亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        酰胺型配體銅、鋅、銀配合物的合成、結(jié)構(gòu)及熒光性質(zhì)

        2016-12-15 07:43:15林龍李先宏張波張戰(zhàn)營(yíng)吳偉娜王元
        關(guān)鍵詞:王元焦作酰胺

        林龍 李先宏 張波 張戰(zhàn)營(yíng) 吳偉娜 王元

        (1河南理工大學(xué)材料科學(xué)與工程學(xué)院,焦作454000)

        (2河南理工大學(xué)化學(xué)化工學(xué)院,焦作454000)

        酰胺型配體銅、鋅、銀配合物的合成、結(jié)構(gòu)及熒光性質(zhì)

        林龍*,1李先宏1張波1張戰(zhàn)營(yíng)1吳偉娜*,2王元2

        (1河南理工大學(xué)材料科學(xué)與工程學(xué)院,焦作454000)

        (2河南理工大學(xué)化學(xué)化工學(xué)院,焦作454000)

        合成并通過(guò)單晶衍射表征了5個(gè)配合物[CuLCl2]·CH3COCH3(1)、[ZnLCl2]·CH3COCH3(2)、[ZnL(NO3)2]·0.5CH3COCH3(3)、[AgL2]ClO4(4)和[AgL2]BF4(5)(L=2-(5-氯-8-喹啉氧基)-1-(吡咯烷-1-基)乙酮)。配合物1和2同構(gòu),五配位的中心金屬離子采取扭曲的四方錐配位構(gòu)型,與來(lái)自配體L的2個(gè)氧原子和1個(gè)氮原子及2個(gè)氯離子配位。而在配合物3中,鋅離子與1個(gè)三齒配位的配體L,1個(gè)單齒配位的硝酸根和1個(gè)雙齒配位的硝酸根配位,配位構(gòu)型為扭曲的八面體。配合物4和5中,中心金屬與配體的比例為1∶2。銀離子與2個(gè)三齒配位的配體L配位,采取扭曲的八面體配位構(gòu)型。乙腈溶液中,配合物1、2、4和5在410 nm處的最大熒光發(fā)射峰與配體L相似。而配合物3由于配體到鋅離子之間的能量轉(zhuǎn)移,最大熒光發(fā)射峰紅移至430 nm。

        銅配合物;鋅配合物;銀配合物;酰胺型配體;熒光

        As one of the promising systems of amide open chain ligands,quinolinyloxy acetamides have been proved to be a well suited type of antenna for lanthanide(Ⅱ)ions.In particular,their Sm(Ⅱ)and Eu(Ⅲ)complexes could exhibit the characteristic emission of the Eu(Ⅲ)and Sm(Ⅱ)ions,respectively[1].On the other hand,such ligands have been used for the recognition ofimportant transition metalions,such as Zn(Ⅱ),Cd(Ⅱ)or Hg(Ⅱ),due to the metal-induced fluorescence emission enhancement[2-3].Our previous work also shows that this kind of ligands could coordinate to Cu(Ⅱ)/ Zn(Ⅱ)ions to form stable complexes[4-5].However,their Ag(Ⅰ)complexes have been paid much less attention[4-5]. Thus,in this paper,five Cu(Ⅱ)/Zn(Ⅱ)/Ag(Ⅰ)complexes containing an amide type ligand L,namely,2-(5-chloroquinolin-8-yloxy)-1-(pyrrolidin-1-yl)ethanone,were synthesized and characterized by X-ray diffraction.In addition,the fluorescence properties of all complexes are investigated in detail.

        1 Experimental

        1.1 Materials and measurements

        Solvents and starting materials for synthesis were purchased commercially and used as received.The ligand L was prepared by the reported method[5]. Elemental analysis was carried out on an Elemental Vario EL analyzer.The IR spectra(ν=4 000~400 cm-1) were determined by the KBr pressed disc method on a Bruker V70 FT-IR spectrophotometer.The UV spectra were recorded on a Purkinje General TU-1800 spectrophotometer.Fluorescence spectra were determined on a Varian CARY Eclipse spectrophotometer,in the measurements of emission and excitation spectra the pass width is 5 nm.

        1.2 Preparations of the complexes

        The ligand L(0.1 mmol)and CuCl2(0.1 mmol) were dissolved in an acetone solution(5 mL).After stirring for about 1 h,the mixture was filtered and set aside to crystallize at room temperature.The crystals suitable for single crystal X-ray analyses are obtained after few days.The syntheses of 2~5 are similar to that of 1,while using ZnCl2,Zn(NO3)2,AgClO4and AgBF4instead of CuCl2,respectively.

