zhuǎn)化成能適應(yīng)這個(gè)刺激的特異基因表達(dá),產(chǎn)生相應(yīng)的應(yīng)答反應(yīng),最終調(diào)控植物生理和生長(zhǎng)[1]。

        在一個(gè)自然生物群落中,植物受到環(huán)境微生物的入侵后,彼此隨即建立相互作用的關(guān)系。這種關(guān)系除了脅迫以外,同時(shí)也存在互利互惠的共生關(guān)系。植物與微生物的互作關(guān)系就微妙得猶如硬幣的正反面,雖然一面有害,但是另一面又有利。其正反雙方內(nèi)在細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)體系信號(hào)調(diào)控分子具有相似性,該相似性反應(yīng)為Ca2+對(duì)胞內(nèi)信號(hào)通路所具有的調(diào)控作用。研究表明,微生物如根瘤菌或者叢枝菌根菌等是通過(guò)互惠的內(nèi)共生信號(hào)系統(tǒng)入侵到植物的根系細(xì)胞,形成根瘤或根系生節(jié)的過(guò)程。在該信號(hào)通路中,植物與微生物雙方成功發(fā)生互作的標(biāo)志即是鈣離子振蕩(Ca2+oscillation)的形成[2-4]。與此同時(shí),病原菌微生物與植物的互作是植物通過(guò)先天免疫系統(tǒng)抵御外源刺激的過(guò)程。在該信號(hào)通路中,細(xì)胞質(zhì)第二信使Ca2+通過(guò)參與瞬間改變細(xì)胞質(zhì)鈣離子濃度([Ca2+]cyt)的形式將刺激信號(hào)傳遞至下游[5-10]。

        在上述兩個(gè)植物細(xì)胞信號(hào)通路系統(tǒng)中,Ca2+將細(xì)胞外的刺激以信號(hào)的形式整合到細(xì)胞內(nèi),同時(shí)將刺激信號(hào)特異地放大并傳遞到下游,細(xì)胞核內(nèi)轉(zhuǎn)錄因子對(duì)信號(hào)進(jìn)行轉(zhuǎn)錄,誘導(dǎo)相應(yīng)基因表達(dá)和細(xì)胞應(yīng)答。只有Ca2+信號(hào)上游的細(xì)胞膜受體對(duì)外界刺激實(shí)現(xiàn)跨膜轉(zhuǎn)換,激活細(xì)胞膜系統(tǒng)上鈣離子通道的開放,引起細(xì)胞內(nèi)Ca2+濃度在時(shí)間、空間、頻率、幅度等不同形式的特異性變化后,才能導(dǎo)致下游特異的基因表達(dá)及生理應(yīng)答。因此,在環(huán)境微生物與植物互作的分子機(jī)制中,Ca2+信號(hào)的調(diào)控是植物感受外界刺激后引起細(xì)胞信號(hào)應(yīng)答及生理反應(yīng)的主要調(diào)控因子之一,對(duì)整個(gè)信號(hào)轉(zhuǎn)導(dǎo)體系發(fā)揮著非常重要的作用。

        近年來(lái),科學(xué)家在植物基因組學(xué)領(lǐng)域?qū)χ参锘蚬δ艿奶剿饕呀?jīng)取得了大量的研究成果。從而使得我們對(duì)植物共生互作和生物脅迫互作體系有了更深層次的了解。本文就植物細(xì)胞Ca2+上游信號(hào)分子在微生物與植物的共生互作和脅迫互作中的調(diào)控進(jìn)行概述。

        1 植物與微生物互作的正面關(guān)系——植物內(nèi)共生體系

        自然界多數(shù)植物能夠與微生物建立互利互惠的共生關(guān)系,形成植物根系內(nèi)共生體系(symbiosis pathway)。在內(nèi)共生體系中,目前研究最廣泛的兩個(gè)類型分別是真菌類的叢枝菌根菌(arbuscular mycorrhizal fungi)-植物互作[11],以及細(xì)菌類固氮根瘤菌(rhizobial bacteria)-豆科植物的互作[12]。通常在根瘤菌(rhizobium)-豆科植物互作的根細(xì)胞內(nèi)共生體系中,根瘤菌將環(huán)境中的氮?dú)膺€原為植物可利用的含氮化合物,同時(shí)根瘤菌則從植物根系獲得其生長(zhǎng)繁殖所需的能量和營(yíng)養(yǎng)物質(zhì),最終促成植物根系結(jié)瘤[13-14]。在叢枝菌根菌-植物互作的根細(xì)胞內(nèi)共生體系中,菌根菌所形成叢枝菌絲(arbuscule)能夠擴(kuò)大根系與土壤的接觸面積,增加根系對(duì)土壤中水分和礦質(zhì)營(yíng)養(yǎng)元素(尤其是P)的吸收。叢枝菌根再通過(guò)植物根系獲得生長(zhǎng)和生節(jié)所需的碳水化合物以及其他營(yíng)養(yǎng)物質(zhì)[15]。

        在共生互作體系中,細(xì)菌和真菌分別對(duì)宿主植物進(jìn)行侵染,宿主植物的根細(xì)胞固定根瘤菌或叢枝菌根菌后并分別釋放化學(xué)信號(hào)類黃酮(flavonoids)或獨(dú)腳金內(nèi)酯(strigolactones),誘導(dǎo)宿主根細(xì)胞自身產(chǎn)生信號(hào)分子結(jié)瘤因子(nod factors)或菌根因子[Myc(orrhizal) factors],并進(jìn)入宿主植物細(xì)胞,開啟共生信號(hào)通路(symbiotic signalling),激活細(xì)胞共生信號(hào)應(yīng)答反應(yīng)體系(圖1,A)[16]。信號(hào)分子結(jié)瘤因子和菌根因子在結(jié)構(gòu)上都屬于脂質(zhì)幾丁寡糖類物質(zhì)(lipochitooligosaccharides,即LCOs)[16-17]。

