亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        有限頻域分析與設(shè)計(jì)的廣義KYP引理方法綜述

        2016-12-17 08:23:38李賢偉高會(huì)軍
        自動(dòng)化學(xué)報(bào) 2016年11期
        關(guān)鍵詞:性能指標(biāo)頻域廣義

        李賢偉 高會(huì)軍

        有限頻域分析與設(shè)計(jì)的廣義KYP引理方法綜述

        李賢偉1高會(huì)軍2

        頻域方法是控制理論與工程領(lǐng)域的一種基本研究手段,許多控制問(wèn)題都可歸結(jié)為有限頻域性能指標(biāo)的分析與綜合問(wèn)題.廣義Kalman-Yakubovich-Popov(KYP)引理建立了頻域方法(傳遞函數(shù))與時(shí)域方法(狀態(tài)空間)之間的一座橋梁,成為近年來(lái)系統(tǒng)與控制理論領(lǐng)域的研究熱點(diǎn)之一.本文首先從信號(hào)和系統(tǒng)兩個(gè)角度闡明有限頻域分析與設(shè)計(jì)的背景和意義,并依次討論三種主要研究方法(經(jīng)典控制理論方法、頻率加權(quán)法和廣義性能指標(biāo)法)各自的優(yōu)缺點(diǎn).然后簡(jiǎn)單介紹廣義KYP引理的主體內(nèi)容,并詳細(xì)總結(jié)當(dāng)前基于廣義KYP引理的有限頻域分析與設(shè)計(jì)的主要方向及研究進(jìn)展.最后給出在使用廣義KYP引理時(shí)很重要但容易忽視的幾點(diǎn)注記,同時(shí)指明該領(lǐng)域目前存在并值得未來(lái)進(jìn)一步研究的關(guān)鍵問(wèn)題.

        有限頻域,廣義Kalman-Yakubovich-Popov(KYP)引理,控制器設(shè)計(jì),濾波,模型降階

        控制系統(tǒng)設(shè)計(jì)的目的是尋找合適的控制器,使閉環(huán)系統(tǒng)滿(mǎn)足某些給定的性能指標(biāo)(穩(wěn)定性、魯棒性、噪聲抑制度等).從頻域角度講,滿(mǎn)足這些性能指標(biāo)實(shí)際上就是要求整個(gè)閉環(huán)系統(tǒng)具有適當(dāng)?shù)念l域響應(yīng)特性(極點(diǎn)分布、幅頻特性等).對(duì)于實(shí)際控制問(wèn)題,考慮到被控對(duì)象自身的特點(diǎn)和輸入信號(hào)的頻譜特性,通常要求控制系統(tǒng)在不同頻率范圍滿(mǎn)足不同的性能指標(biāo).因此,控制工程中的許多問(wèn)題都可以歸結(jié)為有限頻域性能指標(biāo)的分析和綜合問(wèn)題.

        信號(hào)角度. 白噪聲的功率譜在所有頻率處均具有相同大小的幅值.然而許多實(shí)際信號(hào),無(wú)論是外界擾動(dòng)[1?3]還是參考跟蹤信號(hào)[4?5],其能量往往只集中在某一或者某些有限的頻率范圍,因此不能被簡(jiǎn)單地建模成白噪聲.比如文獻(xiàn)[2]通過(guò)分析一些典型地震災(zāi)難中的地震波記錄信號(hào),發(fā)現(xiàn)地震波的絕大部分能量均集中在0.3~8Hz的頻率范圍.此外,由于被控對(duì)象動(dòng)力學(xué)(如機(jī)械轉(zhuǎn)動(dòng)[1,3,6])和控制律(如重復(fù)學(xué)習(xí)類(lèi)控制律[4,7?8])存在往復(fù)運(yùn)動(dòng)的因素,周期信號(hào)也是工程中經(jīng)常要處理的一類(lèi)特殊信號(hào).除基波外,周期信號(hào)的頻譜還包含許多具有較大能量的高次諧波,容易引起系統(tǒng)諧振.例如,在機(jī)械硬盤(pán)驅(qū)動(dòng)器中,由于硬盤(pán)的高速轉(zhuǎn)動(dòng)產(chǎn)生了周期振動(dòng)信號(hào)并引起空氣震蕩,其高次諧波直接導(dǎo)致磁頭定位誤差信號(hào)在8kHz和10kHz處分別出現(xiàn)了異常的孤立高頻諧振分量[1].因此,在進(jìn)行控制器優(yōu)化時(shí),如果忽略了信號(hào)本身的有限頻域特性,得到的設(shè)計(jì)結(jié)果盡管能適應(yīng)更寬工作頻率范圍的信號(hào)輸入,卻未能充分利用信號(hào)的頻域信息實(shí)現(xiàn)更好的控制性能.相反,如果錯(cuò)誤地估計(jì)了信號(hào)各頻率成分對(duì)系統(tǒng)的影響,將很難發(fā)現(xiàn)限制控制系統(tǒng)性能提升的原因.

        系統(tǒng)角度. 任何實(shí)際控制系統(tǒng)都有無(wú)法突破的性能極限:系統(tǒng)不確定性、執(zhí)行器的有限輸出能力、被控對(duì)象的有限響應(yīng)帶寬等.由于這些約束的存在,控制系統(tǒng)的設(shè)計(jì)實(shí)際上是尋求不同設(shè)計(jì)目標(biāo)之間的合理折衷,頻域內(nèi)就是要求控制系統(tǒng)在不同的頻率范圍滿(mǎn)足不同的性能指標(biāo).經(jīng)典控制理論中的“回路成形”[9]技術(shù)就是基于這種折衷考慮:由于被控對(duì)象往往具有低通特性,低頻范圍的高回路增益使系統(tǒng)有較強(qiáng)的抵抗常值和低頻干擾的能力,而高頻范圍需要較低的回路增益以降低建模誤差帶來(lái)的影響.有時(shí),如果能夠了解到被控對(duì)象本身某些特有的頻域表征并加以利用,就有可能在不明顯犧牲其他性能的情況下顯著地改進(jìn)控制效果.例如,考慮到人體對(duì)外力最敏感的頻率范圍是4~8Hz,在對(duì)有人參與的隔離臺(tái)、汽車(chē)懸架之類(lèi)的對(duì)象進(jìn)行控制時(shí),有必要針對(duì)人的頻率響應(yīng)特性設(shè)計(jì)減震控制器,以降低振動(dòng)對(duì)人的傷害[10?11].又如,利用某些被控對(duì)象的有限頻域正實(shí)性,可以放寬閉環(huán)系統(tǒng)在某些頻率范圍的響應(yīng)要求,而將這部分預(yù)留的設(shè)計(jì)自由度用于改進(jìn)系統(tǒng)的某些關(guān)鍵性能[12?16].

        總之,實(shí)際工程中的被控對(duì)象(系統(tǒng))及其工作環(huán)境(信號(hào))往往具有明顯的有限頻域特性,而控制問(wèn)題常常又歸結(jié)為與這些有限頻域特性相對(duì)應(yīng)的若干有限頻域性能指標(biāo)的折衷?xún)?yōu)化問(wèn)題.因此,根據(jù)這些有限頻域特性進(jìn)行系統(tǒng)分析和設(shè)計(jì)是必要的,研究控制系統(tǒng)的有限頻域分析和綜合方法具有極其重要的工程意義.隨著現(xiàn)代社會(huì)對(duì)控制系統(tǒng)的性能要求越來(lái)越高,如何充分利用各種有限頻域性質(zhì)以提高控制系統(tǒng)性能的研究課題就顯得尤為重要.

        本文首先回顧系統(tǒng)和控制理論中有限頻域分析與設(shè)計(jì)的三種主要研究方法(第1節(jié));接著簡(jiǎn)要介紹廣義KYP(Kalman-Yakubovich-Popov)引理(第2節(jié))并詳細(xì)總結(jié)基于廣義KYP引理的有限頻域分析與設(shè)計(jì)的研究現(xiàn)狀(第3節(jié));最后給出關(guān)于廣義KYP引理的一些注記(第4節(jié));并指出值得進(jìn)一步研究的關(guān)鍵問(wèn)題(第5節(jié)).

        1 有限頻域分析與設(shè)計(jì)的主要研究方法

        對(duì)控制理論、系統(tǒng)理論和信號(hào)處理等工程科學(xué)領(lǐng)域的研究人員而言,有限頻域分析和綜合問(wèn)題研究并不是新的主題.從控制理論誕生以來(lái),人們便認(rèn)識(shí)到控制系統(tǒng)的有限頻域特性在工程實(shí)踐中的重要性.從以傳遞函數(shù)為基礎(chǔ)的經(jīng)典控制論到以狀態(tài)空間為基礎(chǔ)的現(xiàn)代控制理論和以H∞控制為代表的“后現(xiàn)代控制理論”,從頻域角度對(duì)系統(tǒng)進(jìn)行分析和設(shè)計(jì)一直是一種基本的手段.在控制理論領(lǐng)域,有限頻域分析與設(shè)計(jì)問(wèn)題的典型研究方法包括:

        1)經(jīng)典控制理論方法;

        2)頻率加權(quán)法(間接法);

        3)廣義性能指標(biāo)法(直接法).

        下面我們將對(duì)上述方法的一般特點(diǎn)進(jìn)行討論.需要指出的是,上述分類(lèi)方法并不嚴(yán)格,各類(lèi)方法之間并不完全獨(dú)立.同時(shí),限于作者的知識(shí)水平,上述分類(lèi)方法并不能涵蓋針對(duì)類(lèi)似問(wèn)題的所有研究結(jié)果.比如在目標(biāo)頻率響應(yīng)已知情況下基于曲線(xiàn)擬合的頻率采樣方法[17?18]、基于非光滑優(yōu)化技術(shù)的控制系統(tǒng)有限頻域性能指標(biāo)的直接綜合方法[19?20]等.

        1.1 經(jīng)典控制理論方法

        經(jīng)典控制理論以傳遞函數(shù)為基礎(chǔ),具有明顯的頻域意義.經(jīng)典控制理論中的控制器設(shè)計(jì)方法主要包括PID(Proportion integration differentiation)控制方法、根軌跡法、基于開(kāi)環(huán)頻率特性的校正法等[21].基于經(jīng)典控制理論的控制設(shè)計(jì)方法的核心目標(biāo)是通過(guò)引入附加的零極點(diǎn)(即控制器),使反饋控制系統(tǒng)達(dá)到期望的頻率響應(yīng)特性.比如,PID控制器的微分環(huán)節(jié)能夠增加系統(tǒng)的阻尼系數(shù),從而消除狀態(tài)振蕩或加快狀態(tài)收斂速度,而積分環(huán)節(jié)能記憶過(guò)去的狀態(tài)從而有助于消除系統(tǒng)的穩(wěn)態(tài)誤差.盡管經(jīng)典控制理論中的設(shè)計(jì)方法都有各自的設(shè)計(jì)步驟,但是“回路成形”技術(shù)依然具有指導(dǎo)作用.

        經(jīng)典控制理論應(yīng)用于解決有限頻域分析和綜合問(wèn)題時(shí)具有以下三個(gè)方面的局限性:1)經(jīng)典控制理論以單輸入單輸出的線(xiàn)性定常系統(tǒng)為主要研究對(duì)象,很多結(jié)果難以直接推廣到多輸入多輸出、時(shí)變等復(fù)雜情形;2)經(jīng)典控制理論的設(shè)計(jì)過(guò)程過(guò)多地依賴(lài)以工程經(jīng)驗(yàn)為基礎(chǔ)的圖解法和試湊法,難以處理高階被控對(duì)象和/或高階控制器;3)經(jīng)典控制理論考慮的性能指標(biāo)以時(shí)域的瞬態(tài)性能和穩(wěn)態(tài)性能為主,控制器的設(shè)計(jì)過(guò)程未能優(yōu)化有限頻域性能指標(biāo).

        1.2 頻率加權(quán)法(間接法)

        20世紀(jì)60年代發(fā)展起來(lái)的現(xiàn)代控制理論以狀態(tài)空間法[22]為主要研究方法,克服了經(jīng)典控制理論在處理多輸入多輸出對(duì)象時(shí)的不足.現(xiàn)代控制理論的分支之一,即最優(yōu)控制理論[23],便是以研究如何使系統(tǒng)在各種指標(biāo)約束下達(dá)到最優(yōu)為主題.最優(yōu)控制理論所針對(duì)的原始頻域性能指標(biāo)都定義在全頻域內(nèi).為了能夠利用最優(yōu)控制理論對(duì)有限頻域性能指標(biāo)進(jìn)行優(yōu)化,常見(jiàn)的手段是引入頻率加權(quán)函數(shù),基本方法是選擇合適的加權(quán)函數(shù),將最優(yōu)控制理論應(yīng)用于加權(quán)后的復(fù)合系統(tǒng)并優(yōu)化相應(yīng)的全頻域性能指標(biāo).該方法本質(zhì)上是將針對(duì)原系統(tǒng)有限頻域性能指標(biāo)的優(yōu)化問(wèn)題轉(zhuǎn)變?yōu)獒槍?duì)復(fù)合系統(tǒng)全頻域性能指標(biāo)的優(yōu)化問(wèn)題,從而間接地達(dá)到改進(jìn)有限頻域性能指標(biāo)的目的.H2混合靈敏度問(wèn)題和H∞混合靈敏度問(wèn)題便是典型的基于頻率加權(quán)函數(shù)的最優(yōu)控制問(wèn)題[9].其他大量運(yùn)用頻率加權(quán)函數(shù)輔助有限頻域性能指標(biāo)優(yōu)化的課題包括模型降階[24?32]與控制器降階[33?34].頻率加權(quán)函數(shù)法的優(yōu)勢(shì)在于可以直接應(yīng)用現(xiàn)成的現(xiàn)代控制理論解決有限頻域控制問(wèn)題;同時(shí),加權(quán)函數(shù)的選擇還能反映出多維信號(hào)各分量的重要性以及實(shí)現(xiàn)不同類(lèi)型信號(hào)的量級(jí)尺度可比性[9].

