賀勇,徐福留,何偉,秦寧,孔祥臻,劉文秀,王卿梅
北京大學城市與環(huán)境學院 地表過程分析與模擬教育部重點實驗室,北京 100871
?
巢湖生態(tài)系統(tǒng)中微量有機污染物的研究進展
賀勇,徐福留,何偉,秦寧,孔祥臻,劉文秀,王卿梅
北京大學城市與環(huán)境學院 地表過程分析與模擬教育部重點實驗室,北京 100871
本文綜述了目前巢湖生態(tài)系統(tǒng)中微量有機污染物研究的主要進展。巢湖微量有機污染物研究起步較晚,但發(fā)展較快。目前已研究的微量有機污染物包括有機氯農(nóng)藥、多氯聯(lián)苯、多環(huán)芳烴、多溴聯(lián)苯醚、鄰苯二甲酸酯、全氟烷基酸類物質(zhì)、四溴雙酚A、抗生素和有機磷農(nóng)藥。研究內(nèi)容主要包括水、大氣、降塵、沉積物、懸浮物、水生生物等多介質(zhì)分布、來源解析、跨界面遷移、歸趨模擬與風險評估等方面。期望本文的綜述,可以為巢湖微量有機污染物風險管理和水質(zhì)改善提供重要決策支撐,對于在其他湖泊開展此類研究有所裨益。
巢湖;微量有機污染物;多介質(zhì)分布;來源解析;跨界面遷移;歸趨模擬;風險評估
Received 30 November 2015 accepted 6 January 2016
許多微量有機污染物在環(huán)境介質(zhì)中具有難降解性和持久性,在人等生物體內(nèi)具有蓄積性,能夠通過食物鏈進行放大和富集,對生態(tài)系統(tǒng)和人體健康造成了嚴重的影響[1]。近年來,微量有機污染物的研究受到了國內(nèi)外廣泛的關注[2-5]。開展微量有機污染物在環(huán)境介質(zhì)中的殘留水平、分布特征、遷移轉(zhuǎn)化與生態(tài)風險等方面的研究,對深入認識其環(huán)境行為與生態(tài)效應以及污染控制具有重要的意義[5]。
巢湖位于長江中下游的安徽省境內(nèi),是其流域生活和生產(chǎn)的重要水源地,對其流域社會經(jīng)濟可持續(xù)發(fā)展具有戰(zhàn)略意義[6]。然而,由于20世紀80年代以來巢湖流域城鎮(zhèn)化和工業(yè)化的快速發(fā)展,巢湖水體中氮、磷污染嚴重,使其成為了中國典型的富營養(yǎng)化湖泊[7]。目前對巢湖的富營養(yǎng)化和重金屬污染已經(jīng)開展了許多研究[8-11],而對巢湖微量有機物污染的研究相對較少。為了推動巢湖微量有機物污染研究的進一步發(fā)展,以及巢湖微量有機污染物的風險管理和水質(zhì)改善,有必要總結目前巢湖微量有機污染物的研究進展。
巢湖微量有機污染物研究起步較晚,2011年才開始有相關文獻報道,但這方面的研究發(fā)展較快,到2015年可以檢索到30多篇論文(圖1)。這些論文涉及的微量有機污染物包括:有機氯農(nóng)藥(OCPs)[7,13-20]、多氯聯(lián)苯(PCBs)[21-22]、多環(huán)芳烴(PAHs)[23-28]、多溴聯(lián)苯醚(PBDEs)[21,29-31]、鄰苯二甲酸酯(PAEs)[33]、全氟烷基酸類物質(zhì)(PFAAs)[6,34]、四溴雙酚A (TBBPA)[35]、抗生素[36-38]和有機磷農(nóng)藥(OPs)[39-40](圖2),研究內(nèi)容主要包括水、大氣、土壤、沉積物、懸浮物、降塵、水生生物等多介質(zhì)分布、來源解析、跨界面遷移、歸趨模擬與風險評估等方面(表1)。其中,大部分文獻來自北京大學城市與環(huán)境學院研究組[13-20, 23-25, 28-30, 33-34, 41-42]。
圖1 巢湖各類微量有機污染物研究論文年發(fā)表情況與逐年累計曲線Fig. 1 Annual published status of papers about various trace organic contaminates in Lake Chaohu and annually cumulative curve
表1 巢湖微量有機污染物的研究進展概覽
注:■殘留水平,▲時空分布,◆組成,●來源,☆吸附和降解,※沉積歷史,◎相互作用分析,√已進行相關研究