        在根瘤菌-豆科植物互作體系中,結(jié)瘤因子通過(guò)識(shí)別細(xì)胞膜上含有LysM受體激酶結(jié)構(gòu)域(lysine motif)的受體蛋白進(jìn)入細(xì)胞質(zhì),目前,已被定義的受體蛋白如百脈根(Lotusjaponicus)細(xì)胞膜上的受體蛋白NFR1 (nod-factor receptor 1) 和NFR5 (nod-factor receptor 5);豆類植物細(xì)胞膜上的受體蛋白 SYM2(symbiosis receptor 2)[18-20]。共生信號(hào)通路中同時(shí)也有另一類受體如百脈根細(xì)胞膜上SYMRK蛋白(symbiosis receptor-like kinase)和蒺藜苜蓿(Medicagotruncatula)的DMI2受體蛋白,也稱NORK(does not make infection 2/nordulation receptor kinase)。這兩個(gè)受體都含亮氨酸重復(fù)序列LRR(leucine-rich-repeat),但目前該類受體的功能尚未得到完整定義,研究報(bào)道指出在共生信號(hào)體系中SYMRK或DMI2是作為受體復(fù)合體轉(zhuǎn)導(dǎo)結(jié)瘤信號(hào)[19-20]。叢枝菌根菌-植物互作體系與根瘤菌-豆科植物互作基本相似,菌根菌與蒺藜苜蓿根細(xì)胞共生體系信號(hào)的應(yīng)答反應(yīng),菌根菌同樣依賴所產(chǎn)生的菌根因子LCOs類物質(zhì)來(lái)啟動(dòng)與宿主植物根系的生節(jié)生長(zhǎng)反應(yīng),通過(guò)識(shí)別根細(xì)胞膜上LysM受體蛋白激酶(lysine-like kinase)類物質(zhì)[17]。

        A. 植物—根瘤菌/叢枝菌根互作信號(hào)通路;B. 植物—病原菌互作信號(hào)通路圖1 植物與環(huán)境微生物互作信號(hào)通路A. The signaling pathway on plant-Rhizobium / Arbuscule interaction; B. The signaling pathway on plant-pathogen interactionsFig.1 The signaling pathway on plant and environmental microorganism interactions

        根瘤因子和菌根因子通過(guò)細(xì)胞膜受體蛋白進(jìn)入細(xì)胞的內(nèi)共生信號(hào)級(jí)聯(lián)通路,隨后信號(hào)分子鈣在細(xì)胞核和核膜區(qū)域發(fā)生鈣離子振蕩[12,16]。研究指出,蒺藜苜蓿DMI1(doesn’t make infections 1)在根瘤菌結(jié)瘤的過(guò)程中與產(chǎn)生鈣信號(hào)有關(guān)。DMI1就是產(chǎn)生鈣離子振蕩的通道蛋白[21]。該蛋白由于其基因缺陷突變體苗不能結(jié)瘤而得名[22]。通過(guò)熒光GFP融合蛋白和免疫金標(biāo)記技術(shù)表明,DMI1被定義在表皮細(xì)胞核膜的內(nèi)核上[23-24]。目前DMI1對(duì)鈣離子信號(hào)如何進(jìn)行調(diào)控還沒(méi)有完全被揭示,Capoen、Charpentier等認(rèn)為DMI1蛋白自身并不是鈣離子通道,在信號(hào)級(jí)聯(lián)中是一個(gè)能夠通過(guò)第二信使活化的鉀離子通道。通過(guò)改變細(xì)胞核膜上的膜電位,進(jìn)而激活核膜上的未知電壓門控型鈣離子通道[21,24]。也有另一種認(rèn)為,DMI1可能扮演由反離子到鈣離子通道的作用[25]。

        DMI1同源蛋白質(zhì)家族都共同擁有RCK功能結(jié)構(gòu)域。RCK是電導(dǎo)調(diào)節(jié)鉀離子(regulate the conductance of K+)結(jié)構(gòu)域。晶體結(jié)構(gòu)研究揭示,在細(xì)菌MthK鈣離子激活鉀離子通道(M.thermautotrophicumK+channel)中,C端的RCK結(jié)構(gòu)域?qū)νǖ赖拇蜷_起主要作用。MthK復(fù)合體一共有8個(gè)RCK結(jié)構(gòu)域,在細(xì)胞內(nèi)膜表面形成一個(gè)門控環(huán)。4個(gè)RCK結(jié)構(gòu)域?qū)儆贛thK全長(zhǎng)的亞基,另外4個(gè)是可溶性結(jié)構(gòu)域。當(dāng)鈣離子結(jié)合到該結(jié)構(gòu)域,則會(huì)導(dǎo)致通道離子門控打開[26-28]。在dmi1突變體和DMI1酵母表達(dá)的試驗(yàn)中,DMI1的功能會(huì)隨 RCK結(jié)構(gòu)域的改變而改變[21]。