        1:yellow blocks.Yield:59%(based on L).Anal. Calcd.for C18H21N2O3Cl3Cu(%):C,44.72;H,4.38;N, 5.80.Found(%):C,44.62;H,4.51;N,5.78.IR(KBr, cm-1):ν(C=O)acetone1 710,ν(C=O)1 623,ν(C=N)1585, ν(Ar-O-C)1 250.

        2:colorless blocks.Yield:68%(based on L). Anal.Calcd.for C18H21N2O3Cl3Zn(%):C,44.56;H, 4.36;N,5.77.Found(%):C,44.67;H,4.49;N,5.62. IR(KBr,cm-1):ν(C=O)acetone1 713,ν(C=O)1 626,ν(C= N)1586,ν(Ar-O-C)1 241.

        3:colorless rods.Yield 72%(based on L).Anal. Calcd.for C16.5H18N4O8.5ClZn(%):C,38.92;H,3.56;N, 11.00.Found(%):C,39.11;H,3.80;N,10.76.IR (KBr,cm-1):ν(C=O)acetone1 711,ν(C=O)1 633,ν(C=N) 1 588,ν(Ar-O-C)1 245,ν1(NO3)1 484,ν(NO3)1 384 and 1 291.

        4:colorless blocks.Yield 79%(based on L). Anal.Calcd.for C30H30N4O8Cl3Ag(%):C,45.68;H, 3.83;N,7.10.Found(%):C,45.78;H,3.92;N,7.02. IR(KBr,cm-1):ν(C=O)1 642,ν(C=N)1 586,ν(Ar-OC)1 239.

        5:colorless plates.Yield 76%(based on L). Anal.Calcd.for C30H30N4O4Cl2BF4Ag(%):C,46.42;H, 3.90;N,7.22.Found(%):C,46.57;H,3.79;N,7.42. IR(KBr,cm-1):ν(C=O)1 636,ν(C=N)1 586,ν(Ar-OC)1 238.

        1.3 X-ray crystallography

        The X-ray diffraction measurements for complexes 1~5 were performed on a Bruker SMART APEXⅡCCD diffractometer equipped with a graphite monochromatized Mo Kαradiation(λ=0.071 073 nm) by usingφ-ωscan mode.Semi-empirical absorption correction was applied to the intensity data using the SADABS program[6].The structures were solved by direct methods and refined by fullmatrixleast-square on F2using the SHELXTL-97 program[7].All nonhydrogen atoms were refined anisotropically.All the H atoms were positioned geometrically and refined using a riding model.SQUEEZE procedure was applied to deal with the lattice acetone molecules of complexes 2 and 3.Details of the crystal parameters, data collection and refinements for complexes 1~5 are summarized in Table 1.

        Table 1 Selected crystallographic data for complexes 1~5

        CCDC:1484068,1;1484069,2;1484070,3; 1484071,4;1484072,5.

        2 Results and discussion

        2.1 Crystalstructures of the complexes

        Complexes 1 and 2 are isostructural,while crystallize in monoclinic and orthorhombic,space group P21/c and Pbcn,respectively.As shown in Fig. 1a and 1b,in each complex,the metal ion is fivecoordinated by one amide ligand with NO2donor set and two chloride anions.It is noted that there are two independent complex molecules in the asymmetric unitof1.According to the Addison rule[8],the geometric indexτis 0.178 or 0.235 and 0.303 in complexes 1 and 2,respectively,indicating that the coordination geometry ofmetalion is a distorted tetragonalpyramid. By contrast,the Zn(Ⅱ)ion in complex 3(Fig.1c)is surrounded by one tridentate ligand L,one monodentate and one bidentate nitrate anions,giving a distorted octahedral coordination geometry.In addition,the second O atom,O7,of the monodentate NO3-group, forms a weak bond with the Zn(Ⅱ)ion(Zn1-O7 0.286 5 nm),thus the coordination octahedral is largely deviated from the ideal one.Except with different lattice solvent molecules,the structures of complexes 1~3 are similar as those derived from the same ligand L and metal salts in acetonitrile solution[5].

        Complexes 4 and 5 are isostructuraland the ratio of metal ion and ligand is 1∶2,while with perchlorate and tetrafluoroborate as counter ions,respectively.As shown in Fig.1d and 1e,the asymmetric unit of each complex contains a halfofthe molecule with the Ag(Ⅰ)ion situated on the two-fold rotational axis.The Ag(Ⅰ)ion is coordinated by two amide ligands with NO2donor set,and possesses a distorted octahedral coordination geometry.The Ag-N/O bond lengths in complexes 4 are similar as those found in complex 5, and comparable to the Ag(Ⅰ)complexes with same donor sets[9].As expected,there are no classical hydrogen bonds in the crystals of 1~5.