Notes: ■residual, ▲spatial and temporal distribution,◆composition, ●sources, ☆adsorption and degradation, ※influence analysis, ◎interaction, √finished related research
圖2 目前巢湖各類微量有機污染物研究論文情況統(tǒng)計圖Fig. 2 Statistical chart of papers for currently various trace organic contaminates in Lake Chaohu
2.1 巢湖微量有機污染物的多介質(zhì)分布
OCPs是一類在巢湖研究最多的持久性有機污染物(表1),對其在水[15-17]、大氣[17-18]、懸浮物[17,20]和沉積物[7,16,19]中的分布特征有較多報道。水體中OCPs研究表明[15],其空間分布由高到低依次為:中部湖區(qū)>西部湖區(qū)>東部湖區(qū);OCPs的主要成分為艾氏劑(aldrin),六氯環(huán)己烷(HCHs)和滴滴涕及其代謝產(chǎn)物(DDTs),它們的峰值分別出現(xiàn)在秋季、冬季、春夏季;β-HCH是主要的HCH同分異構體,α-HCH次之,兩者之間存在較大的季節(jié)差異(圖3)。巢湖懸浮物中OCPs主要以DDTs、HCB和HCHs為主[13,16,20],其中HCHs主要以γ-HCH為主,DDTs主要以p,p’-DDT為主[16];夏季懸浮物中OCPs含量最高[13,20],可能與降雨徑流造成顆粒物增加以及藻類暴發(fā)造成顆粒物有機碳含量增加有關[20];懸浮物中OCPs含量高低空間分布為:東部湖區(qū)>西部湖區(qū)>中部湖區(qū),與水體相反[13,16,20],可能是水體與懸浮物中OCPs的主要來源不同[20]。巢湖表層沉積物中OCPs主要以DDTs和HCHs為主,其中HCHs主要以β-HCH為主,DDTs主要以p,p’-DDD為主[16];空間分布上,差異明顯,入湖河口沉積物OCPs污染最嚴重,湖泊沉積物中OCPs含量的空間變化為:西部湖心>東部水源區(qū)>東部湖區(qū)[16,19]。氣相中OCPs主要由硫丹(endosulfan),DDTs和氯丹(chlordane)組成,
圖3 巢湖水體有機氯農(nóng)藥含量的時空分布(整理自Liu等[15])Fig. 3 Temporal-spatial distributions of OCPs in the water of Lake Chaohu (redrew from Liu et al. [15])
冬季以HCHs和六氯苯(HCB)為主,其他3個季節(jié)以硫丹和DDTs為主;OCPs含量在夏季明顯高于冬季,在中部湖區(qū)高于其他湖區(qū);大氣顆粒相中OPCs,在秋季主要為HCHs和DDTs,在其他3個季節(jié)主要為DDTs[17-18]。對巢湖降塵中OCPs的研究表明[14],降塵中OCPs以DDTs、異狄氏劑、艾氏劑、HCHs和硫丹為主;春季、夏季、秋季和冬季的主要OCPs污染物分別為艾氏劑、硫丹、DDTs和異狄氏劑;HCHs主要的同分異構體為α-HCH,p,p’-DDE是DDT的主要代謝產(chǎn)物;春季降塵中OCPs殘留水平最高,不同季節(jié)的變化范圍為10.06~171.24 ng·g-1,年平均值為51.54 ng·g-1。
巢湖PCBs分布研究僅限于沉積物。整個湖區(qū)沉積物中PCBs的污染在夏季自西向東遞減,tri-PCB和tetra-PCB是巢湖沉積物中PCBs的主要組成[22];在秋季,南淝河河口沉積物中PCBs含量最高,在臨近西南農(nóng)業(yè)區(qū)PCBs含量最低[21];對于整個湖泊來說,西部湖區(qū)含量高于東部湖區(qū)[21]。