        無(wú)論是單子葉植物還是雙子葉植物都存在DMI1同源蛋白質(zhì),而目前在同源蛋白中僅有一小部分得到研究。在豆科模式植物百脈根的研究報(bào)道中,同源蛋白CASTOR和POLLUX的功能在叢枝菌根和根瘤菌共生體系中和DMI1類似,對(duì)細(xì)胞核鈣離子振蕩發(fā)揮著重要作用。電生理學(xué)和酵母互補(bǔ)分析研究表明CASTOR和POLLUX是鉀離子滲透型通道。GFP融合蛋白的實(shí)驗(yàn)表明它們位于細(xì)胞核區(qū)域的核膜上[29]。POLLUX是更接近DMI1的基因,但是POLLUX在苜蓿中不能單獨(dú)完成和DMI1同樣功能。目前認(rèn)為菌根因子和結(jié)瘤因子信號(hào)轉(zhuǎn)導(dǎo)是由CASTOR和POLLUX共同激活第二信使,使細(xì)胞核周區(qū)域鉀離子流入,最終導(dǎo)致超極化并激活未知門控電壓鈣離子通道[30]。豌豆(Pisumsativum)作物中同源蛋白SYM8在蒺藜苜蓿突變體中能夠互補(bǔ)DMI1的功能[31]。在非結(jié)瘤植物中也有DMI1的同源蛋白。研究發(fā)現(xiàn)水稻OsCASTOR和OsPOLLUX缺陷型突變體不能建立叢枝菌根共生體系。說(shuō)明這兩個(gè)基因是叢枝菌根共生體系信號(hào)轉(zhuǎn)導(dǎo)中的重要原件。另外, OsPOLLUX能夠修復(fù)蒺藜苜蓿dmi1-1突變體的結(jié)瘤,但不能感染叢枝菌根[32]。

        在內(nèi)共生信號(hào)級(jí)聯(lián)通路Ca2+信號(hào)的下游,鈣調(diào)素CCaMK(也稱DMI3)(calcium-and-calmudulin-dependent protein kinase/ dose not make infection 3)位于細(xì)胞核,結(jié)合CYCLOPS互作,感知并解碼鈣振蕩信號(hào)[4,33],對(duì)共生信號(hào)進(jìn)行轉(zhuǎn)錄。轉(zhuǎn)錄因子NSP1(nodulation signalling pathway 1)和NSP2等誘導(dǎo)基因表達(dá)[34-36],最終產(chǎn)生根瘤菌在植物根細(xì)胞的結(jié)瘤以及叢枝菌根在植物根細(xì)胞的生節(jié)反應(yīng),完成整個(gè)共生互作通路[37]。

        2 植物與微生物脅迫互作的反面關(guān)系——植物防御體系

        病原微生物(也就是病原菌)能夠與植物產(chǎn)生互作作用,對(duì)植物產(chǎn)生致病物質(zhì),造成各種感染性病害。例如,炭疽菌屬真菌(Colletotrichum),能夠侵染大多數(shù)糧食作物和果蔬植物,致使其莖葉及果實(shí)等出現(xiàn)褐色病斑與褐色凹陷,最終導(dǎo)致死亡。不僅影響糧食、果蔬的品質(zhì)和產(chǎn)量,而且給植物生長(zhǎng)和繁殖造成毀滅性災(zāi)害。

        當(dāng)植物遭受病原微生物脅迫入侵時(shí),為保護(hù)自身不受病原菌的侵害,先天免疫系統(tǒng)(innate immunity)被激活,該系統(tǒng)是植物細(xì)胞內(nèi)在復(fù)雜的防御反應(yīng)網(wǎng)絡(luò)體系。植物先天免疫體系分為兩個(gè)部分[38]:Ⅰ.病原物激發(fā)植物細(xì)胞相關(guān)分子模式的免疫(PAMPs-triggered immunity,PTI),即PAMP誘導(dǎo)免疫系統(tǒng);Ⅱ.效應(yīng)因子觸發(fā)的相關(guān)分子模式的免疫(effector-triggered immunity,ETI),即效應(yīng)誘導(dǎo)免疫系統(tǒng)。PTI是由基礎(chǔ)防御(basal defence responses)構(gòu)成,能夠幫助植物抵御大部分病原微生物侵染。而ETI是依賴效應(yīng)蛋白(effect protein)和防御蛋白(resistance protein, R-Protein)識(shí)別病原微生物分泌的效應(yīng)子引發(fā)特異反應(yīng),例如過(guò)敏反應(yīng)HR (hypersensitive response),能使細(xì)胞程序性死亡[38-40]。

        先天免疫系統(tǒng)信號(hào)通路是從植物細(xì)胞膜上的受體PRR (pattern-recognition receptor)識(shí)別病原菌微生物保守的分子模式PAMPs(pathogen-associated molecular patterns)開始的[39]。PAMPs分子不是病原微生物所特有的,而是廣泛存在于微生物中,例如,典型的PAMPs分子模式flg22和elf18,flg22是細(xì)菌鞭毛蛋白(flagellin)N端的22個(gè)氨基酸保守區(qū)域,該段氨基酸序列可以取代鞭毛蛋白的完整序列對(duì)植物引起刺激反應(yīng)[41-43]。細(xì)菌延伸因子(EF-TU)與鞭毛蛋白類似,是一種非常保守的蛋白,elf18是乙酰化N端具有18個(gè)氨基酸的保守序列,可發(fā)揮EF-TU的全功能[44]。

        在對(duì)受體PRRs研究中,已有被完整定義的受體蛋白。如,識(shí)別細(xì)菌鞭毛蛋白flg22的FLS2受體(flagellin sensing 2)和識(shí)別細(xì)菌延伸因子elg18的EFR受體(elongation factor tu receptor),這2個(gè)PRR受體蛋白都富含亮氨酸的重復(fù)序列LRR(leucine-rich-repeat)受體蛋白激酶結(jié)構(gòu)域,為L(zhǎng)RR-type受體激酶[43,45-46]。同時(shí),擬南芥BAK1受體(BRI1-associated receptor kinase 1)富含亮氨酸的重復(fù)序列LRR,能夠迅速與FLS2或者EFR形成共受體復(fù)合物結(jié)構(gòu),識(shí)別PAMPs進(jìn)入細(xì)胞[47-50]。受體蛋白激酶BAK1(又稱SERK3)是雙元受體,既作為激素信號(hào)構(gòu)成組件參與調(diào)控植物油菜素內(nèi)脂BR的信號(hào)轉(zhuǎn)導(dǎo),也是病原菌PRRs受體成員,參與病原菌信號(hào)轉(zhuǎn)導(dǎo)[51]。