        2.2 IR spectra

        Fig.1 Molecular structures of complexes 1~5(a~e)shown with 30%probability displacement ellipsoids

        Table 2 Selected bond lengths(nm)and angles(°)in complexes 1~5

        The IR spectra of free ligand L show three band at1 682,1 598 and 1 254 cm-1,attributable toν(C=O), ν(C=N)andν(Ar-O-C),respectively[5].They shifts to lower wavenumber in the complexes 1~5,indicating that carbonyl oxygen,ethereal oxygen and quinolinenitrogen atoms take part in coordination[9].In addition, the intense absorption bands in the spectra ofcomplex 3 associated with the asymmetric stretching appear at 1 384 or 1 291 cm-1(ν4)and 1 484 cm-1(ν1),clearly establishing the existence ofmonodentate and bidentate NO3-ligands,respectively[8].Theν(C=O)bands in complexes 1~3 ataround 1 710 cm-1are corresponding to the crystal acetone molecules.It is in accordance with the result of the crystal structure study.

        Continued Table 2

        2.3 UV spectra

        The UV spectra complexes 1~5 in acetonitrile solution(concentration:1×10-5mol·L-1)were measured at room temperature(Fig.2).The UV spectra of complexes 1~5 are quite similar as that of the ligand L with two bands at244 nm(ε=156 000 L·mol-1·cm-1) and 316 nm(ε=19 500 L·mol-1·cm-1)][5],each ofthem features two main bands located at244 nm(ε=212 886, 149 054,99 927,73 871 and 50 073 L·mol-1·cm-1forcomplexes 1~5,respectively)and 318 nm(ε=40 755, 29 625,11 770,9 390 and 6 450 L·mol-1·cm-1for complexes 1~5,respectively).Such two bands should be assigned to characteristicπ-π*transitions centered on quinoline ring and the acetamide unit of the amide ligand L,respectively[5,8].

        Fig.2 UV spectra of 1~5 in acetonitrile solution at room temperature

        2.4 Fluorescence spectra

        The fluorescence spectra of complexes 1~5 have also been studied in acetonitrile solution(concentration: 1×10-5mol·L-1)atroom temperature.The results show that the emission spectra of complexes 1,2,4 and 5exhibit only one main peak at 410 nm when excited at 320 nm,which is similar as that of the ligand L[5]. However,the emission band of complex 3 red-shifts to 430 nm under same tested condition,indicating the energy transferring from the ligand L to the Zn(Ⅱ)ion[8]. It should be noted that complexes 2 and 3 exhibit quite different fluorescence emission even they have same centre Zn(Ⅱ)ion,primarily related with the anion effect(chloride for 2,while nitrate for 3)[10].

        Fig.3 Fluorescence emission spectra of 1~5 in acetonitrile solution at room temperature

        [1]MAO Pan-Dong(毛盼東),XU Jun(徐君),WU Wei-Na(吳偉娜),etal.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2016,32: 677-682

        [2]Song K C,Kim J S,Park S M,et al.Org.Lett.,2006,8:3413 -3416

        [3]Zhou X,Li P,Shi Z,et al.Inorg.Chem.,2012,51:9226-9231

        [4]CAI Hong-Xin(蔡紅新),WU Wei-Na(吳偉娜),WANG Yuan (王元).Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2013,29: 845-849

        [5]MAO Pan-Dong(毛盼東),YAN Ling-Ling(閆玲玲),WU Wei -Na(吳偉娜),etal.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2016,32:1476-1480

        [6]Sheldrick G M.SADABS,University of G?ttingen,Germany, 1996.

        [7]Sheldrick G M.SHELX-97,Program for the Solution and the Refinement of Crystal Structures,University of G?ttingen, Germany,1997.

        [8]LI Xiao-Jing(李曉靜),WU Wei-Na(吳偉娜),XU Zhou-Qing (徐周慶),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)), 2015,31:2256-2271

        [9]Wang J,Qi Q,Cheng L,et al.Inorg.Chem.Commun.,2015, 58:5-8

        [10]Tavman A,?inarli A.Inorg.Chim.Acta,2014,421:481-488

        Syntheses,Crystal Structures and Fluorescence Properties of Cu(Ⅱ)/Zn(Ⅱ)/Ag(Ⅰ)Complexes with an Amide Type Ligand

        LIN Long*,1LI Xian-Hong1ZHANG Bo1ZHANG Zhan-Ying1WU Wei-Na*,2WANG Yuan2
        (1School of Materials Science and Engineering,Henan Polytechnic University,Jiaozuo,Henan 454000,China)
        (2College of Chemistry and Chemical Engineering,Henan Polytechnic University,Jiaozuo,Henan 454000,China)