PBDEs是一類應用廣泛的溴代阻燃劑[60],過去30年間,隨著中國經(jīng)濟的快速增長,PBDEs的污染在城市和鄉(xiāng)村地區(qū)日趨嚴重[29]。由于PBDEs親脂性較強,因而易分布于懸浮物和沉積物中[30]。巢湖PBDEs分布研究主要集中在水體、懸浮物和沉積物。水體中,PBDEs的濃度由高到低依次為:十五里河 > 南淝河 >派河 > 雙橋河 >杭埠-豐樂河> 柘皋河。巢湖水體PBDEs主要成分為BDE-209、BDE-99、BDE-153和BDE-47。懸浮物中Σ14BDE的含量為232.5 ng·g-1,以BDE-47為主,東部湖區(qū)含量較高,中西部湖區(qū)含量明顯降低[30]。巢湖沉積物中PBDEs主要是BDE-47,空間分布特征為:西部湖區(qū)>東部湖區(qū)>>裕溪河河口>南淝河河口>杭埠河河口[30-31]。
由于PFAAs具有親水與親脂性、穩(wěn)定性和高表面活性[68],在生產(chǎn)生活中具有非常廣泛的應用[74],因而這類物質(zhì)在環(huán)境中普遍存在[80]。國外對PFAAs在水體和生物體中的分布及風險已經(jīng)有許多報道[68-71],國內(nèi)對全氟化合物的污染特征也有相關報道[72-74]。巢湖PFAAs分布研究主要集中在水體和沉積物。在巢湖水體PFAAs中,以全氟辛酸(PFOA)、全氟丁酸(PFBA)和全氟己酸(PFHxA)為主;夏季至秋季,污染水平升高,于8月份達到峰值,然后緩慢下降,而從冬季到春季污染水平則呈下降趨勢;水體中PFOA平均含量的空間分布趨勢為:東部湖區(qū)>西部湖區(qū)>東部河流>西部河流,而全氟辛烷磺酸(PFOS)空間分布趨勢與PFOA相反[34]。巢湖沉積物中全氟烷基類物質(zhì)(ΣPFASs)的分布在空間上有自西向東遞減的趨勢;在入湖河流中,隨著河流的流向,沉積物中ΣPFASs的濃度逐漸降低,然而在河流流經(jīng)市區(qū)段卻急劇增大;ΣPFASs含量湖泊沉積物高于河流沉積物[6]。
抗生素是一類人和動物抵抗病菌的藥物,被廣泛應用于藥品和飼料添加劑中[36],全球的年消耗量在100 000~200 000噸[81]。然而,抗生素難以在生物體內(nèi)被完全吸收[82],會被排泄到環(huán)境中造成污染,在國內(nèi)外很多地區(qū)都能被頻繁地檢測到[75-76]。巢湖地區(qū)抗生素分布的報道較少,且集中在水體??股卦诔埠w中含量最高的為強力霉素,其次為磺胺甲惡唑、氧氟沙星和諾氟沙星[37-38]。時間上,冬季污染水平明顯高于其他季節(jié)[36];空間上,西部湖區(qū)污染水平高于東部湖區(qū)[36-38]。南淝河和十五里河是抗生素進入巢湖水體的兩條主要途徑,抗生素主要來源于合肥市的污水排放[36,38]。
作為重要的增塑劑,PAEs在聚氯乙烯材料和農(nóng)膜中被廣泛應用[57-58]。巢湖PAEs分布研究主要集中在水體。巢湖水體中PAEs主要成分為鄰苯二甲酸二正丁酯(DnBP),空間上,在西部湖區(qū)濃度最高,在東部飲用水源地濃度最低;時間上,在夏季含量最低,秋季含量最高[33, 58]。
OPs是一類高效殺蟲劑,由于其廣譜活性,在中國,三唑磷和毒死蜱被廣泛應用于控制蟲害,因而在土壤中富集[40]。在無菌土壤和有菌土壤中,三唑磷和毒死蜱的降解速率要快于1-苯基-3-羥基-1,2,4-三唑和3,5,6-三氯吡啶-2-醇,三唑磷、毒死蜱和1-苯基-3-羥基-1,2,4-三唑可被Diaphorobacter sp. GS-1所降解[40]。巢湖OPs分布研究主要集中在沉積物。巢湖沉積物中OPs主要為敵敵畏,空間分布特征為:南淝河<南淝河河口<烔煬河<杭埠河<裕溪河[39]。
TBBPA是一種全球普遍使用的溴化阻燃劑,在環(huán)境介質(zhì)中無處不在[59]。近年來,隨著中國對溴化阻燃劑的需求不斷增加,溴代阻燃劑工廠較多的巢湖流域中TBBPA污染日趨嚴重[35]。TBBPA在巢湖水體中分布的時間趨勢與PAEs較為類似,表現(xiàn)為夏季含量較高[35];巢湖TBBPA分布研究主要集中在沉積物和魚類。在巢湖表層沉積物中,西部湖區(qū)TBBPA含量高于東部湖區(qū);在沉積物垂直分布上,隨著深度的增加,TBBPA含量逐漸降低[35]。巢湖魚體TBBPA分布特征研究表明[35],TBBPA在魚體脂肪中含量為12.0~21.9 ng·g-1,在腮和卵中的平均含量均低于10 ng·g-1,TBBPA在4種魚腎臟中的含量大小為:鯉魚>鯽魚>鯰魚>翹嘴鲌,而在肝臟和肌肉中含量的變化趨勢均為:鯰魚>翹嘴鲌>鯉魚>鯽魚。