        在免疫系統(tǒng)信號(hào)級(jí)聯(lián)通路的分子機(jī)制早期,PAMPs誘導(dǎo)受體信號(hào)識(shí)別開啟信號(hào)級(jí)聯(lián)通路(如圖1,B 所示)。細(xì)胞膜上的離子通道對(duì)病原菌感知,鈣離子作為細(xì)胞質(zhì)第二信使并瞬間向細(xì)胞質(zhì)內(nèi)流[8],引起胞質(zhì)鈣離子[Ca2+]cyt濃度瞬間提高,鈣離子濃度急劇增加甚至能持續(xù)增加幾分鐘[7,52]。目前在植物基因組中有57個(gè)編碼的離子通道[53],大約有40個(gè)是屬于2組蛋白質(zhì)家族的。他們分別是谷氨酸受體通道GLR(glutamate receptor)和環(huán)核苷酸門控通道CNGC(cyclic nucleotide gated channel)。GLRs的同源蛋白家族是發(fā)現(xiàn)于哺乳動(dòng)物神經(jīng)中樞系統(tǒng)的無(wú)選擇性配體門控離子通道(包括鈣離子),植物GLRs已證實(shí)能夠轉(zhuǎn)導(dǎo)植物細(xì)胞的鈣離子[54],但目前缺乏直接的證據(jù)來(lái)證明病原菌防御信號(hào)中胞質(zhì)鈣離子信號(hào)產(chǎn)生是由GLRs引起的[55]。另一類植物離子通道CNGCs家族蛋白通道(即CNGC1-20)能結(jié)合被激活的環(huán)磷酸腺苷cAMP或者環(huán)磷酸鳥苷cGMP的通道蛋白。目前已經(jīng)有大量證據(jù)證明植物免疫反應(yīng)中,鈣離子信號(hào)與CNGCs調(diào)控有關(guān),位于細(xì)胞膜上的環(huán)核苷酸離子通道家族CNGCs則負(fù)責(zé)病原菌信號(hào)通路釋放鈣離子到細(xì)胞質(zhì)的作用[40]。

        CNGC是非選擇性配體陽(yáng)離子門控通道,其結(jié)構(gòu)包括6個(gè)跨膜區(qū)和位于細(xì)胞質(zhì)內(nèi)多肽鏈C端的鈣調(diào)素結(jié)合區(qū)域(cyclic nucleotide binding domain,CNBD)[56]。CNBD是一個(gè)重疊結(jié)構(gòu)域,參與環(huán)核苷酸的結(jié)合,又參與鈣調(diào)素蛋白的結(jié)合。受體PRRs激活分布在質(zhì)膜或者胞質(zhì)的核苷酸環(huán)化酶,環(huán)核苷酸的濃度得到上升后,激活了CNGC離子通道,使細(xì)胞質(zhì)鈣離子濃度上升。研究發(fā)現(xiàn),CNGC2和CNGC4的擬南芥功能缺失突變體苗dnd1(defence-no-death 1 mutant)和hlm1 (the HR-like lesion mimic 也稱作dnd2)能夠改變無(wú)毒性病原菌(Pseudomonassyringae)的侵染,突變體苗能夠修復(fù)過(guò)敏反應(yīng)HR[57-60]。CNGC2和CNGC4已被證實(shí)能夠調(diào)控植物免疫系統(tǒng)級(jí)聯(lián)通路中細(xì)胞質(zhì)鈣離子躍遷[5,56]。通過(guò)刪除了3 kb CNGC基因片段的突變體苗cpr22(constitutive expresser of pathogen related genes 22)的表現(xiàn)型能夠反映CNGC11/12 的基因型。cpr22突變體的研究結(jié)果表明,CNGC11/12能引起過(guò)敏反應(yīng)(HR-like)導(dǎo)致細(xì)胞死亡,并發(fā)現(xiàn)該過(guò)程依賴鈣離子的細(xì)胞跨膜內(nèi)流[61-63]。

        科學(xué)家在對(duì)茄科作物西紅柿(Solanumlycopersicum)和馬鈴薯(Solanumtuberosum)的大量易感基因(susceptibility genes,Sgenes)的研究中,利用RNA干擾(RNA interference, RNAi)技術(shù),將西紅柿和馬鈴薯中編碼了CNGC2的同源基因SlDND1和StDND1沉默失活。研究表明,RNAi突變體Sldnd1的新葉片和老葉片在沒(méi)有接種病原菌的情況下有自發(fā)的細(xì)胞壞死現(xiàn)象;而Stdnd1和擬南芥CNGC2突變體(也稱作Atdnd1)都具有侏儒型表現(xiàn)型,并且也有自發(fā)的細(xì)胞壞死現(xiàn)象[64]。結(jié)果證實(shí),作物西紅柿和馬鈴薯的擬南芥CNGC2同源基因?qū)ν硪卟『桶追鄄【哂袕V譜抗性[64]。