        頻率加權(quán)函數(shù)法也有較大的局限性:1)頻率加權(quán)函數(shù)法歸根結(jié)底是一種間接處理有限頻域性能指標(biāo)的方法,盡管能夠在一定程度上改進(jìn)控制系統(tǒng)的有限頻域性能,但未能提供關(guān)于系統(tǒng)有限頻域性能的定量信息;2)有限階的頻率加權(quán)函數(shù)不可能具有理想的有限頻域特性,即通帶內(nèi)的單位增益和阻帶內(nèi)的零增益,因此不能保證有限頻域性能指標(biāo)的最優(yōu)性;3)加權(quán)函數(shù)的引入增加了實(shí)際被控對(duì)象(即復(fù)合系統(tǒng))階次,不利于系統(tǒng)分析和綜合,特別是降階控制器/濾波器的設(shè)計(jì);4)加權(quán)函數(shù)的選取主要依靠研究人員的工程經(jīng)驗(yàn),缺乏系統(tǒng)嚴(yán)格的指導(dǎo)理論,選取過(guò)程中往往需要經(jīng)過(guò)多次嘗試,非常耗時(shí).

        1.3 廣義性能指標(biāo)法(直接法)

        鑒于頻率加權(quán)函數(shù)法是一種間接的設(shè)計(jì)方法,解決有限頻域控制問(wèn)題的根本之道在于找到處理有限頻域性能指標(biāo)的直接方法.具體而言,如果現(xiàn)有成熟的控制理論比如現(xiàn)代控制理論是針對(duì)全頻域性能指標(biāo)的理論體系,那么能否直接建立與有限頻域性能指標(biāo)相對(duì)應(yīng)的控制系統(tǒng)研究理論呢?基于這種考慮,目前的研究成果主要有以下兩種方法:

        有限頻Gramian矩陣法.Gramian矩陣在線(xiàn)性系統(tǒng)理論中具有十分重要的地位[22].對(duì)于穩(wěn)定的線(xiàn)性系統(tǒng)G(s)=C(sI?A)?1B+D,可控性Gramian矩陣和可觀(guān)性Gramian矩陣在頻域內(nèi)的標(biāo)準(zhǔn)定義為[9]

        利用Gramian矩陣,可以分析系統(tǒng)的可控性、可觀(guān)性、H2性能等.為了使Gramian矩陣適合于處理有限頻域性能指標(biāo),文獻(xiàn)[35]將上述定義擴(kuò)展為

        就目前已有的研究成果而言,有限頻Gramian矩陣法仍然缺少系統(tǒng)的理論支撐.相關(guān)的基本問(wèn)題包括:1)與標(biāo)準(zhǔn)Gramian矩陣關(guān)聯(lián)的系統(tǒng)性能是H2性能[9]和能量–峰值增益[36?37](通常稱(chēng)為廣義H2性能,注意此“廣義”并不是指有限頻域情形).這兩種性能指標(biāo)在有限頻域內(nèi)的物理意義尚不明確,有限頻Gramian矩陣與它們的關(guān)系也不清楚.特別地,如果積分區(qū)間非常窄,有限頻Gramian矩陣將非常小甚至為零(積分區(qū)間只含有單個(gè)頻率),此時(shí)的H2性能該如何定義、計(jì)算和解釋?2)現(xiàn)有的大多數(shù)相關(guān)研究成果只停留在與Gramian矩陣聯(lián)系緊密的平衡截?cái)嗄P徒惦A[35,38?40],而且基本沒(méi)有考慮有限頻域性能指標(biāo)的優(yōu)化.綜上所述,有限頻Gramian矩陣法的理論基礎(chǔ)還有待深入研究.由于本文焦點(diǎn)和興趣并不在此,所以將不會(huì)就此展開(kāi)進(jìn)一步討論.感興趣的讀者可參考文獻(xiàn)[41]等.

        廣義KYP引理法.另一種處理有限頻域分析與設(shè)計(jì)問(wèn)題的直接方法是廣義KYP引理法.廣義KYP引理即廣義Kalman-Yakubovich-Popov引理是Iwasaki等在經(jīng)典的KYP引理基礎(chǔ)上建立的分析線(xiàn)性系統(tǒng)有限頻域性能指標(biāo)的新理論.廣義KYP引理的初步理論成果發(fā)表于2000年左右[42],經(jīng)過(guò)Iwasaki等的發(fā)展,完善的基礎(chǔ)理論成果于2005年在IEEE Transactions on Automatic Control以Regular paper發(fā)表[43].20世紀(jì)60年代建立的KYP引理是控制理論和系統(tǒng)理論里一個(gè)非常重要的結(jié)果[44],它成功從系統(tǒng)的角度建立起頻域條件(頻域性能指標(biāo))和時(shí)域條件(線(xiàn)性矩陣不等式)的等價(jià)關(guān)系.但是標(biāo)準(zhǔn)的KYP引理考察的是系統(tǒng)在全頻域內(nèi)的整體性能,無(wú)法處理系統(tǒng)在某個(gè)頻率處或某個(gè)頻段內(nèi)的性能.廣義KYP引理則從根本上克服了標(biāo)準(zhǔn)KYP引理的這個(gè)缺點(diǎn),使人們能夠直接利用等價(jià)的線(xiàn)性矩陣不等式條件分析系統(tǒng)的一大類(lèi)有限頻域性能.

        廣義KYP引理是近年來(lái)在線(xiàn)性系統(tǒng)理論和魯棒控制理論領(lǐng)域所取得的突破性研究成果之一.與前面的有限頻Gramian矩陣方法相比,廣義KYP引理的優(yōu)勢(shì)體現(xiàn)在:1)基本的廣義KYP引理在有限頻域性能分析方面的結(jié)果非常完善,是標(biāo)準(zhǔn)KYP引理在有限頻域內(nèi)的完美推廣;2)廣義KYP引理得到的線(xiàn)性矩陣不等式條件中直接包含了有限頻域性能指標(biāo)的參數(shù),使得人們?cè)谘芯肯嚓P(guān)的系統(tǒng)分析和綜合問(wèn)題時(shí),對(duì)有限頻域性能指標(biāo)進(jìn)行優(yōu)化成為可能;3)廣義KYP引理針對(duì)的性能指標(biāo)具有非常明確的頻域意義,使得無(wú)論是控制理論的研究人員還是工程實(shí)踐人員容易理解并接受相關(guān)理論.下面將簡(jiǎn)要介紹該引理,并詳細(xì)回顧其研究現(xiàn)狀.

        2 廣義KYP引理

        本節(jié)對(duì)廣義KYP引理的核心內(nèi)容作適當(dāng)介紹,包括有限頻域的描述方法、廣義KYP引理及其意義.詳細(xì)內(nèi)容請(qǐng)參考文獻(xiàn)[42?43,45].

        用符號(hào)?表示所考察的有限頻域,定義為

        其中和Ψ∈H2為給定矩陣1符號(hào)Hn表示所有維數(shù)為n×n的Hermite矩陣的集合.,Ψ滿(mǎn)足det(Ψ)<0.矩陣Φ決定了復(fù)數(shù)集合Λ刻畫(huà)的是連續(xù)系統(tǒng)還是離散系統(tǒng)的頻域變量.合適地選擇矩陣Φ和Ψ,集合Λ給出了有限頻域?的一種復(fù)頻域描述.根據(jù)文獻(xiàn)[43,45],集合Λ和?的對(duì)應(yīng)關(guān)系以及矩陣Φ和Ψ的取值見(jiàn)表1,表中ωc=(ω1+ω2)/2,ωr=(ω2?ω1)/2.

        表1 集合?與Λ以及矩陣Φ和Ψ的取值Table 1 The values of sets ? and Λ and matrices Φ and Ψ

        廣義KYP引理.給定矩陣Θ∈Hn1+n2,F∈C2n1×(n1+n2)以及Φ,Ψ∈H2使得由式(2)定義的集合Λ表示復(fù)平面上的曲線(xiàn).定義

        則下面兩種陳述等價(jià):

        1)(ΓλF)⊥?Θ(ΓλF)⊥<0,?λ∈Λ(Φ,Ψ);

        2)存在矩陣P,Q∈Hn1,使得Q>0以及

        進(jìn)一步,如果滿(mǎn)足秩條件rank{ΓλF}=n1,那么下面兩種陳述等價(jià):

        1)(ΓλF)⊥?Θ(ΓλF)⊥≤0,?λ∈Λ(Φ,Ψ);

        2)存在矩陣P,Q∈Hn1,使得Q≥0以及

        上述引理是一般形式下的廣義KYP引理,陳述的僅僅是兩個(gè)數(shù)學(xué)條件的等價(jià)關(guān)系,常值矩陣F和Θ還沒(méi)有賦予系統(tǒng)理論上的意義.為了直觀(guān)地與控制系統(tǒng)的有限頻域性能聯(lián)系起來(lái),考慮線(xiàn)性定常系統(tǒng)G(λ)=(λI?A)?1B.由于

        利用廣義KYP引理,假設(shè)系統(tǒng)G(λ)穩(wěn)定,可以得到如下的等價(jià)關(guān)系:

        1)下面的指標(biāo)成立:

        該條件表示系統(tǒng)G(λ)在有限頻域Λ內(nèi)的最大奇異值不超過(guò)γ(本文稱(chēng)之為廣義H∞指標(biāo),參見(jiàn)第3.3節(jié)).即使當(dāng)集合Λ(Φ,Ψ)表示非常窄的頻帶,條件(5)依然能被很好地定義.特別地,如果Ψ=0,集合Λ(Φ,Ψ)=Λ(Φ,0)描述的就是全頻域.此時(shí),上述等價(jià)關(guān)系自然地簡(jiǎn)化為標(biāo)準(zhǔn)KYP引理[44].

        判斷頻域不等式條件(5)成立與否需要對(duì)有限頻域集合Λ(Φ,Ψ)內(nèi)的所有元素進(jìn)行驗(yàn)證,這在實(shí)際應(yīng)用中是不可能實(shí)現(xiàn)的.不過(guò),由于等價(jià)關(guān)系中的第二個(gè)條件是一個(gè)線(xiàn)性矩陣不等式,所以借助廣義KYP引理,驗(yàn)證第一個(gè)條件所面臨的無(wú)限維問(wèn)題就簡(jiǎn)化為尋找滿(mǎn)足線(xiàn)性矩陣不等式的矩陣P,Q的有限維問(wèn)題,而且這種問(wèn)題的轉(zhuǎn)化是無(wú)損的.因此,廣義KYP引理不僅保持了標(biāo)準(zhǔn)KYP引理形式上的優(yōu)美,同時(shí)保持了有限頻域性能分析問(wèn)題與線(xiàn)性矩陣不等式可行解存在性問(wèn)題之間的等價(jià)性.相比于標(biāo)準(zhǔn)KYP引理,廣義KYP引理可以直接處理有限頻域性能指標(biāo),為控制理論的精細(xì)化和實(shí)用化提供了堅(jiān)實(shí)的理論基礎(chǔ).

        另一方面,廣義KYP引理的提出也進(jìn)一步肯定了線(xiàn)性矩陣不等式技術(shù)在推動(dòng)系統(tǒng)和控制理論發(fā)展過(guò)程中所起的作用.過(guò)去20年,在有效地求解凸優(yōu)化問(wèn)題的內(nèi)點(diǎn)算法提出之后[46],線(xiàn)性矩陣不等式技術(shù)在控制和系統(tǒng)領(lǐng)域得到了廣泛的應(yīng)用并取得了前所未有的成功[47?49].借助線(xiàn)性矩陣不等式技術(shù),系統(tǒng)和控制中很多之前難以求解的復(fù)雜問(wèn)題(特別是魯棒控制問(wèn)題和多目標(biāo)控制問(wèn)題)都可以轉(zhuǎn)化為一個(gè)線(xiàn)性矩陣不等式(組)約束下的凸優(yōu)化問(wèn)題,從而利用成熟的數(shù)值算法進(jìn)行求解.在實(shí)現(xiàn)控制問(wèn)題向凸優(yōu)化問(wèn)題轉(zhuǎn)化的過(guò)程中,KYP引理和廣義KYP引理發(fā)揮了非常重要的作用.近年來(lái),各種有效求解半定規(guī)劃問(wèn)題(線(xiàn)性矩陣不等式只是一種特殊的半定規(guī)劃問(wèn)題)的計(jì)算機(jī)程序和軟件包更是層出不窮[50?51],直接促進(jìn)了線(xiàn)性矩陣不等式技術(shù)在控制工程中的應(yīng)用,使這項(xiàng)技術(shù)也被越來(lái)越多的工程技術(shù)人員所接納.值得指出的是,作為廣義KYP引理的主要提出者,Iwasaki教授也是推動(dòng)線(xiàn)性矩陣不等式技術(shù)在系統(tǒng)和控制理論中應(yīng)用的主要學(xué)者之一,在應(yīng)用線(xiàn)性矩陣不等式技術(shù)解決魯棒性能分析、控制器設(shè)計(jì)等問(wèn)題上做出了許多重要的基礎(chǔ)研究工作[52].廣義KYP引理的提出賦予了線(xiàn)性矩陣不等式在控制和系統(tǒng)中新的生命力,使這項(xiàng)數(shù)學(xué)工具在今后依然是控制理論和系統(tǒng)理論研究的主流方法之一.