2.2 巢湖微量有機污染物的來源解析
由于微量有機污染物具有多種來源,在各種環(huán)境介質(zhì)中都有廣泛的分布,因而對微量有機污染物的來源解析一直受到研究人員的重視[61-63]。可從不同的角度劃分污染物的來源,例如:按照與人類活動的關系,可以分為自然來源和人為來源;按照使用時間,可以分為近期污染和歷史污染;按照源匯距離,可以分為本地污染源和異地污染源。其中,人為污染源與生產(chǎn)和使用情況有關[64],生產(chǎn)越集中,使用量越大,對環(huán)境的污染越嚴重[7]。不同污染物的特征不同,使用的源解析方法也有所差別。
巢湖地區(qū)是安徽省重要的商品糧基地以及血吸蟲病防治區(qū),OCPs曾經(jīng)大量使用,因此,巢湖生態(tài)系統(tǒng)中OCPs的一個主要的來源為歷史上的大量使用[14-15,18-20]??筛鶕?jù)OCPs成份的組成特征進行來源解析[18,20]:對于HCHs,α-/γ-HCH大于7表明其可能來源于大氣輸入,α-/γ-HCH比率在4~7之間表明其可能來源于工業(yè)產(chǎn)品,α-/γ-HCH比率小于4表明其可能來源于林丹,較高的β-/(α+γ)-HCH比率表示HCHs來源于歷史上使用的工業(yè)HCHs或林丹,β-/(α+γ)-HCH<0.5可認為有新的林丹使用或有大氣源輸入;對于DDTs,高比值的o,p’-/p,p’-DDT一般認為是受到三氯殺螨醇的污染,而比值在0.2左右則主要是工業(yè)DDT的使用,DDT/(DDE+DDD) ≥ 1表示其有新的DDT輸入,DDT/(DDE+DDD) < 1表示來自歷史上DDT的使用;對于氯丹,當α-/γ-氯丹 < 0.77時,表明有新的工業(yè)氯丹輸入,如果α-/γ-氯丹>1,表明環(huán)境中無新的工業(yè)氯丹輸入。研究表明,巢湖大氣[18]、降塵[14]和沉積物[19]中DDTs主要來源于歷史上三氯殺螨醇的使用,而懸浮物[20]和湖泊沉積物[19]中DDTs則主要為工業(yè)殘留,另外土壤流失也是沉積物中DDTs的一個來源[19]。歷史上林丹的使用是水體中HCHs的重要來源[15,17],而早期土壤殘留是湖泊沉積物中HCHs的主要來源[19]。另外,在巢湖大氣[17-18]、降塵[14]、懸浮物[13,20]和沉積物[19]中還檢測到近期林丹的使用。春季含有工業(yè)DDTs船舶涂料的近期使用也可造成了大氣、降塵以及水體中DDTs的污染[14-15,18]。巢湖大氣[18]、降塵[14]中的硫丹和大氣[18]、懸浮物[20]中的氯丹均來源于工業(yè)上近期使用。
對于PAHs,用于來源解析的環(huán)境介質(zhì)主要為大氣顆粒物、沉積物以及土壤,對于水和生物中PAHs來源解析研究較少。目前應用的PAHs源解析方法主要有特征化合物法、特征比值法、多元統(tǒng)計分析和受體模型等方法[27,63,66]。特征化合物法是最為直觀的方法,根據(jù)污染源排放過程中含有的特征化合物來確定污染物來源,但是這種方法比較粗略,誤差也較大,適用于來源的初步判斷;特征比值法根據(jù)不同來源的PAHs具有不同的組成和相對含量來定性確定各種污染源,該方法簡便易行,應用較廣,但該方法的重要缺陷是不能定量估算各排放源的貢獻;化學平衡模型(CMB)是PAHs源解析中較為成熟的方法,該方法根據(jù)PAHs在區(qū)域內(nèi)的主要指紋譜,通過模型計算得到各個指紋源的貢獻量,但是由于PAHs來源復雜,排放源的指紋譜難以獲得,該方法的解析結果往往并不理想;主成分/因子分析—多元回歸(PCA/FA-MLR)分析法是一種廣泛應用于PAHs來源解析的方法,依據(jù)PAHs在不同因子的載荷對來源進行辨析,并對各個因子的貢獻進行計算;碳穩(wěn)定同位素技術是PAHs來源解析的一種新方法,該方法的優(yōu)點在于能很好地區(qū)分PAHs的生物質(zhì)和非生物質(zhì)來源。Qin等[23]利用多種方法對巢湖大氣和沉積物中PAHs的來源進行了解析:特征化合物比值法解析結果表明,巢湖大氣、沉積物PAHs主要來自燃燒源;PCA-MLR模型解析結果表明,化石燃料燃燒貢獻55%,生物質(zhì)燃燒貢獻45%;PMF3.0模型解析結果表明,生物質(zhì)、煤炭和燃油燃燒來源的貢獻分別為43.6%、30.6%和25.8%。從δ13C組成特征推斷,巢湖沉積物PAHs來源主要是煤炭的燃燒,交通燃油以及木材的燃燒來源也具有一定的貢獻。