        近年來(lái)研究者還發(fā)現(xiàn),植物細(xì)胞內(nèi)如葉綠體等細(xì)胞器在生物脅迫條件下能夠誘導(dǎo)產(chǎn)生特異的Ca2+信號(hào)[65]。Nomura等通過(guò)煙草及擬南芥模式植物的研究認(rèn)為外源PAMPs信號(hào)通過(guò)未知信號(hào)通路在細(xì)胞質(zhì)鈣離子濃度[Ca2+]cyt瞬時(shí)提高之后約1~2 min,葉綠體基質(zhì)的Ca2+濃度也隨之出現(xiàn)約10 min持續(xù)的增加[65]。定位于基粒膜上的鈣敏感受體結(jié)合蛋白CAS (calcium-sensing receptor) 參與了葉綠體Ca2+信號(hào)的傳遞。PAMPs分子模式中,CAS膜蛋白通過(guò)參與葉綠體Ca2+信號(hào)的傳遞,引起了煙草和擬南芥突變體免疫反應(yīng)的基礎(chǔ)防御反應(yīng)以及過(guò)敏反應(yīng) HR[66,67]。

        鈣離子信號(hào)產(chǎn)生后被下游信號(hào)組件包括鈣調(diào)素CAM以及鈣調(diào)素結(jié)合蛋白CML(calmodulin-like protein)級(jí)聯(lián)有絲分裂原激活蛋白激酶MAPK(mitogen-activated protein kinase)、類鈣調(diào)神經(jīng)磷酸酶B亞基蛋白CBL(calcineurin B-like protein)、鈣依賴型蛋白激酶CDPK(Ca2+-dependent protein kinases)等特異的解碼。鈣離子信號(hào)下游的其他信號(hào)如ROS被激活,NO隨之產(chǎn)生[40,68,69],誘導(dǎo)基因表達(dá)。最終產(chǎn)生免疫應(yīng)答,如過(guò)敏反應(yīng)HR,胼胝質(zhì)沉積(callose deposition)和幼苗生長(zhǎng)抑制(seedling growth inhibition)[70]以及氣孔關(guān)閉隨之產(chǎn)生[71]。

        3 展 望

        在植物-微生物互作信號(hào)通路體系中,鈣離子作為細(xì)胞第二信使將外源刺激轉(zhuǎn)導(dǎo)形成特異的鈣信號(hào),隨之將信號(hào)傳遞給下游解碼鈣信號(hào)的鈣感受蛋白,最終完成信號(hào)通路對(duì)微生物刺激信號(hào)的響應(yīng)。研究發(fā)現(xiàn),倘若在整個(gè)信號(hào)通路體系細(xì)胞膜系統(tǒng)上相應(yīng)調(diào)控Ca2+信號(hào)轉(zhuǎn)導(dǎo)的通道蛋白缺失或失活,通路將不能實(shí)現(xiàn)對(duì)微生物刺激的反應(yīng)應(yīng)答,進(jìn)而導(dǎo)致植物的特異生物學(xué)表現(xiàn)型(表1)。深入探索農(nóng)作物中與Ca2+信號(hào)相關(guān)的同源蛋白,對(duì)農(nóng)業(yè)育種及生產(chǎn)具有重要意義。迄今,植物-微生物互作體系中與Ca2+信號(hào)有關(guān)蛋白的研究已經(jīng)取得了長(zhǎng)足的進(jìn)展。雖然調(diào)控Ca2+信號(hào)轉(zhuǎn)導(dǎo)的通道蛋白已經(jīng)相繼得到鑒定和分離,但是研究結(jié)果尚不能完整詮釋外源微生物刺激是如何準(zhǔn)確的在細(xì)胞內(nèi)通過(guò)已知鈣通道蛋白產(chǎn)生特異Ca2+信號(hào),細(xì)胞內(nèi)Ca2+濃度又如何以時(shí)間、空間、頻率、幅度等形式表達(dá)Ca2+信號(hào)并特異地調(diào)控信號(hào)通路下游細(xì)胞生理應(yīng)答反應(yīng)等問(wèn)題。在研究的過(guò)程中,一方面在不同的發(fā)育階段和不同的組織器官上外源微生物對(duì)不同種類植物的刺激具有差異性;另一方面各細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)通路之間存在著復(fù)雜、多樣的信號(hào)系統(tǒng)相互作用,形成了信號(hào)轉(zhuǎn)導(dǎo)網(wǎng)絡(luò)(cross talk),這為深入研究特異的Ca2+信號(hào)帶來(lái)了更多的挑戰(zhàn)。研究者們通過(guò)分子克隆、定點(diǎn)突變等方法,利用膜片鉗技術(shù),對(duì)離子通道分子結(jié)構(gòu)與生物學(xué)功能關(guān)系作深入研究;近年來(lái),研究者們通過(guò)基因工程的方法將Ca2+生物熒光蛋白指示劑Yellow Cameleon (YC) 和aequorin(水母蛋白)轉(zhuǎn)入待研究野生型或轉(zhuǎn)基因植物體內(nèi),在植物細(xì)胞中建立能夠穩(wěn)定表達(dá)YC熒光蛋白和水母蛋白的高效、快捷、穩(wěn)定的科學(xué)實(shí)驗(yàn)體系。通過(guò)構(gòu)建的植物Ca2+生物熒光蛋白體系,結(jié)合鈣離子拮抗劑如EGTA、U73122、TMB-8等化學(xué)物質(zhì)[9],應(yīng)用不同外源微生物激發(fā)子誘導(dǎo)植物產(chǎn)生鈣離子信號(hào)的瞬時(shí)變化,在植物整體和細(xì)胞水平上對(duì)實(shí)時(shí)、定點(diǎn)、動(dòng)態(tài)、可視地檢測(cè)鈣離子信號(hào)的瞬時(shí)變化進(jìn)行分析,為進(jìn)一步揭示Ca2+信號(hào)的分子機(jī)制進(jìn)行努力。綜上所述,對(duì)植物細(xì)胞Ca2+信號(hào)的研究,目前主要局限擬南芥、蒺藜苜蓿等模式植物種類中,通過(guò)基因工程建立植物-Ca2+生物熒光蛋白實(shí)驗(yàn)體系,研究糧油作物和園藝作物等的同源Ca2+通道蛋白,具有前沿性和實(shí)踐意義。

        表1 植物-微生物互相作中與鈣離子信號(hào)有關(guān)的通道蛋白

        [1] BRAY E A, BAILEY-SERRES J, WERRETILNYK E. Responses to abiotic stress[M].// BUCHANAN B B,etal. Biochemistry and Molecular Biology of Plants. Rockville:American Society of Plant Physiologists, 2000:1 158-1 203.