        3 廣義KYP引理的研究進(jìn)展

        鑒于經(jīng)典控制理論和有限頻Gramian矩陣法的局限性,廣義KYP引理在解決系統(tǒng)有限頻域性能分析和綜合問(wèn)題方面的優(yōu)勢(shì)和易用性很快便突現(xiàn)出來(lái).由于成功統(tǒng)一了標(biāo)準(zhǔn)KYP引理,廣義KYP引理在控制和系統(tǒng)理論中的基礎(chǔ)地位很快就得到了認(rèn)可,越來(lái)越多的學(xué)者開(kāi)始加入到廣義KYP引理及相關(guān)控制理論的研究中,并積極地嘗試將獲得的新結(jié)果應(yīng)用于解決工程實(shí)際問(wèn)題,取得了一系列有價(jià)值的研究成果,逐漸形成了控制理論中有限頻域分析與設(shè)計(jì)問(wèn)題一個(gè)新的研究方向.在完整的廣義KYP引理[42?43,45,53]建立起之后,Iwasaki等繼續(xù)在廣義KYP引理基礎(chǔ)上進(jìn)行相關(guān)控制理論的研究[54?56],推動(dòng)廣義KYP引理在系統(tǒng)和控制中的應(yīng)用[15,57?58].目前,在基于廣義KYP引理的有限頻域分析與設(shè)計(jì)的新方向上,主要的研究成果包括以下幾個(gè)方面.

        3.1 保證有限頻域輸入輸出性能的反饋控制

        基本問(wèn)題描述為:設(shè)計(jì)反饋控制器使閉環(huán)系統(tǒng)的某個(gè)或某些輸入輸出性能指標(biāo)在有限頻域內(nèi)滿(mǎn)足指定的要求.針對(duì)KYP引理,具體的控制問(wèn)題包括有限頻域H∞控制、有限頻域正實(shí)控制等.這類(lèi)問(wèn)題是一些標(biāo)準(zhǔn)的保證輸入輸出性能的反饋控制問(wèn)題向有限頻域的拓展.與一般的鎮(zhèn)定問(wèn)題或保性能控制問(wèn)題相比,具有有限頻域指標(biāo)要求的反饋控制問(wèn)題難度更大,因?yàn)樵趯?dǎo)出的矩陣不等式條件中,控制器增益矩陣與其他未知變量之間存在更強(qiáng)的耦合關(guān)系,導(dǎo)致一些常見(jiàn)的算法如錐補(bǔ)線(xiàn)性化[59]失效.

        Iwasaki等在提出了廣義KYP引理之后進(jìn)一步研究了一般有限頻域指標(biāo)下的靜態(tài)輸出反饋控制問(wèn)題[54]和動(dòng)態(tài)輸出反饋控制問(wèn)題[55],借助Finsler引理和變量替換,獲得了一些特殊情形下保證控制器存在的線(xiàn)性矩陣不等式條件.在應(yīng)用廣義KYP引理解決系統(tǒng)綜合問(wèn)題方面,他們的方法也成為尋找系統(tǒng)綜合結(jié)果的統(tǒng)一思路,后來(lái)亦被其他大部分研究人員所遵循.遺憾的是,盡管他們給出了滿(mǎn)足給定有限頻域指標(biāo)的控制器存在條件,但是針對(duì)一般輸出反饋控制器特別是靜態(tài)輸出反饋控制器的設(shè)計(jì)問(wèn)題,這些條件并不是線(xiàn)性矩陣不等式,而他們并未提供有效的求解方法.鑒于此,Li等通過(guò)矩陣分離技術(shù)引入松弛矩陣,獲得了新的控制器存在充要條件,并在此基礎(chǔ)上根據(jù)“兩步法”的思想提出了新穎的啟發(fā)式迭代求解算法[60].他們還在理論上揭示了一些已有的同類(lèi)靜態(tài)輸出反饋器設(shè)計(jì)結(jié)果[61?63]之間的聯(lián)系.此外,他們還研究了具有多面體不確定性的魯棒有限頻域控制問(wèn)題[64?65]和二維FM(Fornasini-Marchesini)狀態(tài)空間模型的有限頻域正實(shí)控制問(wèn)題[66?67].受文獻(xiàn)[60]啟發(fā),Hao等分別研究了具有控制器結(jié)構(gòu)約束的有限頻域控制問(wèn)題和時(shí)滯系統(tǒng)的有限頻域輸出反饋控制問(wèn)題[68?69].在Iwasaki等取得的控制器設(shè)計(jì)結(jié)果基礎(chǔ)上,Zhang等考察了混合頻域小增益要求下線(xiàn)性連續(xù)系統(tǒng)的動(dòng)態(tài)輸出反饋控制問(wèn)題[70];梅平等基于廣義KYP引理研究了奇異攝動(dòng)系統(tǒng)的分頻控制設(shè)計(jì)問(wèn)題[71];董全超研究了時(shí)滯系統(tǒng)的基于觀(guān)測(cè)器的有限頻域狀態(tài)反饋容錯(cuò)控制問(wèn)題[72].關(guān)于廣義KYP引理框架下有限頻域控制方法的應(yīng)用,請(qǐng)參考第3.7節(jié)的文獻(xiàn)回顧.

        3.2 回路成形理論的精確量化

        如前所述,回路成形理論是控制器設(shè)計(jì)的一種準(zhǔn)則.按回路成形的思想進(jìn)行控制器設(shè)計(jì)的問(wèn)題是典型的有限頻域問(wèn)題[43].在經(jīng)典控制理論中,當(dāng)使用PID控制等控制方法對(duì)系統(tǒng)回路進(jìn)行“整形”時(shí),由于缺乏精確易用的理論工具,往往采用作圖或者試湊法,但是其設(shè)計(jì)結(jié)果很難保證有限頻域指標(biāo)的最優(yōu)化.借助廣義KYP引理,Iwasaki等將“整形”所需要的有限頻域指標(biāo)轉(zhuǎn)化為線(xiàn)性矩陣不等式形式的凸約束,使性能指標(biāo)和PID控制器的參數(shù)成為凸優(yōu)化問(wèn)題的決策變量,實(shí)現(xiàn)了控制系統(tǒng)設(shè)計(jì)的最優(yōu)化[43,57].而且他們指出,如果得到的線(xiàn)性矩陣不等式條件無(wú)解,那么將不存在滿(mǎn)足相應(yīng)性能要求的PID控制器.該結(jié)論對(duì)檢驗(yàn)系統(tǒng)指標(biāo)要求的合理性是有益的.在取得的回路成形理論結(jié)果基礎(chǔ)上,他們還開(kāi)發(fā)了相應(yīng)的基于Matlab的計(jì)算機(jī)輔助控制設(shè)計(jì)軟件[58].受Iwasaki等提出的PID控制器設(shè)計(jì)方法啟發(fā),Li等研究了多面體不確定系統(tǒng)的“回路成形”問(wèn)題,并獲得了參數(shù)依賴(lài)魯棒PID控制器設(shè)計(jì)方法[73];Lim等則研究了單輸入單輸出系統(tǒng)的“閉環(huán)敏感函數(shù)成形”問(wèn)題[3,74],并將提出的設(shè)計(jì)方法應(yīng)用于光盤(pán)驅(qū)動(dòng)器的磁道跟蹤控制器設(shè)計(jì),取得了良好的控制效果[3];Ishizaki等采用回路成形技術(shù)研究了電磁鑄模機(jī)的控制問(wèn)題,結(jié)合廣義KYP引理給出了PI控制器的凸優(yōu)化設(shè)計(jì)方法[75].

        3.3 廣義H∞濾波

        估計(jì)問(wèn)題是系統(tǒng)和控制理論中一類(lèi)非常重要的問(wèn)題.狀態(tài)估計(jì)的目的是利用可以測(cè)量的系統(tǒng)輸出信號(hào)對(duì)不可測(cè)量但是有用的信號(hào)進(jìn)行估計(jì).考慮連續(xù)系統(tǒng),假設(shè)從噪聲到估計(jì)誤差的系統(tǒng)模型為G(s),其標(biāo)準(zhǔn)H∞性能和廣義H∞性能分別定義為

        其中,σ[·]表示矩陣奇異值,?為如式(1)所示的頻率集合.傳統(tǒng)H∞濾波理論以標(biāo)準(zhǔn)H∞性能作為濾波器性能的評(píng)價(jià)標(biāo)準(zhǔn),未能利用噪聲可能具有的有限頻域特性.廣義H∞濾波(或有限頻域H∞濾波)對(duì)濾波誤差系統(tǒng)的廣義H∞性能進(jìn)行優(yōu)化,針對(duì)特定頻率范圍的噪聲,實(shí)現(xiàn)更好的濾波性能.作為標(biāo)準(zhǔn)H∞濾波向有限頻域的擴(kuò)展,廣義H∞濾波問(wèn)題也成為有限頻域分析和設(shè)計(jì)研究中的一個(gè)熱點(diǎn)課題.

        Wang和Yang基于廣義KYP引理研究了離散線(xiàn)性定常系統(tǒng)的H∞濾波問(wèn)題,獲得了線(xiàn)性矩陣不等式形式的濾波器設(shè)計(jì)方法[76].Zhang等研究了具有狀態(tài)時(shí)滯的離散系統(tǒng)的廣義H∞濾波問(wèn)題,獲得了時(shí)滯相關(guān)的濾波器設(shè)計(jì)方法[77].Gao等結(jié)合廣義KYP引理和時(shí)滯分割思想,不僅分別針對(duì)連續(xù)時(shí)滯系統(tǒng)和離散時(shí)滯系統(tǒng)提出了具有更低保守性的廣義H∞濾波器設(shè)計(jì)方法[77?79],還分別從時(shí)域角度和頻域角度給出了時(shí)滯相關(guān)條件的推導(dǎo)方法[79?81],為在廣義KYP引理框架下處理復(fù)雜系統(tǒng)的有限頻域性能提供了一種有效的研究思路.應(yīng)用二維廣義KYP引理,他們還分別得到了Roesser模型和FM 模型下二維系統(tǒng)的魯棒廣義H∞濾波器的參數(shù)依賴(lài)設(shè)計(jì)方法[82?84].特別地,即便針對(duì)標(biāo)準(zhǔn)H∞濾波問(wèn)題,文獻(xiàn)[82]的設(shè)計(jì)方法依然具有較低保守性.上述結(jié)果僅僅考慮了全階濾波器的設(shè)計(jì)問(wèn)題.最近,受到有限頻域控制器設(shè)計(jì)的“兩步法”啟發(fā), Li等研究了離散線(xiàn)性定常系統(tǒng)的降階廣義H∞濾波問(wèn)題,提出了一種新穎的降階濾波器迭代設(shè)計(jì)方法,并將結(jié)果應(yīng)用于信道均衡問(wèn)題[85].此外,基于廣義KYP引理,人們還研究了離散切換系統(tǒng)[86]、T-S (Takogi-Sugeno)模糊非線(xiàn)性系統(tǒng)[87]、LPV(Linear parameter-varying)系統(tǒng)[88]等多種系統(tǒng)模型下的廣義H∞濾波問(wèn)題.

        3.4 廣義H∞模型近似

        基于頻率加權(quán)函數(shù)和有限頻Gramian矩陣的模型降階問(wèn)題是一類(lèi)典型的有限頻域綜合問(wèn)題.廣義KYP引理的提出為解決這類(lèi)問(wèn)題提供了新的工具.考慮連續(xù)系統(tǒng),令G(s)和Gr(s)分別表示原系統(tǒng)模型及其近似系統(tǒng)模型,廣義H∞模型近似的目標(biāo)是使誤差系統(tǒng)的廣義H∞指標(biāo)上界γ盡可能小:

        特別地,當(dāng)頻率集合?包含所有頻率時(shí),廣義H∞模型近似問(wèn)題即退化為標(biāo)準(zhǔn)H∞模型近似問(wèn)題[89].需要注意的是,這里的模型近似問(wèn)題并不特指模型降階問(wèn)題—后者只是前者在近似模型階次小于原始模型階次時(shí)的特殊情況.這一點(diǎn)請(qǐng)具體參考第4節(jié)關(guān)于廣義KYP引理的一些注記.