2.3 巢湖微量有機污染物的分配與跨界面遷移
在不同環(huán)境介質(zhì)之間的平衡分配是微量有機污染物重要的環(huán)境行為之一,這些分配行為包括氣-固分配、水-懸浮物分配、水-沉積物分配以及懸浮物-沉積物分配。污染物分配行為受其物理化學性質(zhì)(如分子量、蒸汽壓、辛醇-氣分配系數(shù)Koa、辛醇-水分配系數(shù)Kow)以及環(huán)境介質(zhì)特征(如有機質(zhì)含量)的控制。通常用有機碳吸附平衡常數(shù)(Koc)定量描述污染物質(zhì)在固相和水相間的分配情況。Qin等[23-24]在2013和2014年分別對PAHs在巢湖的氣-固分配以及水-懸浮物-沉積物系統(tǒng)中的分配進行了研究。結果表明,巢湖大氣氣-固分配系數(shù)分布在2.8×10-4~1.31的范圍內(nèi),與Koa具有顯著正相關關系(P<0.01),與蒸汽壓存在顯著負相關關系(P<0.01);PAHs在巢湖水-懸浮物以及水-沉積物之間的有機碳標化的分配系數(shù)Koc(w-SS)和Koc(W-S)與Kow具有顯著正相關關系(P<0.05),并且PAHs各成份的Koc(w-SS)和Koc(W-S)均低于美國環(huán)保局(U. S. EPA)報道的平衡條件下的相應值,表明PAHs在巢湖水-懸浮物以及水-沉積物之間的分配未達到平衡。
水生態(tài)系統(tǒng)中的界面交換主要有水-氣界面以及水-沉積物界面的交換。其中水-氣界面交換主要形式有干沉降、濕沉降和擴散3種形式。三者相比,干、濕沉降往往占據(jù)主導地位,其通量值要遠大于擴散交換通量;而相比于前兩者,擴散交換通量是雙向的過程,受到氣象條件以及污染物性質(zhì)等多種因素的影響。雙膜理論通常被用來研究水-氣之間的擴散。水-沉積物界面的交換主要形式有懸浮物的沉積、沉積物的再懸浮以及孔隙水與上覆水的交換等形式,受風等氣象條件以及水動力條件的影響較大。因此,沉積物既可能是污染物的源,也可能是污染物的匯。Ouyang等[17]對巢湖OCPs的水-氣界面的交換進行了研究,根據(jù)OCPs在大氣氣相與水體中的濃度,計算并比較了OCPs在大氣氣相與水體中的逸度,發(fā)現(xiàn)在2010年5月至2011年2月期間,α-HCH、γ-HCH、HCB、DDT和DDE的跨界面遷移方向均為從水體到大氣,并且α-HCH、γ-HCH與DDT的遷移通量受氣溫、空氣一側的流速以及水一側的流速等參數(shù)的影響較大,表明水體中α-HCH、γ-HCH、HCB、DDT和DDE是空氣中相應污染物的來源之一。Qin等[23]對巢湖PAHs水-氣界面的交換進行了研究,結果表明低環(huán)PAHs遷移方向為水相到氣相,而中高環(huán)PAHs遷移方向為從氣相到水相,水-氣交換通量與氣溫具有顯著正相關關系(P<0.01),PAHs在氣相與水相中的含量對遷移通量影響最大,這些結果與文獻中相關研究的結果一致。
2.4 巢湖微量有機污染物的多介質(zhì)歸趨模擬
多介質(zhì)模型是20世紀80年代在國外發(fā)展起來的新型數(shù)學模型,其特點是將各種不同環(huán)境介質(zhì)內(nèi)污染物的遷移轉(zhuǎn)化過程與污染物跨介質(zhì)的遷移過程相聯(lián)系。多介質(zhì)模型在污染生態(tài)學、持久性有毒污染物的生物地球化學循環(huán)與生態(tài)風險評價等方面應用廣泛。1979年Mackay[83]把描述物質(zhì)在各相間平衡分配的逸度的概念應用于有機化合物在環(huán)境系統(tǒng)各相中分布的預測模型研究,提出了多介質(zhì)模型的逸度方法,簡化了模型的結構和計算過程,在國內(nèi)外得到了廣泛應用[83-99]。多介質(zhì)逸度模型建模的基本流程如下:(1)構建模型概念框圖,(2)建立模型方程,(3)收集模型參數(shù),(4)模型編程,(5)靈敏度分析,(6)模型校準,(7)模型模擬與結果分析。