        [2] EHRHARDT D W, WAIS R, LONG S R. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals[J].Cell, 1996,85(5):673-681.

        [3] KOSUTA S, HAZLEDINE S, SUN J,etal. Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 2008,105(28):9 823-9 828.

        [4] SUN J, MILLER J B, GRANQVIST E,etal. Activation of symbiosis signaling byArbuscularmycorrhizalfungi in legumes and rice[J].EducationalResearcher, 2015,44(7):823-838.

        [5] ALI R, MA W, LEMTIRI-CHLIEH F,etal. Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity[J].PlantCell, 2007,19(3):1 081-1 095.

        [6] DODD A N, KUDLA J, SANDERS D. The language of calcium signaling[J].AnnualReviewofPlantBiology, 2010,61(1):593-620.

        [7] RANF S, ESCHEN-LIPPOLD L, PECHER P,etal. Interplay between calcium signaling and early signaling elements during defense responses to microbe-or damage-associated molecular patterns[J].PlantJournal, 2011,68(1):100-113.

        [8] LECOURIEUX D, MAZARS C, PAULY N,etal. Analysis and effects of cytosolic free calcium increases in response to elicitors inNicotianaplumbaginifoliacells[J].PlantCell, 2002,14(10):2 627-2 641.

        [9] THOR K, PEITER E. Cytosolic calcium signals elicited by the pathogen-associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature[J].NewPhytologist, 2014,204(4):873-881.

        [10] GELLI A, HIGGINS V J, BLUMWALD E. Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors[J].PlantPhysiology, 1997,113(1):269-279.

        [11] HARRISON M J. Signaling in theArbuscularmycorrhizalsymbiosis[J].AnnualReviewofMicrobiology, 2005,59(2):124-125.

        [12] LUM M R, HIRSCH A M. Roots and their symbiotic microbes: strategies to obtain nitrogen and phosphorus in a nutrient-limiting environment[J].JournalofPlantGrowthRegulation, 2003,21(4):368-382.

        [13] WALKER R, AGAPAKIS C M, WATKIN E,etal. Symbiotic nitrogen fixation in legumes: perspectives on the diversity and evolution of nodulation by rhizobium and burkholderia species[M]// BRUIJN F J D. Biological Nitrogen Fixation. New Jersey:JohnWiley&Sons,Inc, 2015:913-923.

        [14] SMITH S E, SMITH F A. Fresh perspectives on the roles ofArbuscularmycorrhizalfungi in plant nutrition and growth[J].Mycologia, 2012,104(1):1-13.

        [15] OLDROYD G E D. Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants[J].NatureReviewsMicrobiology, 2013,11(4):252-263.

        [16] OLDROYD G E D, DOWNIE J A. Coordinating nodule morphogenesis with rhizobial infection in legumes[J].AnnualReviewofPlantBiology, 2008,59(1):519-546.

        [17] MADSEN E B, MADSEN L H, RADUTOIU S,etal. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals[J].Nature, 2003,425(6 958):637-640.

        [18] RADUTOIU S, MADSEN L H, MADSEN E B,etal. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases[J].Nature, 2003,425(6 958):585-592.

        [19] LIMPENS E, FRANKEN C, SMIT P,etal. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection[J].Science, 2003,302(302):630-633.

        [20] MAILLET F, POINSOT V, ANDRé O,etal. Fungal lipochitooligosaccharide symbiotic signals inArbuscularmycorrhiza[J].Nature, 2011,469(7 328):58-63.

        [21] PEITER E, SUN J, HECKMANN A B,etal. TheMedicagotruncatulaDMI1 protein modulates cytosolic calcium signaling[J].PlantPhysiology, 2007,145(1):192-203.

        [22] CATOIRA R, GALERA C, BILLY F D,etal. Four genes ofMedicagotruncatulacontrolling components of a nod factor transduction pathway[J].PlantCell, 2000,12(9):1 647-1 665.

        [23] RIELY B K, LOUGNON G, ANé J M,etal. The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane ofMedicagotruncatula, roots[J].PlantJournalforCell&MolecularBiology, 2007,49(2):208-216.

        [24] CAPOEN W, SUN J, WYSHAM D,etal. Nuclear membranes control symbiotic calcium signaling of legumes[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 2011,108(34):14 348-14 353.

        [25] CHARPENTIER M, MARTINS T V, GRANQVIST E,etal. The role of DMI1 in establishing Ca2+oscillations in legume symbioses[J].PlantSignaling&Behavior, 2013,8(2):e22 894-e22 894.

        [26] JIANG Y, LEE A, CHEN J,etal. Crystal structure and mechanism of a calcium-gated potassium channel[J].Nature, 2002,417(6 888):515-522.

        [27] CHAKRAPANI S, PEROZO E. How to gate an ion channel: lessons from MthK[J].NatureStructural&MolecularBiology, 2007,14(3):180-182.

        [28] PAU V P T, SMITH F J, TAYLOR A B,etal. Structure and function of multiple Ca2+-binding sites in a K+channel regulator of K+conductance (RCK) domain[J].ProceedingsoftheNationalAcademyofSciences, 2011,108(43):17 684-17 689.