        借助廣義KYP引理,Du等研究了線(xiàn)性系統(tǒng)的有限頻域模型降階問(wèn)題[90?91]和線(xiàn)性狀態(tài)時(shí)滯系統(tǒng)的有限頻域模型降階問(wèn)題[92?93].針對(duì)原系統(tǒng)是由離散傳遞函數(shù)給出的單輸入單輸出模型,文獻(xiàn)[94–95]借助廣義KYP引理導(dǎo)出了矩陣不等式形式的近似模型系數(shù)參數(shù)化條件,并應(yīng)用上界約束技術(shù)進(jìn)行線(xiàn)性化處理,進(jìn)而提出一種計(jì)算近似模型的迭代算法.相比直接使用狀態(tài)空間模型所得到的結(jié)果,針對(duì)傳遞函數(shù)得到的條件能極大地減少變量數(shù)量,有利于構(gòu)建更高效的求解算法.此模型近似方法在文獻(xiàn)[95]中被進(jìn)一步用于求解無(wú)限脈沖響應(yīng)(Infinite impulse response,IIR)數(shù)字濾波器的設(shè)計(jì)問(wèn)題,所得結(jié)果較一些最新的數(shù)字濾波器設(shè)計(jì)方法也具有一定優(yōu)勢(shì).利用廣義KYP引理,文獻(xiàn)[96–97]分別研究了降階模型具有無(wú)源性和降階模型為正系統(tǒng)的廣義H∞模型降階問(wèn)題,給出了一種能夠減小感興趣頻率范圍內(nèi)逼近誤差的迭代優(yōu)化算法,計(jì)算結(jié)果明顯優(yōu)于文獻(xiàn)[90]的方法.此外,借助二維廣義KYP引理[67,98],Li等構(gòu)建了二維系統(tǒng)廣義H∞模型近似問(wèn)題的線(xiàn)性矩陣不等式求解方法[99].該方法與基于有限頻Gramian矩陣的平衡截?cái)喾椒╗39]相比,能更有效地增強(qiáng)給定有限頻率范圍內(nèi)的逼近效果.其他相關(guān)研究結(jié)果見(jiàn)文獻(xiàn)[100?101]等.

        3.5 基于廣義KYP引理的故障檢測(cè)

        故障信號(hào)和噪聲擾動(dòng)往往具有不同的頻率特性,比如常值故障可以看作低頻信號(hào),而噪聲則可能是周期擾動(dòng)信號(hào).因此,就需要故障檢測(cè)機(jī)制能夠適應(yīng)并利用故障信號(hào)和噪聲擾動(dòng)各自的頻譜特點(diǎn),以正確、快速地識(shí)別故障發(fā)生的情況并提高對(duì)噪聲擾動(dòng)的魯棒性.利用廣義KYP引理,Wang等研究了線(xiàn)性系統(tǒng)的故障觀(guān)測(cè)器和故障估計(jì)器設(shè)計(jì)問(wèn)題,提高了殘差信號(hào)對(duì)有限頻域擾動(dòng)的魯棒性以及故障信號(hào)的敏感度[102?104],而且他們還應(yīng)用廣義KYP引理研究了故障檢測(cè)器與控制器的集成設(shè)計(jì)問(wèn)題[105?106];Yang等分別研究了T-S模糊系統(tǒng)的故障觀(guān)測(cè)器設(shè)計(jì)問(wèn)題[107]和線(xiàn)性系統(tǒng)的有限頻域故障觀(guān)測(cè)器在δ域的設(shè)計(jì)問(wèn)題[108];Zhang等借助廣義KYP引理給出了單一頻率故障信號(hào)檢測(cè)問(wèn)題的最優(yōu)狀態(tài)空間解[109];Long等則研究了網(wǎng)絡(luò)環(huán)境下有限頻域故障的檢測(cè)和隔離問(wèn)題[110?111];Zhang等考慮了殘差系統(tǒng)滿(mǎn)足給定極點(diǎn)分布和廣義H∞擾動(dòng)抑制水平的故障估計(jì)問(wèn)題[112?114].

        3.6 廣義KYP引理的推廣

        在廣義KYP引理提出之后,許多學(xué)者亦分別從引理的適用模型、引理的變形和引理的時(shí)域解釋三方面對(duì)其進(jìn)行推廣.在模型范圍方面,文獻(xiàn)[98]和[67]分別導(dǎo)出了Roesser模型和FM模型下的二維廣義KYP引理,將原始的一維廣義KYP引理推廣到了二維系統(tǒng).雖然得到的二維廣義KYP引理的線(xiàn)性矩陣不等式條件僅僅是充分的,但是很好地保持了一維版本簡(jiǎn)潔的形式及其易用性,對(duì)研究二維系統(tǒng)的有限頻域性能分析和綜合問(wèn)題具有重要的價(jià)值.借助二維廣義KYP引理,Li等進(jìn)一步研究了二維系統(tǒng)的廣義正實(shí)控制[67]、廣義H∞濾波[82,84]和廣義H∞模型降階[99]等有限頻域分析與設(shè)計(jì)問(wèn)題.文獻(xiàn)[115]推導(dǎo)了線(xiàn)性時(shí)間–空間模型的二維廣義KYP引理,能夠處理空間維度的非因果性.文獻(xiàn)[79–80]得到了具有狀態(tài)常時(shí)滯的線(xiàn)性時(shí)滯系統(tǒng)的廣義有界實(shí)引理(有界實(shí)引理即Bounded real lemma是KYP引理針對(duì)H∞性能的特定形式).該引理能夠處理時(shí)滯系統(tǒng)的廣義H∞性能,并結(jié)合了時(shí)滯分割思想以降低保守性,被進(jìn)一步用于求解時(shí)滯系統(tǒng)的廣義H∞濾波問(wèn)題[79?80]和主動(dòng)懸架系統(tǒng)具有時(shí)滯輸入的控制器設(shè)計(jì)問(wèn)題[116].

        在引理的變形方面,Xiong等討論了有限頻域負(fù)虛性質(zhì)與有限頻域正實(shí)性質(zhì)之間的關(guān)系,并給出了分析有限頻域負(fù)虛性質(zhì)的充要條件[117].針對(duì)單輸入單輸出線(xiàn)性定常系統(tǒng),Hoang等得到了一種特殊形式的廣義KYP引理[118?119].由于新結(jié)果不包含Lyapuanov矩陣,所以特別適合于高階系統(tǒng)的分析和綜合.針對(duì)具有實(shí)狀態(tài)空間矩陣的系統(tǒng), Pipeleers等研究了廣義KYP引理的簡(jiǎn)化問(wèn)題,得到了限定Lyapuanov為實(shí)對(duì)稱(chēng)矩陣不會(huì)帶來(lái)保守性的結(jié)論[120].Pipeleers等進(jìn)一步將廣義KYP引理推廣到多頻率區(qū)間的情形[121].注意式(5)中的矩陣Θ不含任何頻率信息,Graham等修訂了連續(xù)系統(tǒng)的廣義KYP引理[122?123].新形式下的廣義KYP引理允許Θ仿射依賴(lài)于頻率變量,對(duì)于某些特殊的問(wèn)題很有益.Tanaka等從KYP引理的對(duì)稱(chēng)性角度重新考察了S-procedure的無(wú)損性,給出了一種基于Mutual losslessness概念的系統(tǒng)適定性分析方法,為認(rèn)識(shí)和理解多類(lèi)系統(tǒng)的KYP引理結(jié)果提供了一種新的統(tǒng)一工具[124].

        廣義KYP引理的時(shí)域意義也受到了人們的關(guān)注.針對(duì)廣義KYP引理中的頻域不等式,Iwasaki等從信號(hào)角度出發(fā)推導(dǎo)出了等價(jià)的時(shí)域不等式條件,為從時(shí)域角度研究系統(tǒng)的有限頻域性能提供了一種可能[125].特別地,他們得到式(5)在低頻情形的等價(jià)時(shí)域關(guān)系為下述不等式

        3.7 廣義KYP引理的應(yīng)用

        保證有限頻域輸入輸出性能的反饋控制方法最重要和最直接的應(yīng)用領(lǐng)域就是振動(dòng)抑制.這種控制器設(shè)計(jì)方法對(duì)于具有有限帶寬的擾動(dòng)和振動(dòng)的抑制效果尤為突出.根據(jù)地震產(chǎn)生的破壞力主要集中在0.3~8Hz頻帶內(nèi)的事實(shí),Chen等將廣義KYP引理應(yīng)用于建筑物的振動(dòng)控制,直接優(yōu)化狀態(tài)反饋控制器使閉環(huán)系統(tǒng)在0.3~8Hz頻率范圍的廣義H∞擾動(dòng)抑制水平盡可能小,從而獲得了能夠更好抑制建筑物震動(dòng)的控制器[2].在為懸架系統(tǒng)和座椅系統(tǒng)設(shè)計(jì)主動(dòng)控制器時(shí),針對(duì)人體敏感頻率為4~8Hz的事實(shí),Sun等將減小擾動(dòng)對(duì)平臺(tái)加速度輸出影響的目標(biāo)轉(zhuǎn)化為廣義H∞性能約束,利用廣義KYP引理有效地提升了控制器對(duì)該段頻率擾動(dòng)的隔離能力,獲得不錯(cuò)的控制效果[10,116,129].Du等觀(guān)察到機(jī)械磁盤(pán)磁頭定位誤差信號(hào)在8kHz和10kHz周?chē)哂蟹浅?qiáng)烈的窄帶頻率成分.根據(jù)這一事實(shí),他們利用廣義KYP引理對(duì)這兩個(gè)頻率帶的系統(tǒng)敏感函數(shù)進(jìn)行優(yōu)化,實(shí)驗(yàn)結(jié)果驗(yàn)證了所提設(shè)計(jì)方法比傳統(tǒng)的頻率加權(quán)方法更加簡(jiǎn)單有效[1].應(yīng)用文獻(xiàn)[60]提出的基于廣義KYP引理的控制器設(shè)計(jì)方法,Li等研究了海上浮式風(fēng)機(jī)的主動(dòng)結(jié)構(gòu)控制問(wèn)題,通過(guò)分析風(fēng)機(jī)的振動(dòng)模態(tài)信息并引入額外的有限頻域約束,獲得了控制器增益與風(fēng)機(jī)抗擾性能(抵抗海浪擾動(dòng))的一種折衷設(shè)計(jì),減小了風(fēng)機(jī)在常規(guī)工作模式下的結(jié)構(gòu)振動(dòng)及其承受的載荷[130].

        廣義KYP引理也適合于處理具有某種周期特性的控制問(wèn)題.文獻(xiàn)[3,74]和[75]結(jié)合回路成形技術(shù)和廣義KYP引理分別研究了光盤(pán)驅(qū)動(dòng)器的磁道伺服跟蹤控制問(wèn)題和電磁鑄模機(jī)的控制問(wèn)題,給出了相應(yīng)控制器的凸優(yōu)化設(shè)計(jì)方法.Pipeleers等研究了具有周期輸入信號(hào)的最優(yōu)前饋控制問(wèn)題和重復(fù)控制中的最優(yōu)控制問(wèn)題,應(yīng)用廣義KYP引理將設(shè)計(jì)條件轉(zhuǎn)化為凸優(yōu)化問(wèn)題[5,8].利用自行車(chē)踏板周期運(yùn)動(dòng)特性,文獻(xiàn)[6]應(yīng)用廣義KYP引理為助力裝置設(shè)計(jì)重復(fù)控制器以提高能量利用效率.

        除了系統(tǒng)和控制領(lǐng)域,廣義KYP引理也是處理如通信、信號(hào)處理等其他領(lǐng)域中相關(guān)有限頻域分析和綜合問(wèn)題的一種重要工具.在經(jīng)典文獻(xiàn)[43]中, Iwasaki等將數(shù)字濾波器設(shè)計(jì)列為廣義KYP引理的一個(gè)典型的應(yīng)用領(lǐng)域,并給出了相應(yīng)的有限脈沖響應(yīng)(Finite impulse response,FIR)數(shù)字濾波器設(shè)計(jì)例子.Nagahara等考察了Delta-sigma(D-S)調(diào)制器中噪聲傳遞函數(shù)的整形問(wèn)題,獲得了FIR回路濾波器存在的充要條件[131].需要指出的是,對(duì)于FIR濾波器,現(xiàn)成的廣義KYP引理不需要任何變換就直接給出了濾波器參數(shù)的線(xiàn)性矩陣不等式條件.對(duì)于更一般的IIR濾波器,直接應(yīng)用廣義KYP引理只能獲得非線(xiàn)性的矩陣不等式.鑒于此,基于廣義KYP引理,Li等結(jié)合矩陣分離技術(shù)和上界約束技術(shù)提出了一種迭代算法來(lái)設(shè)計(jì)IIR數(shù)字濾波器,每一步只需求解一個(gè)凸優(yōu)化問(wèn)題[95].該迭代方法被進(jìn)一步用于求解D-S調(diào)制器中具有IIR回路濾波器的噪聲傳遞函數(shù)整形問(wèn)題[132?133].

        廣義KYP引理的另外一個(gè)應(yīng)用方向是復(fù)雜系統(tǒng)的分析與設(shè)計(jì).針對(duì)線(xiàn)性時(shí)滯系統(tǒng)和二維系統(tǒng),文獻(xiàn)[134–135]提出了基于頻率分割技術(shù)的穩(wěn)定性分析方法,采用依賴(lài)于頻率的分段常值Lyapunov函數(shù)獲得了這些復(fù)雜系統(tǒng)穩(wěn)定性的充要條件,并進(jìn)一步應(yīng)用廣義KYP引理將分析條件轉(zhuǎn)化為等價(jià)的線(xiàn)性矩陣不等式條件.頻率分割方法不僅能降低已有充分條件的保守性,同時(shí)與已有的充要條件相比,易于進(jìn)一步擴(kuò)展到其他系統(tǒng)綜合問(wèn)題.