Kong等[41]構建了巢湖α-HCH的IV級多介質(zhì)逸度模型,模擬了α-HCH在大氣氣相與顆粒相以及水體、懸浮顆粒物與沉積物中分布及其動態(tài)變化,計算了α-HCH跨界面遷移通量,對模型參數(shù)進行了敏感性分析,對模型結果進行了不確定性分析。結果表明,除懸浮顆粒物外,其他環(huán)境介質(zhì)的模擬結果與實測結果吻合較好,并且很好地模擬了α-HCH在2010年5月至2011年2月期間的動態(tài)變化,大氣平流輸入為α-HCH的主要輸入源,大氣平流輸出和沉積物降解為α-HCH的主要輸出過程,沉積物是α-HCH重要的匯,最敏感的參數(shù)為來源與降解參數(shù),沉積物比水和空氣更容易受到參數(shù)變化的影響,溫度對α-HCH動態(tài)變化的影響最大。Kong等[41]對2012年開發(fā)的IV級多介質(zhì)逸度模型結構進行了改進,增加了魚類子模式,建立了γ-HCH的IV級多介質(zhì)逸度模型[42],模擬了1984~2020年γ-HCH的長期變化,以及2010年5月至2011年2月γ-HCH的月變化,對穩(wěn)態(tài)與動態(tài)參數(shù)進行了敏感性分析,利用基本蒙特卡洛模擬方法和貝葉斯蒙特卡洛模擬(MCMC)方法進行模型的不確定性分析。長期模擬結果表明,巢湖γ-HCH的年去除率約為36 kg,由大氣通過水-氣界面進入湖泊的年通量為31 kg,通過水-沉積物界面進入沉積物的年通量約為13 kg。
2.5 巢湖微量有機污染物的風險評估
風險評價就是評估一種或多種壓力形成或可能形成的不利生態(tài)和健康效應的可能性,可分為生態(tài)風險評價和健康風險評價兩大類[100]。常用的生態(tài)風險評價方法有閾值法、概率風險評價法和物種敏感度分布(SSD)法等。其中,閾值法是最簡單、最常用的方法,通過水中污染物的含量與環(huán)境基準的商值衡量水體或者沉積物的風險;概率風險評價考慮了環(huán)境濃度以及毒理數(shù)據(jù)的統(tǒng)計意義,潛在生態(tài)風險的計算主要依靠計算暴露曲線與效應曲線之間的重疊面積得到;SSD方法基于不同物種對污染物敏感性的差異,以急性或慢性毒理數(shù)據(jù)為基礎,構建統(tǒng)計分布模型,進行生態(tài)風險評價。由于不僅可以評估單一污染物的生態(tài)風險,而且可以評估多種污染物的聯(lián)合生態(tài)風險,SSD方法已成為目前國內(nèi)外廣泛應用的生態(tài)風險評估方法[101]。SSD生態(tài)風險方法的基本步驟如下:(1)污染物生態(tài)毒理數(shù)據(jù)的收集和處理,(2)SSD曲線的構建,(3)計算單一污染物可能潛在影響比例(PAF),以評估單一污染物的生態(tài)風險,(4)計算多種污染物可能潛在影響比例(msPAF),以評估多種污染物的聯(lián)合生態(tài)風險[15]。
巢湖水體微量有機污染物的生態(tài)風險評價主要應用SSD方法,評估的污染物主要有OCPs、PAHs、PAEs、PFAAs和OPs[15, 25, 33-34, 102]。Liu等[15]評估結果表明,巢湖水體中OCPs對水生生物的生態(tài)風險很低,主要OCPs成份的生態(tài)風險由大到小依次為:七氯> γ-HCH> p,p’-DDT>艾氏劑>異狄氏劑。Qin等[25]的評估結果表明,8種PAHs對水生生物的聯(lián)合風險范圍為0.29%~1.58%,其中,河流樣點的風險值均值為0.93%,高于湖泊樣點的均值0.35%,PAHs的生態(tài)風險由大到小依次為Pyr、Ant、Fla、Phe、Nap、Flo和Ace。Liu等[34]的評估結果表明,巢湖水體PFOS的生態(tài)風險顯著高于PFOA。He等[33]評估了6種PAEs的在2010年5月到2011年4月期間的生態(tài)風險,結果表明,全年6種PAEs生態(tài)風險的大小順序為:DnOP > DnBP > BBP > DMP > DEP > DEHP,而在夏季,DnBP在夏季的生態(tài)風險最大,其95%置信水平的生態(tài)風險為0.7%。He等[102]開發(fā)了基于SSD模型和貝葉斯方法的生態(tài)風險評價軟件平臺,評估了2010年5月至2011年4月水體中4類(OCPs、PAHs、PAEs和ONPPs) 69種微量有機污染物的生態(tài)風險,并根據(jù)生態(tài)風險大小,建立了4類物質(zhì)的優(yōu)控污染物清單。