        [29] CHARPENTIER M, BREDEMEIER R, WANNER G,etal.LotusjaponicusCASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis[J].PlantCell, 2008,20(12):3 467-3 479.

        [30] VENKATESHWARAN M, COSME A, HAN L,etal. The recent evolution of a symbiotic ion channel in the legume family altered ion conductance and improved functionality in calcium signaling[J].PlantCell, 2012,24(6):2 528-2 545.

        [31] EDWARDS A, HECKMANN A B, YOUSAFZAI F,etal. Structural implications of mutations in the pea SYM8 symbiosis gene, the DMI1 ortholog, encoding a predicted ion channel[J].MolecularPlant-MicrobeInteractions:MPMI, 2007,20(10):1 183-1 191.

        [32] CHEN C, FAN C, GAO M,etal. Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants[J].PlantPhysiology, 2008,149(1):306-317.

        [33] CHABAUD M, GENRE A, SIEBERER B J,etal.Arbuscularmycorrhizalhyphopodia and germinated spore exudates trigger Ca2+, spiking in the legume and nonlegume root epidermis[J].NewPhytologist, 2011,189(1):347-355.

        [34] MITRA R M, GLEASON C A, EDWARDS A,etal. A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 2004,101(101):4 701-4 705.

        [35] LéVY J, BRES C, GEURTS R,etal. A putative Ca2+and calmodulin-dependent protein kinase required for bacterial and fungal symbioses[J].Science, 2004,303(5 662):1 361-1 364.

        [36] HIRSCH S, KIM J, MUOZ A,etal. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling inMedicagotruncatula[J].PlantCell, 2009,21(21):545-557.

        [37] BONFANTE P, REQUENA N. Dating in the dark: how roots respond to fungal signals to establishArbuscularmycorrhizalsymbiosis[J].CurrentOpinioninPlantBiology, 2011,14(4):451-457.

        [38] MUTHAMILARASAN M, PRASAD M. Plant innate immunity: an updated insight into defense mechanism[J].JournalofBiosciences, 2013,38(2):433-449.

        [39] JONES J D G, DANGL J L. The plant immune system[J].Nature, 2006,444(7 117):323-329.

        [40] MA W, BERKOWITZ G A. Ca2+conduction by plant cyclic nucleotide gated channels and associated signaling components in pathogen defense signal transduction cascades[J].NewPhytologist, 2011,190(3):566-572.

        [41] ZIPFEL C. Pattern-recognition receptors in plant innate immunity[J].CurrentOpinioninImmunology, 2008,20(1):10-16.

        [42] FELIX G, DURAN J D, VOLKO S,etal. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J].PlantJournal, 1999,18(3):265-276.

        [43] GOMEZ-GOMEZ L, FELIX G, BOLLER T. A single locus determines sensitivity to bacterial flagellin inArabidopsisthaliana[J].PlantJournalforCell&MolecularBiology, 1999,18(3):277-284.

        [44] KUNZE G, ZIPFEL C, ROBATZEK S,etal. The N terminus of bacterial elongation factor Tu elicits innate immunity inArabidopsisplants[J].PlantCell, 2004,16(12):3 496-3 507.

        [45] ZIPFEL C, ROBATZEK S, NAVARRO L,etal. Bacterial disease resistance in Arabidopsis through flagellin perception[J].Nature, 2004,428(6 984):764-767.

        [46] GOMEZ-GOMEZ L, BOLLER T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J].MolecularCell, 2000,5(6):1 003-1 011.

        [47] ROUX M, SCHWESSINGER B, ALBRECHT C,etal.The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens[J].PlantCell, 2011,23(6):2 440-2 455.

        [48] SUN Y, LI L, MACHO A P,etal. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex[J].Science, 2013,342(6 158):624-628.

        [49] CHINCHILLA D, ZIPFEL C, ROBATZEK S,etal. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence[J].Nature, 2007,448(7 152):497-500.

        [50] HEESE A, HANN D R, GIMENEZ-IBANEZ S,etal. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants[J].ProceedingsoftheNationalAcademyofSciences, 2007,104(29):12 217-12 222.

        [51] WALTERS M. The plant innate immune system[J].JournalofEndocytobiosisandCellResearch, 2015,26:8-12.

        [52] GRANT M, BROWN I, ADAMS S,etal. The RPM1, plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death[J].PlantJournal, 2000,23(4):441-450.

        [54] QI Z, STEPHENS N R, SPALDING E P. Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile[J].PlantPhysiology, 2006,142(3):963-971.

        [55] KANG S, KIM H B, LEE H,etal. Overexpression in Arabidopsis of a plasma membrane-targeting glutamate receptor from small radish increases glutamate-mediated Ca2+influx and delays fungal infection[J].Molecules&Cells,2006,21(3):418-427.

        [56] HUA B G, MERCIER R W, ZIELINSKI R E,etal. Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel[J].PlantPhysiologyandBiochemistry, 2003,41(11): 945-954.

        [57] CLOUGH S J, FENGLER K A, YU I,etal. The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel[J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 2000,97(16):9 323-9 328.

        [58] BALAGUé C, LIN B, ALCON C,etal. HLM1, An essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family[J].PlantCell, 2003,15(2):365-379.

        [59] JURKOWSKI G I, SMITH R K, YU I C,etal. Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype[J].MolecularPlant-MicrobeInteractions:MPMI, 2004,17(5):511-520.

        [60] CHIN K, DEFALCO T A, MOEDER W,etal. The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition[J].PlantPhysiology, 2013,163(2):611-624.