        4 廣義KYP引理的一些注記

        4.1 “水床效應(yīng)”

        實(shí)際控制系統(tǒng)的性能不可能無(wú)限制地提高.控制系統(tǒng)的性能極限既取決于系統(tǒng)各環(huán)節(jié)的物理約束(如執(zhí)行器的輸出能力、控制器的計(jì)算速度等),同時(shí)也取決于被控對(duì)象自身的特點(diǎn).特別地,由Bode靈敏度積分不等式可知[9],控制系統(tǒng)的設(shè)計(jì)極限直接依賴(lài)于被控對(duì)象的開(kāi)環(huán)不穩(wěn)定零點(diǎn)和極點(diǎn).因此,如我們?cè)诒疚拈_(kāi)始提到的,一種控制方法在提高某些頻率范圍內(nèi)控制系統(tǒng)性能的同時(shí),有可能也伴隨著感興趣頻率范圍之外系統(tǒng)性能的退化.這就是控制系統(tǒng)設(shè)計(jì)中著名的“水床效應(yīng)”(Waterbed effect)[136].在用廣義KYP引理對(duì)系統(tǒng)的有限頻域性能進(jìn)行優(yōu)化時(shí),很容易出現(xiàn)這種現(xiàn)象.比如文獻(xiàn)[65]的圖3給出了一個(gè)汽車(chē)懸架主動(dòng)控制例子的閉環(huán)頻率響應(yīng)曲線(xiàn),可以看出廣義H∞控制器能明顯地壓低4~8Hz頻率范圍的閉環(huán)系統(tǒng)幅值,同時(shí)相應(yīng)閉環(huán)系統(tǒng)在全頻域的幅頻響應(yīng)峰值卻高于一般H∞控制器下的情形.“水床效應(yīng)”的存在意味著在應(yīng)用廣義KYP引理時(shí)需要注意以下兩點(diǎn):

        1)實(shí)際問(wèn)題中很少只優(yōu)化單一的有限頻域性能指標(biāo),通常需要加入其他約束條件,以保證系統(tǒng)的其他性能滿(mǎn)足指定要求或至少不會(huì)太差.比如,為了獲得文獻(xiàn)[65]的圖3汽車(chē)懸架例子的廣義H∞控制器,除了一個(gè)4~8Hz范圍的廣義H∞性能指標(biāo),其設(shè)計(jì)條件還包括一個(gè)全頻域的標(biāo)準(zhǔn)H∞性能約束.另外一個(gè)考慮多重有限頻域指標(biāo)條件的典型例子是數(shù)字濾波器,需要分別針對(duì)通帶、阻帶和過(guò)渡帶的濾波器性能引入相應(yīng)的有限頻域性能約束條件[95].

        2)如何選取有限頻域性能指標(biāo)并構(gòu)建相應(yīng)的優(yōu)化問(wèn)題需要具體問(wèn)題具體分析.廣義KYP引理只是提供了一種處理有限頻域性能指標(biāo)的理論和工具,該結(jié)果本身并不能保證其求解的問(wèn)題一定有解,即不能保證問(wèn)題中所選取的性能指標(biāo)的合理性.在具體應(yīng)用時(shí),很可能需要反復(fù)修改指標(biāo)條件并重新求解才能找到有限頻域分析和設(shè)計(jì)問(wèn)題的合理描述,從而利用廣義KYP引理找到滿(mǎn)意的答案.

        上述兩點(diǎn)表明,控制系統(tǒng)設(shè)計(jì)的過(guò)程實(shí)質(zhì)上是在尋找各種指標(biāo)約束下令人滿(mǎn)意的折衷方法.除了廣義KYP引理,上述兩點(diǎn)事實(shí)上也是應(yīng)用其他有限頻域分析與設(shè)計(jì)方法需要注意的地方.

        4.2 從光滑到分段光滑

        盡管廣義KYP引理在形式和內(nèi)容上只是標(biāo)準(zhǔn)KYP引理向有限頻域性能指標(biāo)的擴(kuò)展,但是其應(yīng)用外延要超過(guò)標(biāo)準(zhǔn)KYP引理.與某些傳統(tǒng)的解決方案相比,基于廣義KYP引理的方法甚至?xí)猩顚佑^(guān)念上不同.針對(duì)模型降階問(wèn)題,為了增強(qiáng)降階模型在某個(gè)頻率范圍的逼近性能,傳統(tǒng)的方法如平衡截?cái)郲25,27]、H∞模型降階[26,137]等均采用頻率加權(quán)函數(shù)的方案.不管頻率加權(quán)函數(shù)如何選擇,其原始模型和降階模型主要是以頻率為變量的全局連續(xù)光滑的有限階有理函數(shù)模型.另一方面,對(duì)于第3.4節(jié)討論的廣義H∞模型降階問(wèn)題,其被逼近的原始模型并不要求滿(mǎn)足全局光滑特性.具體地說(shuō),假設(shè)頻率集合?由若干頻率子區(qū)間組成,即則由式(8)定義的廣義H∞誤差指標(biāo)可寫(xiě)為

        這里只要求Gi在每個(gè)頻率子區(qū)間內(nèi)是一個(gè)關(guān)于頻率的有理函數(shù)或多項(xiàng)式函數(shù).值得注意的是,式中的Gi和γi在不同頻率區(qū)間可以不同.換句話(huà)說(shuō),被逼近的原始模型G(s)=Gi(s),i=1,2,···,n可以是一個(gè)以頻率為變量的分段光滑函數(shù).這也是第3.4節(jié)的標(biāo)題使用了更一般的“模型逼近”而非“模型降階”的原因:近似模型Gr(s)的階次并不一定比原始模型G(s)的階次小.傳統(tǒng)的平衡截?cái)唷∞模型降階等模型降階方法并不適用于這類(lèi)逼近問(wèn)題.

        頻率加權(quán)函數(shù)本身就是一種濾波器,任何有限階次的濾波器都不可能提供理想的高通/低通/帶通/帶阻特性(通帶單位幅值、阻帶零幅值).以廣義H∞性能為例,其效果就像是經(jīng)過(guò)具有理想帶通特性的無(wú)限階頻率函數(shù)加權(quán)的標(biāo)準(zhǔn)H∞性能.廣義KYP引理可以將這種具有無(wú)限階頻率加權(quán)函數(shù)的系統(tǒng)性能轉(zhuǎn)化為等價(jià)的線(xiàn)性矩陣不等式.特別地,廣義KYP引理甚至可以用于濾波器(頻率加權(quán)函數(shù))的設(shè)計(jì)[95],而標(biāo)準(zhǔn)KYP引理對(duì)此卻無(wú)能為力.這種關(guān)于廣義KYP引理與頻率加權(quán)函數(shù)之間區(qū)別的思考也可以延伸至其他有限頻域分析與綜合問(wèn)題.

        在模型逼近問(wèn)題中,待求目標(biāo)是有限階的連續(xù)光滑數(shù)學(xué)模型.就一些問(wèn)題而言,盡管人們知道存在且期望找到某些連續(xù)光滑的參數(shù)依賴(lài)函數(shù),但是直接求解這類(lèi)問(wèn)題可能很困難.常用方法是將待求函數(shù)限定為某類(lèi)特別簡(jiǎn)單的函數(shù)(比如常值函數(shù)),從而將問(wèn)題化簡(jiǎn).但這種方法往往僅能得到充分條件.為了減小甚至克服這種方法的保守性,可以采用分段光滑的特殊函數(shù)將原問(wèn)題化簡(jiǎn)為若干子問(wèn)題.如果分段內(nèi)的子問(wèn)題容易求解,原問(wèn)題就相應(yīng)地得以解決.廣義KYP引理提供了尋找分段光滑函數(shù)特別是分段頻率依賴(lài)函數(shù)非常有用的工具.正是基于該思路,文獻(xiàn)[134–135]提出了使用分段常值矩陣逼近未知的連續(xù)光滑Lyapunov矩陣的想法,進(jìn)而利用廣義KYP引理將復(fù)雜的原問(wèn)題簡(jiǎn)化為一系列簡(jiǎn)單的小問(wèn)題.廣義KYP引理處理非光滑分析問(wèn)題的能力對(duì)于求解其他復(fù)雜的系統(tǒng)和控制問(wèn)題非常有用.

        4.3 有限頻域vs全頻域

        前文提到,目前在獲取基于廣義KYP引理的系統(tǒng)綜合結(jié)果時(shí)所采用的思路大多都來(lái)自于Iwasaki等較早提出的反饋控制器實(shí)現(xiàn)方法[54?55].基本步驟是利用Finsler引理或投影定理引入額外的松弛矩陣,從而解除系統(tǒng)矩陣與Lyapunov矩陣的乘積,進(jìn)而通過(guò)選取具有合適結(jié)構(gòu)的松弛矩陣實(shí)現(xiàn)控制器或?yàn)V波器存在條件的線(xiàn)性化.盡管他們已經(jīng)采用一些分析手段使選取的松弛矩陣盡量“合理”,但是一般情況下,松弛矩陣的結(jié)構(gòu)特殊化必然會(huì)減小所求問(wèn)題的解空間,從而導(dǎo)致系統(tǒng)綜合結(jié)果具有較大的保守性,很難使系統(tǒng)性能達(dá)到最優(yōu).雖然沒(méi)有統(tǒng)一的標(biāo)準(zhǔn)去衡量不同取值的優(yōu)劣,但是取值合理與否需要考慮一個(gè)最基本的原則:當(dāng)標(biāo)準(zhǔn)KYP引理適用于條件相同或條件更強(qiáng)的問(wèn)題時(shí),以?xún)?yōu)化的有限頻域性能指標(biāo)為準(zhǔn),基于廣義KYP引理的設(shè)計(jì)結(jié)果不能差于基于標(biāo)準(zhǔn)KYP引理的情形.如果該基本要求得不到滿(mǎn)足,即廣義KYP引理產(chǎn)生的結(jié)果甚至比標(biāo)準(zhǔn)KYP引理更差,那么人們自然會(huì)懷疑在該問(wèn)題中使用廣義KYP引理的合理性.需要指出的是,這一點(diǎn)似乎并未引起研究人員的足夠重視.使用或研究廣義KYP引理的不少文獻(xiàn)在對(duì)不同方法進(jìn)行數(shù)值比較時(shí)未設(shè)置全頻域方法的對(duì)照組,導(dǎo)致數(shù)值結(jié)果缺乏說(shuō)服力和可靠性.

        5 展望與結(jié)語(yǔ)

        綜上所述,廣義KYP引理是近年來(lái)魯棒控制領(lǐng)域最為重要和令人激動(dòng)的發(fā)現(xiàn)之一.由于在理論方面的創(chuàng)新性、重要性和易用性,就在發(fā)表的次年, Iwasaki等的論文即獲得IEEE控制系統(tǒng)協(xié)會(huì)頒發(fā)的“最佳論文獎(jiǎng)”,基于廣義KYP引理的有限頻域分析與設(shè)計(jì)研究也成為近年來(lái)的研究熱點(diǎn),受到許多研究人員的關(guān)注.通過(guò)第3、4節(jié)對(duì)現(xiàn)有研究成果的梳理,可以看出廣義KYP引理的研究范圍不僅包括應(yīng)用傳統(tǒng)控制理論只能得到非常保守結(jié)果的老問(wèn)題(比如應(yīng)用魯棒控制理論分析時(shí)滯系統(tǒng)和多維系統(tǒng)穩(wěn)定性[134?138]),也有傳統(tǒng)控制理論無(wú)法處理而由廣義KYP引理衍生出的新方向(比如數(shù)字濾波器的直接設(shè)計(jì)[43,95]),同時(shí)其學(xué)科范疇也不僅限于系統(tǒng)和控制理論.盡管如此,現(xiàn)有結(jié)果仍有一些不足,或保守性太大,或缺乏充分的工程解釋.許多與廣義KYP引理有關(guān)的關(guān)鍵問(wèn)題亟待解決或值得進(jìn)一步研究.這些問(wèn)題包括但不限于:

        如何選擇或優(yōu)化松弛矩陣?在第4.3節(jié)我們指出松弛矩陣的結(jié)構(gòu)化處理使現(xiàn)有大多數(shù)基于廣義KYP引理的系統(tǒng)綜合結(jié)果具有一定保守性,而該問(wèn)題之所以關(guān)鍵是因?yàn)樗沙诰仃嚨娜≈抵苯雨P(guān)系到使用廣義KYP引理的合理性.如何合理地選取松弛矩陣是應(yīng)用廣義KYP引理進(jìn)行系統(tǒng)綜合的一個(gè)難題.注意到松弛矩陣本身是魯棒控制理論中將經(jīng)典結(jié)果如標(biāo)準(zhǔn)KYP引理變形為參數(shù)依賴(lài)形式的一種手段[80,138].受此啟發(fā),滿(mǎn)足第4.3節(jié)所提基本要求的一個(gè)選取方案就是直接采用與標(biāo)準(zhǔn)KYP引理情形一樣的松弛矩陣.盡管這種取法不是最優(yōu)的,但是非常簡(jiǎn)單易行.一個(gè)更好的途徑是另外構(gòu)造算法對(duì)這些松弛矩陣進(jìn)行優(yōu)化.目前沿著該思路的大多數(shù)研究結(jié)果都是基于線(xiàn)性矩陣不等式的啟發(fā)式迭代算法[60,65,85,95,97],難以進(jìn)行最優(yōu)性分析.如何利用數(shù)學(xué)上的先進(jìn)優(yōu)化理論或技術(shù)構(gòu)造松弛矩陣優(yōu)化算法并進(jìn)行最優(yōu)性分析是值得研究的課題.