        Five complexes,[CuLCl2]·CH3COCH3(1),[ZnLCl2]·CH3COCH3(2),[ZnL(NO3)2]·0.5CH3COCH3(3), [AgL2]ClO4(4)and[AgL2]BF4(5)(L=2-(5-chloroquinolin-8-yloxy)-1-(pyrrolidin-1-yl)ethanone),were synthesized and characterized by X-ray diffraction.Complexes 1 and 2 are isostructural,and in each of them the fivecoordinated metal ion is in a distorted tetragonal pyramid with a NO2donor set from one ligand L and two chloride anions.However,the Zn(Ⅱ)ion in complex 3 is coordinated with one tridentate ligand L,one monodentate and one bidentate nitrate anions,giving a distorted octahedral coordination geometry.The structures of 1~3 are quite similar as those of the acetonitrile solvates derived from the same ligand L and metal salts.By contrast,the ratio ofthe metalion and ligand L is 1∶2 in complexes 4 and 5,the central Ag(Ⅰ)ion in each complex is six-coordinated with two independent ligands with N2O donor set,thus possesses a distorted octahedral coordination geometry.In CH3CN solution,the emission spectra ofcomplexes 1,3,4 and 5 exhibit similar peak at 410 nm as the ligand L.However,the emission band ofcomplex 3 red-shifts to 430 nm because ofenergy transferring from the ligand L to the Zn(Ⅱ)ion.CCDC:1484068,1;1484069,2;1484070,3;1484071,4;1484072,5.

        Cu(Ⅱ)complex;Zn(Ⅱ)complex;Ag(Ⅰ)complex;amide type ligand;fluorescence

        O614.121;O614.24+1;O614.122

        A

        1001-4861(2016)09-1653-06

        10.11862/CJIC.2016.204

        2016-06-11。收修改稿日期:2016-08-01。

        國(guó)家自然科學(xué)基金(No.21001040)、河南省科技廳基礎(chǔ)與前沿項(xiàng)目(No.162300410011)和河南省教育廳自然科學(xué)基金(No.12B150011,14B150029)資助。

        *通信聯(lián)系人。E-mail:linlong@hpu.edu.cn,wuwn08@hpu.edu.cn;會(huì)員登記號(hào):S06N6704M1112。

        猜你喜歡
        王元焦作酰胺
        走近王元
        65歲,《焦作日?qǐng)?bào)》正青春
        中國(guó)數(shù)學(xué)界元老——王元
        少兒科技(2022年4期)2022-04-14 23:48:10
        雙酰胺類殺蟲(chóng)劑Broflanilide
        三氟咪啶酰胺的合成工藝研究
        臨軒聽(tīng)雨
        大眾文藝(2017年18期)2017-10-13 05:42:16
        焦作:政府買服務(wù)的簽約之路
        La solitude et la joie
        國(guó)外二硝酰胺銨的發(fā)展現(xiàn)狀
        焦作將建中部最大綠色涂料園
        国产亚洲高清在线精品不卡 | 一区二区三区精品少妇| 无码人妻一区二区三区兔费| 少妇做爰免费视频网站| 久久精品国产亚洲5555| 日本无吗一区二区视频| 久久综合国产精品一区二区| 亚洲av综合一区二区在线观看| 婷婷亚洲久悠悠色悠在线播放| 欧美日韩国产在线观看免费| 亚洲一区二区女优av| 开心五月骚婷婷综合网| 欧洲女人与公拘交酡视频| 免费看泡妞视频app| 久久夜色精品国产亚洲噜噜| 人妖系列在线免费观看| 亚洲字幕中文综合久久| 国产精品∧v在线观看| 国产精品亚洲一区二区无码| 亚洲天堂免费av在线观看| 青青草视频在线观看入口| 中文字幕亚洲无线码一区女同| 欧洲成人午夜精品无码区久久| 欧美日韩国产在线成人网| 国产特黄a三级三级三中国| 国产亚洲视频在线播放| 亚洲亚洲人成综合网络| 欧美亚洲国产人妖系列视 | 一区二区三区在线乱码| 精品亚洲国产成人蜜臀av| 日本老熟妇毛茸茸| 午夜福利影院不卡影院| 日本91一区二区不卡| 亚洲av综合色区无码一区| 无码人妻av一区二区三区蜜臀| 国产精品黄色片在线观看| 极品少妇一区二区三区| 十八禁视频在线观看免费无码无遮挡骂过 | 丰满少妇被爽的高潮喷水呻吟| 国产a在亚洲线播放| 欧美老妇与zozoz0交|