王卿梅等[20]根據(jù)沉積物OCPs的質(zhì)量基準(SQGs)對巢湖懸浮物中OCPs的潛在生態(tài)風險進行了評估。結果表明,巢湖懸浮物中氯丹、p,p’-DDD、七氯濃度低于閾值效應含量(TECs),不會對水生生物產(chǎn)生不利影響,而DDT (p,p’-DDT和o,p’-DDT)濃度高于可能效應含量(PECs),可能會對水生生物產(chǎn)生不利影響。巢湖懸浮物中OCPs污染物濃度高于PECs的情況,時間上,主要出現(xiàn)在夏季,空間上主要出現(xiàn)在巢湖中部的中廟和姥山樣點。
He等[33,103]分別對巢湖飲用水源地水體中DDTs和HCHs以及6種PAEs的健康風險進行了評估,根據(jù)美國環(huán)保局提出的方法、標準與參數(shù),DDTs、HCHs和PAEs的致癌風險均很低,低于其提出的百萬分之一的可接受風險;DEHP的致癌風險高于DDTs 和HCHs;DDTs和HCHs的非致癌風險也很低,而在2010年9月DnBP的飲用和洗浴的非致癌風險分別達到1.265×10-5(0.862×10-5~1.857×10-5)和1.259×10-5(1.093×10-5~1.538× 10-5),對人體健康具有一定的風險。
He等[29]對巢湖大氣中PBDEs的健康風險進行了評估。結果表明,整體上巢湖大氣中PBDEs的呼吸暴露風險較低,但是冬季巢湖市大氣中PBDEs的暴露濃度較高,具有一定的潛在暴露風險。
2.6 巢湖微量有機污染物殘留與分布的影響因素
微量有機污染物在環(huán)境中殘留與分布受多種因素的共同影響,這些因素包括污染物的物理化學性質(zhì)(如分子量、蒸汽壓、溶解度、亨利常數(shù)、Kow、Koc等)、人類活動(如污染物的生產(chǎn)與使用情況)、環(huán)境介質(zhì)特征(如有機質(zhì)含量)以及自然條件(如溫度、降水等)。這些因素對不同類型的微量有機污染物的影響程度可能存在差別。例如,對于疏水性較強的微量有機污染物(如PAHs、OCPs等),環(huán)境介質(zhì)中有機碳含量對其具有重要影響。
Li等[7]對巢湖沉積物中OCPs的污染歷史及其影響因素進行了分析,結果表明,沉積物中OCPs殘留水平與TOC含量、沉積物粒徑、營養(yǎng)成分和重金屬含量具有顯著的相關性,反映沉積條件和人類活動對沉積物中OCPs的殘留與分布具有重要影響。Ren等[26]對巢湖沉積物中PAHs的歷史變化及其影響因素進行了研究。與OCPs相同,沉積物中PAHs的殘留與分布也受到人類活動的顯著影響。Wang等[22]發(fā)現(xiàn)巢湖表層沉積物中PCBs殘留水平與水體營養(yǎng)狀態(tài)存在一定相關關系。Qin等[24]的研究表明,巢湖水體、懸浮物和沉積物中PAHs殘留水平分別與水體溶解態(tài)有機碳(DOC)、顆粒態(tài)有機碳(POC)和沉積物總有機碳(TOC)具有明顯的正相關關系,同時,水文氣象因素對巢湖水體與懸浮物PAHs的殘留與分布也具有重要影響。沉積物中PBDEs與TOC之間也具有顯著的正相關關系[30]。He等[33]對巢湖水體PAEs的月濃度與氣象水文因子的相關性進行了分析,結果表明,降雨引起的地表徑流是影響巢湖水體PAEs時空分布的重要因素;低分子量PAEs(DMP和DEP)的濃度與豐樂河的農(nóng)業(yè)地表徑流量有顯著的正相關關系,而高分子量PAEs(BBP和DEHP)的濃度與地表徑流量有顯著的負相關關系。Liu等[34]研究了巢湖水體中PFAAs含量與熒光類有機質(zhì)(FDOM)之間,以及與基本水環(huán)境因子(溫度、鹽度、溶解氧(DO))、氧化還原電位(ORP)和pH值之間的關系,結果表明,水體中PFAAs含量與除溫度外的其他5個水環(huán)境因子具有顯著的相關關系,PFAAs與ORP和DO具有顯著的負相關關系(P<0.01),與鹽度具有顯著的正相關關系(P<0.01);水體中疏水性較強的PFAAs成份(如PFOA,PFPeA,PFHxA,PFBS,PFHpA,PFHxS,PFNA和PFDA)與6種類型的FDOM均具有顯著的正相關關系(P<0.01),而疏水性較弱的PFAAs成份(如PFOS)與6種FDOM均沒有顯著的相關關系;另外,還發(fā)現(xiàn)水體中PFAAs與DOC沒有顯著的相關關系。