        如何得到有限頻域性能指標(biāo)的充要條件?文獻(xiàn)[43]給出的廣義KYP引理建立了常規(guī)一維線(xiàn)性系統(tǒng)的有限頻域性能指標(biāo)與線(xiàn)性矩陣不等式之間的等價(jià)關(guān)系.遺憾的是,文獻(xiàn)[67,98]給出的二維廣義KYP引理僅僅提供了二維系統(tǒng)有限頻域性能指標(biāo)的線(xiàn)性矩陣不等式充分條件.同樣的問(wèn)題也存在于文獻(xiàn)[115]中線(xiàn)性時(shí)間–空間模型的廣義KYP引理以及文獻(xiàn)[79,81]中線(xiàn)性時(shí)滯系統(tǒng)的有限頻域有界實(shí)引理.目前為止,關(guān)于這些比一般線(xiàn)性系統(tǒng)更加復(fù)雜的動(dòng)態(tài)系統(tǒng)的有限頻域性能指標(biāo),還未見(jiàn)易于處理的廣義KYP引理充要條件報(bào)道.如何得到復(fù)雜動(dòng)態(tài)系統(tǒng)保守性更低或無(wú)保守性的廣義KYP引理是重要且具有挑戰(zhàn)性的課題(即便考察全頻域性能指標(biāo),如何獲得相應(yīng)的充要條件也是開(kāi)放問(wèn)題).在該問(wèn)題上取得的基礎(chǔ)理論成果不僅能豐富廣義KYP引理的內(nèi)容,也將促進(jìn)相關(guān)領(lǐng)域的發(fā)展.

        如何更好地解釋非線(xiàn)性/時(shí)變系統(tǒng)的有限頻域性能指標(biāo)?注意前面介紹的大多數(shù)結(jié)果的研究對(duì)象都是線(xiàn)性時(shí)不變系統(tǒng)(盡管可能是多維系統(tǒng)或含有定常時(shí)滯等).線(xiàn)性時(shí)不變系統(tǒng)可以用傳遞函數(shù)進(jìn)行描述,其頻域意義顯而易見(jiàn),進(jìn)而能夠非常直觀(guān)地理解由式(5)定義的有限頻域性能指標(biāo)的系統(tǒng)意義.由于一般情況下傳遞函數(shù)并不適用于處理非線(xiàn)性/時(shí)變系統(tǒng),所以就不能在非線(xiàn)性/時(shí)變系統(tǒng)中直接套用類(lèi)似式(5)的有限頻域描述.前面指出,Iwasaki等在文獻(xiàn)[125]中推導(dǎo)出了頻域不等式(5)的時(shí)域等價(jià)關(guān)系(參見(jiàn)式(9)和(10))并從信號(hào)角度提供了式(10)一種直觀(guān)的物理解釋(系統(tǒng)狀態(tài)變化“快慢”).對(duì)于線(xiàn)性時(shí)不變系統(tǒng),狀態(tài)變化的“快慢”可以簡(jiǎn)單地認(rèn)為由輸入信號(hào)變化的“快慢”決定—對(duì)于三角函數(shù)形式的輸入信號(hào),當(dāng)系統(tǒng)穩(wěn)定時(shí),狀態(tài)的變化頻率與輸入的變化頻率相同.對(duì)于非線(xiàn)性/時(shí)變系統(tǒng),狀態(tài)的變化和輸入的變化之間不再有這種簡(jiǎn)單的決定關(guān)系.因此,就非線(xiàn)性/時(shí)變系統(tǒng)而言,很難直觀(guān)地回答究竟怎樣的輸入信號(hào)才能使式(10)成立.鑒于此,盡管已有不少文獻(xiàn)直接使用與式(10)類(lèi)似的時(shí)域不等式進(jìn)行非線(xiàn)性/時(shí)變系統(tǒng)的有限頻域分析與設(shè)計(jì),但是所得結(jié)果的物理意義并不明確.未來(lái)的工作有必要進(jìn)一步理清有限頻域性能指標(biāo)在非線(xiàn)性/時(shí)變系統(tǒng)中的定義、使用和解釋等一系列基礎(chǔ)問(wèn)題.

        如何擴(kuò)展廣義KYP引理的應(yīng)用外延?開(kāi)發(fā)一項(xiàng)工具的終極目標(biāo)都是將其用于解決所面臨的問(wèn)題.拓展廣義KYP引理的應(yīng)用外延是一個(gè)寬泛和開(kāi)放的提問(wèn),全面地回答該問(wèn)題超過(guò)了筆者知識(shí)所能及的范圍.下面簡(jiǎn)單地從兩個(gè)方面進(jìn)行說(shuō)明.1)正如我們?cè)诘?.2節(jié)指出的,廣義KYP引理事實(shí)上提供了一種非光滑分析的工具.基于這種理解,有可能將廣義KYP引理用于處理其他更加復(fù)雜的理論問(wèn)題,此為其在理論方面的作用.這些復(fù)雜的理論問(wèn)題既有可能來(lái)自于系統(tǒng)和控制領(lǐng)域某些復(fù)雜系統(tǒng)的分析與設(shè)計(jì)問(wèn)題(比如時(shí)滯無(wú)關(guān)穩(wěn)定性分析和鎮(zhèn)定問(wèn)題[134?135]),也有可能來(lái)自于其他工程學(xué)科中的理論問(wèn)題(比如信號(hào)處理中D-S調(diào)制器的優(yōu)化設(shè)計(jì)問(wèn)題[131,133]),還有可能是應(yīng)用數(shù)學(xué)中的優(yōu)化問(wèn)題(比如偏應(yīng)用數(shù)學(xué)的原子分解的半定規(guī)劃方法[139])等.2)另一方面,我們?cè)诘?.1節(jié)指出,廣義KYP引理僅僅是提供了一種解決問(wèn)題的工具.如果不考慮問(wèn)題的具體工程背景,就不清楚也很難保證在工程問(wèn)題中使用廣義KYP引理的合理性.盡管已有研究成果很好地展現(xiàn)了廣義KYP引理在解決一些實(shí)際有限頻域問(wèn)題方面的良好效果,但是如何將更多復(fù)雜的工程實(shí)際問(wèn)題轉(zhuǎn)化為有限頻域分析與設(shè)計(jì)問(wèn)題并最大限度地發(fā)揮廣義KYP引理的實(shí)用性值得深入研究.這不僅僅是理論研究人員的責(zé)任,也需要工程技術(shù)人員的參與,從而最終為工程界提供實(shí)用且易于理解接受的控制系統(tǒng)分析和設(shè)計(jì)方法.

        1 Du C L,Xie L H,Guo G X,Teoh J N.A generalized KYP lemma based approach for disturbance rejection in data storage systems.Automatica,2007,43(12):2112?2118

        2 Chen Y,Zhang W L,Gao H J.Finite frequency H∞control for building under earthquake excitation.Mechatronics,2010,20(1):128?142

        3 Lim J S,Ryoo J R,Lee Y I,Son S Y.Design of a fixedorder controller for the track-following control of optical disc drives.IEEE Transactions on Control Systems Technology,2011,20(1):205?213

        4 Paszke W,Rogers E,Galkowski K.On the design of ILC schemes for finite frequency range tracking specifications. In:Proceedings of the 49th IEEE Conference on Decision and Control.Atlanta,GA:IEEE,2010.6979?6984

        5 Pipeleers G,Swevers J.Optimal feedforward controller design for periodic inputs.International Journal of Control, 2010,83(5):1044?1053

        6 Hatada K,Hirata K.Energy-efficient power assist control for periodic motions.In:Proceedings of the SICE Annual Conference 2010.Taipei,China:IEEE,2010.2004?2009

        7 Pipeleers G,Demeulenaere B,De Schutter J,Swevers J. Generalised repetitive control:relaxing the period-delaybased structure.IET Control Theory and Applications, 2009,3(11):1528?1536

        8 Pipeleers G,Demeulenaere B,Al-Bender F,De Schutter J,Swevers J.Optimal performance tradeoffs in repetitive control:experimental validation on an active air bearing setup.IEEE Transactions on Control Systems Technology, 2009,17(4):970?989

        9 Zhou K M,Doyle J C,Glover K.Robust and Optimal Control.New Jersey:Prentice-Hall,1996.

        10 Sun W C,Gao H J,Kaynak O.Finite frequency H∞control for vehicle active suspension systems.IEEE Transactions on Control Systems Technology,2011,19(2): 416?422

        11 Sun Wei-Chao.Active Vibration Control for Vehicle Suspension Systems[Ph.D.dissertation],Harbin Institute of Technology,China,2013 (孫維超.汽車(chē)懸架系統(tǒng)的主動(dòng)振動(dòng)控制[博士學(xué)位論文],哈爾濱工業(yè)大學(xué),中國(guó),2013)

        12 Costa-Castello R,Wang D W,Grino R.A passive repetitive controller for discrete-time finite-frequency positivereal systems.IEEE Transactions on Automatic Control, 2009,54(4):800?804

        13 Wongsura S,Liu L,Hara S.Conditions for mixed small gain and positive real property for LTI systems.In:Proceedings of the SICE Annual Conference 2010.Taipei, China:IEEE,2010.625?629

        14 Yang H J,Xia Y Q,Shi P,Fu M Y.Stability analysis for high frequency networked control systems.IEEE Transactions on Automatic Control,2012,57(10):2694?2700

        15 Iwasaki T,Hara S,Yamauchi H.Dynamical system design from a control perspective:finite frequency positiverealness approach.IEEE Transactions on Automatic Control,2003,48(8):1337?1354

        16 Forbs J R.Extensions of Input-Output Stability Theory and the Control of Aerospace Systems[Ph.D.dissertation], University of Toronto,Canada,2011

        17 Wu S P,Boyd S,Vandenberghe L.FIR filter design via spectral factorization and convex optimization.Applied and Computational Control,Signals,and Circuits.New York:Springer,1999.215?245

        18 Lei C U,Wong N.IIR approximation of FIR filters via discrete-time hybrid-domain vector fitting.IEEE Signal Processing Letters,2009,16(6):533?537

        19 Apkarian P,Noll D.Nonsmooth optimization for multiband frequency domain control design.Automatica,2007, 43(4):724?731

        21 Pei Run,Song Shen-Min.Principles of Automatic Control. Harbin:Harbin Institute of Technology Press,2006. (裴潤(rùn),宋申民.自動(dòng)控制原理.哈爾濱:哈爾濱工業(yè)大學(xué)出版社, 2006.)

        22 Zheng Da-Zhong.Linear System Theory.Beijing:Tsinghua University Press,2002. (鄭大鐘.線(xiàn)性系統(tǒng)理論.北京:清華大學(xué)出版社,2002.)

        23 Anderson B D O,Moore J B.Optimal Control:Linear Quadratic Methods.Englewood Cliffs,New Jersey: Prentice-Hall,1989.

        24 Enns D F.Model reduction with balanced realizations:an error bound and a frequency weighted generalization.In: Proceedings of the 23rd Conference on Decision and Control.Las Vegas,NV,USA:IEEE,1984.127?132

        25 Anderson B D O.Weighted Hankel-norm approximation: calculation of bounds.Systems&Control Letters,1986, 7(4):247?255

        26 Chow Y L,Hu Y B,Li X W,Kominek A,Lam J.Mixed additive/multiplicative H∞model reduction.Journal of Dynamic Systems,Measurement,and Control,2013,135(5): 051005,DOI:10.1115/1.4024111

        27 Zhou K M.Frequency-weighted L∞norm and optimal Hankel norm model reduction.IEEE Transactions on Automatic Control,1995,40(10):1687?1699

        28 Luo H,Lu W S,Antoniou A.A weighted balanced approximation for 2-D discrete systems and its application to model reduction.IEEE Transactions on Circuits and Systems— I:Fundamental Theory and Applications,1995, 42(8):419?429

        29 Wang G,Sreeram V,Liu W Q.A new frequencyweighted balanced truncation method and an error bound. IEEE Transactions on Automatic Control,1999,44(9): 1734?1737

        30 Ghafoor A,Wang J,Sreeram V.Frequency-weighted model reduction method with error bounds for 2-D separable denominator discrete systems.In:Proceedings of the 2005 IEEE International Symposium on,Mediterrean Conference on Control and Automation,Intelligent Control.Limassol,Cyprus:IEEE,2005.525?530

        31 Ghafoor A,Sreera V,Treasure R.Frequency weighted model reduction technique retaining Hankel singular values.Asian Journal of Control,2007,9(1):50?56

        32 Ghafoor A,Sreeram V.A survey/review of frequencyweighted balanced model reduction techniques.Journal of Dynamic Systems,Measurement,and Control,2008, 130(6):758?767

        33 Liu Y,Anderson B D O.Frequency weighted controller reduction methods and loop transfer recovery.Automatica, 1990,26(3):487?497

        34 Houlis P,Sreeram V.A parametrized controller reduction technique via a new frequency weighted model reduction formulation.IEEE Transactions on Automatic Control, 2009,54(5):1087?1093

        35 Gawronski W,Juang J N.Model reduction in limited time and frequency intervals.International Journal of Systems Science,1990,21(2):349?376

        36 Rotea M A.The generalized H2control problem.Automatica,1993,29(2):373?385

        37 Li X W,Gao H J.A delay-dependent approach to robust generalized H2filtering for uncertain continuous-time systems with interval delay.Signal Processing,2011,91(10): 2371?2378

        38 Gugercin S,Antoulas A C.A survey of model reduction by balanced truncation and some new results.International Journal of Control,2004,77(8):748?766

        39 Ghafoor A,Sreeram V.Model reduction via limited frequency interval gramians.IEEE Transactions on Circuits and Systems—I:Regular Papers,2008,55(9):2806?2812

        40 Sahlan S,Ghafoor A,Sreeram V.A new method for the model reduction technique via a limited frequency interval impulse response gramian.Mathematical and Computer Modelling,2012,55(3?4):1034?1040

        41 Petersson D,Lfberg J.ModelReduction Using a Frequency-Limited H2-Cost,Technical Report LiTH-ISYR-3045,Division of Automatic Control,Linkpings University,Sweden,2012.