        [61] YOSHIOKA K, MOEDER W, KANG H G,etal. The chimeric Arabidopsis CYCLIC NUCLEOTIDE-GATED ION CHANNEL11/12 activates multiple pathogen resistance responses[J].PlantCell, 2006,18(3):747-763.

        [62] URQUHART W, GUNAWARDENA A H L A N, MOEDER W,etal. The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+dependent manner[J].PlantMolecularBiology, 2008,65(6):747-761.

        [63] CHEVAL C, ALDON D, GALAUD J P,etal. Calcium/calmodulin-mediated regulation of plant immunity[J].BiochimicaetBiophysicaActa(BBA) -MolecularCellResearch, 2013,1 833(7):1 766-1 771.

        [64] SUN K, WOLTERS A M A, LOONEN A E H M,etal. Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew[J].TransgenicResearch, 2015,25(2):123-138.

        [65] NOMURA H, SHIINA T. Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology[J].MolecularPlant, 2014,7(7):1 094-1 104.

        [66] NOMURA H, KOMORI T, UEMURA S,etal. Chloroplast-mediated activation of plant immune signalling inArabidopsis[J].NatureCommunications, 2012,3:926.

        [67] MANZOOR H, CHILTZ A, MADANI S,etal. Calcium signatures and signaling in cytosol and organelles of tobacco cells induced by plant defense elicitors[J].CellCalcium, 2012,51(6):434-444.

        [68] BOUDSOCQ M, WILLMANN M R, MCCORMACK M,etal. Differential innate immune signalling via Ca2+sensor protein kinases[J].Nature, 2010,464(7 287):418-422.

        [69] LECOURIEUX D, RANJEVA R, PUGIN A. Calcium in plant defence-signalling pathways[J].NewPhytologist, 2006,171(2):249-269.

        [70] BOLLER T, FELIX G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J].AnnualReviewofPlantBiology, 2009,60(1):379-406.

        [71] MELOTTO M, UNDERWOOD W, KOCZAN J,etal. Plant stomata function in innate immunity against bacterial invasion[J].Cell, 2006,126(5):969-980.

        (編輯:裴阿衛(wèi))

        Regulation Molecular Mechanisms of Ca2+Signaling on Plant-Environmental Microorganism Interactions

        GONG Xuefeng1, SONG Zhanfeng1*, MIAO Mingjun1, LI Yuejian2

        (1 Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; 2 Sichuan Academy of Agricultural Sciences, Chengdu 610066, China)

        Interactions between plant and environmental microorganism not only existed stress relationship but also possessed symbiotic relationship. Whether on plant-pathogen interaction system caused damage to plant or on plant symbiotic system provided nutrition for plant, the regulation molecular mechanism of Ca2+signaling in cell transduction pathways all played important roles. In this review, we focused on both interaction systems of regulation upstream mechanism of Ca2+signaling in the cell transduction pathway in details.

        Ca2+signaling; symbiosis; pathogen; cell signaling transduction

        1000-4025(2016)10-2128-09

        10.7606/j.issn.1000-4025.2016.10.2128

        2016-06-17;修改稿收到日期:2016-09-19

        四川省財(cái)政創(chuàng)新能力提升工程專項(xiàng)資金,青年基金項(xiàng)目(2016QNJJ-026);四川省農(nóng)作物育種攻關(guān)項(xiàng)目,突破性蔬菜(食用菌)新品種選育(2011N0098-7)

        鞏雪峰(1983-),女,博士,助理研究員,主要從事辣椒環(huán)境脅迫育種及分子生物學(xué)研究。E-mail:xuefenggong@qq.com

        *通信作者:宋占鋒,學(xué)士,副研究員,主要從事辣椒遺傳育種研究。E-mail:289544274@qq.com

        Q789

        A

        猜你喜歡
        植物信號(hào)
        信號(hào)
        鴨綠江(2021年35期)2021-04-19 12:24:18
        完形填空二則
        孩子停止長(zhǎng)個(gè)的信號(hào)
        植物的防身術(shù)
        把植物做成藥
        哦,不怕,不怕
        將植物穿身上
        基于LabVIEW的力加載信號(hào)采集與PID控制
        一種基于極大似然估計(jì)的信號(hào)盲抽取算法
        植物罷工啦?
        中文字幕色资源在线视频| 国产av一区二区三区区别| 国产高清精品在线二区| 按摩师玩弄少妇到高潮av| 医院人妻闷声隔着帘子被中出| 少妇人妻真实偷人精品视频| 亚洲一区二区自拍偷拍| 日韩人妻大奶子生活片| 日本少妇高潮喷水视频| 国产熟人av一二三区| 激情人妻在线视频| 亚洲福利视频一区二区三区| 人人妻人人澡人人爽国产| 无码少妇一区二区浪潮av| 久久国产精品老女人| 翘臀诱惑中文字幕人妻| 亚洲国产精品综合久久网络| 性高朝久久久久久久| 三级全黄的视频在线观看| 中文日本强暴人妻另类视频| 国产乱码卡二卡三卡老狼| 国产精品久久久久久麻豆一区| 最新福利姬在线视频国产观看 | 久久中文字幕日韩无码视频| 国产久久久自拍视频在线观看| 天天做天天添av国产亚洲| 国产精品久久久久久妇女6080| 最新永久免费AV网站| 一本色道久久88—综合亚洲精品 | 日韩av精品视频在线观看| 玩弄放荡人妻少妇系列| 中文无码日韩欧免费视频| 少妇精品揄拍高潮少妇桃花岛| 正在播放强揉爆乳女教师| 色丁香色婷婷| 国产精品久久熟女吞精| 国产精品免费一区二区三区四区| 狠狠色狠狠色综合日日不卡| 日本国产在线一区二区| 日韩av一区二区三区激情在线| 日本理伦片午夜理伦片|