        42 Iwasaki T,Meinsma G,Fu M Y.Generalized S-procedure and finite frequency KYP lemma.Mathematical Problems in Engineering,2000,6(2?3):305?320

        43 Iwasaki T,Hara S.Generalized KYP lemma:unified frequency domain inequalities with design applications.IEEE Transactions on Automatic Control,2005,50(1):41?59

        44 Rantzer A.On the Kalman-Yakubovich-Popov lemma. Systems&Control Letters,1996,28(1):7?10

        45 Iwasaki T,Hara S.Generalization of Kalman-Yakubovic-Popov lemma for restricted frequency inequalities.In:Proceedings of the 2003 American Control Conference.Denver,Colorado,USA:IEEE,2003.3828?3833

        46 Nesterov Y,Nemirovskii A.Interior-Point Polynomial Algorithms in Convex Programming.Philadelphia,PA: SIAM,1994.

        47 Boyd S,El Ghaoui L,Feron E,Balakrishnan V.Linear Matrix Inequalities in System and Control Theory.Philadelphia,PA:SIAM,1994.

        48 Gao Hui-Jun.Analysis and Synthesis of Uncertain Dynamic Systems Based on Parameter-Dependent Lyapunov Function[Ph.D.dissertation],Harbin Institute of Technology,China,2005 (高會(huì)軍.基于參數(shù)依賴(lài)Lyapunov函數(shù)的不確定動(dòng)態(tài)系統(tǒng)的分析與綜合[博士學(xué)位論文],哈爾濱工業(yè)大學(xué),中國(guó),2005)

        49 Yu Li.Robust Control-Linear Matrix Inequality Method. Beijing:Tsinghua University Press,2002. (俞立.魯棒控制–線(xiàn)性矩陣不等式處理方法.北京:清華大學(xué)出版社,2002.)

        50 Toh K C,Todd M J,TtncR H.SDPT3— a matlab software package for semidefinite programming,version 1.3.Optimization Methods and Software,1999,11(1?4): 545?581

        51 Sturm J F.Using SeDuMi 1.02,a matlab toolbox for optimization over symmetric cones.Optimization Methods and Software,1999,11(1?4):625?653

        52 Skelton R E,Iwasaki T,Grigoriadis K M.A Unified Algebraic Approach to Linear Control Design.London and Bristol,PA:Taylor&Francis,1998.

        53 Hara S,Iwasaki T.From generalized KYP lemma to engineering applications.In:Proceedings of the 42nd IEEE Conference on Decision and Control.Maui,Hawaii,USA: IEEE,2003.792?797

        54 Iwasaki T,Hara S.Robust control synthesis with general frequency domain specifications:static gain feedback case. In:Proceedings of the 2004 American Control Conference. Boston,MA:IEEE,2004.4613?4618

        55 Iwasaki T,Hara S.Feedback control synthesis of multiple frequency domain specifications via generalized KYP lemma.International Journal of Robust&Nonlinear Control,2007,17(5?6):415?434

        56 Hara S,Iwasaki T.Sum-of-squares decomposition via generalized KYP lemma.IEEE Transactions on Automatic Control,2009,54(5):1025?1029

        57 Hara S,Iwasaki T,Shiokata D.Robust PID control using generalized KYP synthesis:direct open-loop shaping in multiple frequency ranges.IEEE Control Systems Magazine,2006,26(1):80?91

        58 Shiokata D,Hara S,Iwasaki T.From Nyquist/Bode to GKYP design:design algorithms with CACSD tools.In: Proceedings of the SICE 2004 Annual Conference.Sapporo:SICE,2004.1780?1785

        59 El Ghaoui L,Oustry F,AitRami M.A cone complementarity linearization algorithm for static output-feedback and related problems.IEEE Transactions on Automatic Control,1997,42(8):1171?1176

        60 Li X W,Gao H J.A heuristic approach to static outputfeedback controller synthesis with restricted frequencydomain specifications.IEEE Transactions on Automatic Control,2014,59(4):1008?1014

        61 Shu Z,Lam J.An augmented system approach to static output-feedback stabilization with H∞performance for continuous-time plants.International Journal of Robust& Nonlinear Control,2009,19(7):768?785

        62 Peaucelle D,Arzelier D.An efficient numerical solution for H2static output feedback synthesis.In:Proceeding of the 2001 European Control Conference.Porto,Portugal: IEEE,2001.3800?3805

        63 Agulhari C M,Oliveira R C L F,Peres P L D.LMI relaxations for reduced-order robust H∞control of continuoustime uncertain linear systems.IEEE Transactions on Automatic Control,2012,57(6):1532?1537

        64 Li X W,Yin S,Gao H J,Kaynak O.Robust static outputfeedback control for uncertain linear discrete-time systems via the generalized KYP lemma.In:Proceedings of the 19th IFAC World Congress.Cape Town,South Africa: IFAC,2014.7430?7435

        65 Li X W,Gao H J.Robust frequency-domain constrained feedback design via a two-stage heuristic approach.IEEE Transactions on Cybernetics,2015,45(10):2065?2075

        66 Li X W,Gao H J.Generalized Kalman-Yakubovich-Popov lemma for 2-D FM LSS model and its application to finite frequency positive real control.In:Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference.Orlando,FL:IEEE,2011.6991?6996

        67 Li X W,Gao H J,Wang C H.Generalized Kalman-Yakubovich-Popovlemmafor2-D FM LSS model. IEEE Transactions on Automatic Control,2012,57(12): 3090?3103

        68 Hao Y Q,Duan Z S,Huang D.Structured controller synthesis with restricted frequency domain specifications. In:Proceedings of the 34th Chinese Control Conference. Hangzhou,China:IEEE,2015.2895?2990

        69 Hao Y Q,Duan Z S.Static output-feedback controller synthesis with restricted frequency domain specifications for time-delay systems.IET Control Theory and Applications, 2015,9(10):1608?1614

        70 ZhangXiao-Ni,YangGuang-Hong.Dynamicoutput feedback control synthesis with mixed frequency small gain specifications.Acta Automatica Sinica,2008,34(5): 551?557 (張曉妮,楊光紅.混合頻小增益動(dòng)態(tài)輸出反饋控制綜合.自動(dòng)化學(xué)報(bào),2008,34(5):551?557)

        71 Mei Ping,Zou Yun.Finite frequency positive realness analysis of singularly perturbed systems based on generalized KYP lemma approach.Control and Decision,2010,25(5): 711?720 (梅平,鄒云.基于廣義KYP引理方法的奇異攝動(dòng)系統(tǒng)有限頻段正實(shí)性能分析.控制與決策,2010,25(5):711?720)

        72 Dong Quan-Chao.Robust H∞Fault Estimation and Active Fault Tolerant Control for Linear Time-delay Systems [Ph.D.dissertation],Shandong University,China,2010 (董全超.線(xiàn)性時(shí)滯系統(tǒng)魯棒H∞故障估計(jì)與主動(dòng)容錯(cuò)控制[博士學(xué)位論文],山東大學(xué),中國(guó),2010)

        73 Li H,Peng L Y,Ju H H.A finite frequency domain approach to robust and parameter dependent PID controller design for LPV systems.In:Proceedings of the 30th Chinese Control Conference.Yantai,China:IEEE,2011. 3688?3694

        74 Lim J S,Ryoo J R,Lee Y I.Fixed-order controller design with frequency domain specifications.In:Proceedings of ICROS-SICE International Joint Conference 2009. Fukuoka,Japan:IEEE,2009.108?111

        75 Ishizaki T,Kashima K,Imura J,Katoh A,Morita H,Aihara K.Distributed parametermodeling and finite-frequency loop-shaping of electromagnetic molding machine.Control Engineering Practice,2013,21(12): 1735?1743

        76 Wang H,Yang G H.A finite frequency approach to filter design for uncertain discrete-time systems.International Journal of Adaptive Control&Signal Processing,2008, 22:533?550

        77 Zhang X N,Yang G H.Delay-dependent filtering for discrete-time systems with finite frequency small gain specifications.In:Proceedings of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference.Shanghai,China:IEEE,2009.4420?4425

        78 Gao H J,Li X W,Yu X H.Finite frequency approaches to H∞filtering for continuous-time state-delayed systems. In:Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference.Orlando, FL:IEEE,2011.2583?2588

        79 GaoH J,LiX W.H∞filteringfordiscrete-time state-delayed systems with finite frequency specifications. IEEE Transactions on Automatic Control,2011,56(12): 2935?2941

        80 Gao H J,Li X W.Robust Filtering for Uncertain Systems. Switzerland:Springer International Publishing,2014.

        81 Li Xian-Wei.Finite Frequency H∞Filtering Analysis and Synthesis of Time-Delay Systems[Master dissertation], Harbin Institute of Technology,China,2011 (李賢偉.時(shí)滯系統(tǒng)的有限頻域H∞濾波分析與綜合[碩士學(xué)位論文],哈爾濱工業(yè)大學(xué),中國(guó),2011)

        82 Li X W,Gao H J.Robust finite frequency H∞filtering for uncertain 2-D Roesser systems.Automatica,2012,48(6): 1163?1170

        83 Li X W,Gao H J,Karimi H R.Robust H∞filtering for 2-D FM systems:a finite frequency approach.In:Proceedings of the 51st IEEE Annual Conference on Decision and Control.Maui,Hawaii,USA:IEEE,2012.3526?3530

        84 Li X W,Gao H J.Robust finite frequency H∞filtering for uncertain 2-D systems:the FM model case.Automatica, 2013,49(8):2446?2452

        85 Li X W,Gao H J.Reduced-order generalized H∞filtering for linear discrete-time systems with application to channel equalization.IEEE Transactions on Signal Processing, 2014,62(13):3393?3402

        86 Ding Da-Wei.Study on Some Problems of Switched Linear Systems[Ph.D.dissertation],Northeastern University, China,2010 (丁大偉.線(xiàn)性切換系統(tǒng)的若干問(wèn)題研究[博士學(xué)位論文],東北大學(xué),中國(guó),2010)

        87 Ding D W,Yang G H.Fuzzy filter design for nonlinear systems in finite-frequency domain.IEEE Transactions on Fuzzy Systems,2010,18(5):935?945

        88 Wang H,Ju H H.Reliable H∞filtering for LPV systems with sensor faults in finite frequency domain.International Journal of Systems Science,2013,44(12):2310?2320

        89 Grigoriadis K M.Optimal H∞model reduction via linear matrix inequalities:continuous-and discrete-time cases. Systems&Control Letters,1995,26(5):321?333

        90 DuX,YangG H.H∞modelreductionoflinear continuous-time systems over finite-frequency interval. IET ControlTheory and Applications,2010,4(3): 499?508

        91 Du Xin.LMI-based Approaches to Model Reduction and Static Output Feedback Controller Design for Linear Systems[Ph.D.dissertation],Northeastern University,China, 2009 (杜鑫.基于LMI技術(shù)的線(xiàn)性系統(tǒng)模型降階與靜態(tài)輸出反饋控制器設(shè)計(jì)[博士學(xué)位論文],東北大學(xué),中國(guó),2009)

        92 Du X,Liu F W,Zhu X L,Chao W.Finite frequency approaches to H∞model reduction for continuous-time state delayed systems.In:Proceedings of the 24th Chinese Control and Decision Conference.Taiyuan,China:IEEE, 2012.470?475

        93 Du X,Liu F W,Zhu X L,Zheng M.H∞model reduction of discrete-time linear state delayed systems over finitefrequency ranges.In:Proceedings of the 24th Chinese Control and Decision Conference.Taiyuan,China:IEEE, 2012.954?959

        94 Li X W,Gao H J.A frequency-specific enhanced approach to transfer function approximation.In:Proceedings of the 23rd IEEE International Symposium on Industrial Electronics.Istanbul,Turkey:IEEE,2014.18?22

        95 Li X W,Gao H J.Min-max approximation of transfer functions with application to filter design.IEEE Transactions on Signal Processing,2015,63(1):31?40

        96 Li X W,Yin S,Gao H J.Passivity-preserving model reduction with finite frequency H∞approximation performance. Automatica,2014,50(9):2294?2303

        97 Li X W,Yu C B,Gao H J.Frequency-limited H∞model reduction for positive systems.IEEE Transactions on Automatic Control,2015,60(4):1093?1098

        98 Yang R,Xie L H,Zhang C S.Generalized two-dimensional Kalman-Yakubovich-Popov lemma for discrete Roesser model.IEEE Transactions on Circuits and Systems— I: Regular Papers,2008,55(10):3223?3233

        99 Li X W,Lam J,Cheung K C.Generalized H∞model reduction for stable two-dimensional discrete systems.Multidimensional Systems and Signal Processing,2016,27(2): 359?382

        100 Shen J,Lam J.Improved results on H∞model reduction for continuous-time linear systems over finite frequency ranges.Automatica,2015,5:79?84

        101 Ding D W,Du X,Li X.Finite-frequency model reduction of two-dimensional digital filters.IEEE Transactions on Automatic Control,2015,60(6):1624?1629

        102 Wang H,Yang G H.A finite frequency domain approach to fault detection observer design for linear continuous-time systems.Asian Journal of Control,2008,10(5):559?568

        103 Wang H,Yang G H.A finite frequency domain approach to fault detection for linear discrete-time systems.International Journal of Control,2008,81(7):1162?1171

        104 Wang Heng,Ju He-Hua,Yang Guang-Hong.Fault detection filter design for linear polytopic uncertain continuoustime systems.Acta Automatica Sinica,2010,36(5): 742?750 (王恒,居鶴華,楊光紅.線(xiàn)性多胞型不確定連續(xù)系統(tǒng)故障檢測(cè)濾波器設(shè)計(jì).自動(dòng)化學(xué)報(bào),2010,36(5):742?750)

        105 Wang H,Yang G H.Simultaneous fault detection and control for uncertain linear discrete-time systems.IET Control Theory and Applications,2009,3(5):583?594

        106 Yang G H,Wang H,Xie L H.Fault detection for output feedback control systems with actuator stuck faults:a steady-state-based approach.International Journal of Robust&Nonlinear Control,2010,20(15):1739?1757

        107 Yang H J,Xia Y Q,Liu B.Fault detection for T-S fuzzy discrete systems in finite-frequency domain.IEEE Transactions on Systems,Man,and Cybernetics–Part B:Cybernetics,2011,41(4):911?920

        108 Yang H J,Xia Y Q,Zhang J H.Generalised finitefrequency KYP lemma in delta domain and applications to fault detection.International Journal of Control,2011, 84(3):511?525

        109 Zhang Z,Jaimoukha I M.Optimal state space solution to the fault detection problem at single frequency.In:Proceedings of the 18th IFAC World Congress.Milano,Italy: IFAC,2011.7619?7624

        110 Long Y,Yang G H.Fault detection and isolation for networked control systems with finite frequency specifications.International Journal of Robust&Nonlinear Control,2014,24(3):495?514

        111 Long Y,Yang G H.Fault detection in finite frequency domain for networked control systems with missing measurements.Journal of the Franklin Institute,2013,350(9): 2605?2626

        112 Zhang K,Jiang B,Shi P,Xu J F.Multi-constrained fault estimation observer design with finite frequency specifications for continuous-time systems.International Journal of Control,2014,87(8):1635?1645

        113 Zhang K,Jiang B,Shi P,Xu J.Fault estimation observer design for discrete-time systems in finite-frequency domain.International Journal of Robust&Nonlinear Control,2015,25(9):1379?1398

        114 Zhang K,Jiang B,Shi P,Xu J F.Analysis and design of robust H∞fault estimation observer with finite-frequency specifications for discrete-time fuzzy systems.IEEE Transactions on Cybernetics,2015,45(7):1225?1235

        115 Zhou T.Generalized positiveness of spatially interconnected systems over quadratically constrained frequency domains.Systems& ControlLetters,2012,61(12): 1187?1193

        116 Sun W C,Zhao Y,Li J F,Zhang L X,Gao H J.Active suspension control with frequency band constraints and actuator input delay.IEEE Transactions on Industrial Electronics,2012,59(1):530?537

        117 Xiong J L,Petersen I R,Lanzon A.Finite frequency negative imaginary systems.IEEE Transactions on Automatic Control,2012,57(11):2917?2922

        118 Hoang H G,Tuan H D,Apkarian P.A Lyapunov variable-free KYP lemma for SISO continuous systems. IEEE Transactions on Automatic Control,2008,53(11): 2669?2673

        119 Hoang H G,Tuan H D,Nguyen T Q.Frequency-selective KYP lemma,IIR filter,and filter bank design.IEEE Transactions on Signal Processing,2009,57(3):956?965

        120 Pipeleers G,Vandenberghe L.Generalized KYP lemma with real data.IEEE Transactions on Automatic Control, 2011,56(12):2942?2946

        121 Pipeleers G,Iwasaki T,Hara S.Generalizing the KYP lemma to multiple frequency intervals.SIAM Journal on Control and Optimization,2014,52(6):3618?3638

        122 Graham M R,de Oliveira M C,de Callafon R A.An alternative Kalman-Yakubovich-Popov lemma and some extensions.Automatica,2009,45(6):1489?1496

        123 Graham M R,de Oliveira M C.Linear matrix inequality tests for frequency domain inequalities with affine multipliers.Automatica,2010,46(5):897?901

        124 Tanaka T,Langbort C.Symmetric formulation of the S-procedure,Kalman-Yakubovich-Popov lemma and their exact losslessness conditions.IEEE Transactions on Automatic Control,2013,58(6):1486?1496

        125 Iwasaki T,Hara S,Fradkov A L.Time domain interpretations of frequency domain inequalities on(semi)finite ranges.Systems&Control Letters,2005,54(7):681?691

        126 Kaizuka Y,Kojima C,Hara S.Time domain characterization of finite frequency properties via behavioral approach.In:Proceedings of the SICE Annual Conference 2008.Tokyo,Japan:IEEE,2008.2364?2369

        127 Kojima C,Hara S.An achievability condition for ndimensional behaviors with a finite frequency specification: dissipation inequalities approach.In:Proceedings of the 49th IEEE Conference on Decision and Control.Atlanta, GA:IEEE,2010.7730?7735

        128 Kojima C,Hara S.Controller synthesis for multiple finite frequency specifications:dissipation inequalities approach.In:Proceedings of the SICE Annual Conference 2010.Taipei,China:IEEE,2010.173?178

        129 Sun W C,Li J F,Zhao Y,Gao H J.Vibration control for active seat suspension systems via dynamic output feedback with limited frequency characteristic.Mechatronics, 2011,21(1):250?260

        130 Li X W,Gao H J.Load mitigation for a floating wind turbine via generalized H∞structural control.IEEE Transactions on Industrial Electronics,2016,63(1):332?342

        131 Nagahara M,Yamamoto Y.Frequency domain min-max optimization of noise-shaping delta-sigma modulators. IEEE Transactions on Signal Processing,2012,60(6): 2828?2839

        132 Li X W,Gao H J,Yu C B.An iterative LMI approach to IIR noise transfer function optimization for delta-sigma modulators.In:Proceedings of the 3rd Australian Control Conference.Fremantle,WA:IEEE,2013.67?72

        133 Li X W,Yu C B,Gao H J.Design of delta-sigma modulators via generalized Kalman-Yakubovich-Popov lemma. Automatica,2014,50(10):2700?2708

        134 Li X W,Gao H J,Gu K Q.Delay-independent stability analysis of linear time-delay systems based on frequency discretization.Automatica,2016,70:288?294

        135 Li X W,Lam J,Gao H J,Gu Y.A frequency-partitioning approach to stability analysis of two-dimensional discrete systems.Multidimensional Systems and Signal Processing, 2015,26(1):67?93

        137 Wu F,Jaramillo J J.Computationally efficient algorithm for frequency-weighted optimal H∞model reduction.Asian Journal of Control,2003,5(3):341?349

        138 De Oliveira M C,Skelton R E.Stability tests for constrained linear systems.Perspectives in Robust Control. London:Springer-Verlag,2001.241?257

        139 Chao H H,Vandenberghe L.Extensions of semidefinite programming methods for atomic decomposition.In:Proceedings of the 41st IEEE International Conference on Acoustics,Speech and Signal Processing.Shanghai,China: IEEE,2016.4757?4761

        李賢偉 新加坡南洋理工大學(xué)博士后. 2015年獲得哈爾濱工業(yè)大學(xué)工學(xué)博士學(xué)位.主要研究方向?yàn)槎嘀悄荏w系統(tǒng),魯棒控制,有限頻域方法及其應(yīng)用.

        E-mail:lixianwei1985@gmail.com

        (LI Xian-Wei Postdoctor at Nanyang Technological University, Singapore. He received his Ph.D. degree from Harbin Institute of Technology in 2015. His research interest covers multi-agent systems,robust control,finite frequency methods and their applications.)

        高會(huì)軍 哈爾濱工業(yè)大學(xué)教授,IEEE會(huì)士.2005年獲哈爾濱工業(yè)大學(xué)工學(xué)博士學(xué)位.主要研究方向?yàn)榫W(wǎng)絡(luò)化控制,魯棒控制與濾波,時(shí)滯系統(tǒng)及其工程應(yīng)用.本文通信作者.

        E-mail:hjgao@hit.edu.cn

        (GAO Hui-Jun Professor at Harbin Institute of Technology.He is a Fellow of IEEE.He received his Ph.D.degree from Harbin Institute of Technology in 2005.His research interest covers network-based control,robust control/filter theory,timedelay systems and their engineering applications.Corresponding author of this paper.)

        An Overview of Generalized KYP Lemma Based Methods for Finite Frequency Analysis and Design

        LI Xian-Wei1GAO Hui-Jun2

        Frequency-domain methods are a fundamental research approach in control theory and engineering.Many control problems can be viewed as analysis and design issues of finite frequency specifications.The generalized Kalman-Yakubovich-Popov(KYP)lemma,which bridges frequency-domain methods(transfer functions)and time-domain methods (state-space models),has been one of the hotspots in systems and control theory in recent years.In this paper,the background and significance of finite frequency analysis and design are first introduced from signal and system perspectives, respectively.Three main research methods(classical control theory,frequency-weighting strategy and generalized system specification based methodology)are discussed with respect to their individual advantages and disadvantages.The body of the generalized KYP lemma is then introduced briefly,which is followed by a detailed summary of main directions and recent progresses in finite frequency analysis and design based on the generalized KYP lemma.Finally,a few notes are presented,which are important but commonly overlooked in applying the generalized KYP lemma,and a few critical problems in the field are also pointed out,which are worth future investigation.

        Finite frequency,generalized Kalman-Yakubovich-Popov(KYP)lemma,controller design,filtering,model reduction

        李賢偉,高會(huì)軍.有限頻域分析與設(shè)計(jì)的廣義KYP引理方法綜述.自動(dòng)化學(xué)報(bào),2016,42(11):1605?1619

        Li Xian-Wei,Gao Hui-Jun.An overview of generalized KYP lemma based methods for finite frequency analysis and design.Acta Automatica Sinica,2016,42(11):1605?1619

        2016-04-01 錄用日期2016-08-15

        Manuscript received April 1,2016;accepted August 15,2016

        國(guó)家自然科學(xué)基金(61333012,61329301),東北大學(xué)流程工業(yè)綜合自動(dòng)化國(guó)家重點(diǎn)實(shí)驗(yàn)室資助

        Supported by National Natural Science Foundation of China (61333012,61329301),Key Laboratory of Integrated Automation for the Process Industry,Northeast University

        本文責(zé)任編委張衛(wèi)東

        Recommended by Associate Editor ZHANG Wei-Dong

        1.南洋理工大學(xué)電氣與電子工程學(xué)院新加坡639798新加坡 2.哈爾濱工業(yè)大學(xué)智能控制與系統(tǒng)研究所哈爾濱150080中國(guó)

        1.School of Electrical and Electronic Engineering,Nanyang Technological University,Singapore 639798,Singapore 2.Research Institute of Intelligent Control and Systems,Harbin Institute of Technology,Harbin 150080,China

        DOI 10.16383/j.aas.2016.c160303

        猜你喜歡
        性能指標(biāo)頻域廣義
        Rn中的廣義逆Bonnesen型不等式
        瀝青膠結(jié)料基本高溫性能指標(biāo)相關(guān)性研究
        石油瀝青(2021年1期)2021-04-13 01:31:08
        從廣義心腎不交論治慢性心力衰竭
        頻域稀疏毫米波人體安檢成像處理和快速成像稀疏陣列設(shè)計(jì)
        有限群的廣義交換度
        儲(chǔ)熱水箱分層性能指標(biāo)的研究進(jìn)展
        WebGIS關(guān)鍵性能指標(biāo)測(cè)試技術(shù)研究
        基于改進(jìn)Radon-Wigner變換的目標(biāo)和拖曳式誘餌頻域分離
        一種基于頻域的QPSK窄帶干擾抑制算法
        基于頻域伸縮的改進(jìn)DFT算法
        亚洲永久精品日韩成人av| 国产亚洲精品美女久久久| 国产欧美精品一区二区三区四区 | 大地资源网更新免费播放视频| 亚洲欧美日韩专区一| 女同中的p是什么意思| 日韩精品中文字幕 一区| 亚洲一区有码在线观看| 男女视频网站在线观看| 一区二区三区夜夜久久| 中文字幕天堂网| 青青草国产手机观看视频| 级毛片免费看无码| 奇米影视7777久久精品| 久久本道久久综合一人| 少妇被粗大的猛进69视频| 少妇激情av一区二区三区| 国产一区二区在三区在线观看| 久久国产精品免费一区二区| 老师露出两个奶球让我吃奶头 | 国产sm调教视频在线观看| 人人妻人人澡人人爽欧美二区| 热の国产AV| 精品在免费线中文字幕久久| 国产精品美女一区二区av| 青草久久婷婷亚洲精品| 狠狠噜天天噜日日噜无码| 无国产精品白浆免费视| av网站在线观看二区| 激情综合婷婷色五月蜜桃| 一区二区三区av波多野结衣| 久热香蕉视频| 蜜桃av一区在线观看| 日韩av一区二区三区精品久久| 精品一区二区三区免费视频| 日韩一欧美内射在线观看| 国产精品久久婷婷婷婷| 蜜桃久久综合一区二区| 色狠狠色噜噜av天堂一区| 亚洲一区二区在线| 国内精品少妇久久精品|