由于起步較晚,目前巢湖生態(tài)系統(tǒng)中微量有機物的研究在廣度和深度上都存在不足。由表1可以看出,在研究的微量有機污染物類型方面尚存在一些空白,對一些新型微量有機污染物(如個人護理品、有機磷類阻燃劑、非鄰苯二甲酸酯類塑化劑、抗性基因等)的研究未見報道。在研究內(nèi)容方面,關注微量有機污染物在環(huán)境介質(zhì)殘留水平與分布特征較多,而對其環(huán)境行為與遷移歸趨等方面關注較少,甚至在微量有機污染物光降解、微生物降解、生物富集、生物放大/稀釋、以及生物毒性效應等方面仍為空白。
針對目前巢湖生態(tài)系統(tǒng)微量有機污染物研究存在的問題,在今后的研究中,應加強對新型微量有機污染物的研究。在研究內(nèi)容方面,除了進行多介質(zhì)殘留水平、分布特征與來源解析等方面的研究外,還應加強環(huán)境行為過程(包括多介質(zhì)分配、生物富集、食物鏈放大/稀釋、降解、吸附解析等)、毒性效應與生態(tài)風險、跨界面遷移與多介質(zhì)歸趨模擬等方面的研究。
[1] Aggerbeck M, Ambolet-Camoit A, Ottolenghi C, et al. Effects of combined persistant organic pollutants on global gene expression in human HepaRG cells: Enhanced down-regulation of metabolic pathways [J]. Toxicology Letters, 2011, 105: S41-S41
[2] Kelly B C, Ikonomou M G, Blair J D, et al. Food web-specific biomagnification of persistent organic pollutants [J]. Science, 2007, 317(5835): 236-239
[3] UNEP. Final Act of the Plenipotentiaries on the Stockholm Convention on Persistent Organic Pollutants, United Nations Environment Programme[R]. Geneva, Switzerland:UN, 2001
[4] UNEP. Report of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants on the work of Its Fifth Meeting, United Nations Environment Programme [R]. Geneva, Switzerland:UN, 2011
[5] 陶澍, 駱永明, 朱利中, 等. 典型微量有機污染物的區(qū)域環(huán)境過程[J]. 環(huán)境科學學報, 2006, 26(1): 168-171
Tao S, Luo Y M, Zhu L Z, et al. Regional environmental processes of typical trace organic pollutants [J]. Acta Scientiae Circumstantiae, 2006, 26(1): 168-171 (in Chinese)
[6] Qi Y J, Hu S B, Huo S L, et al. Spatial distribution and historical deposition behaviors of perfluoroalkyl substances (PFASs) in sediments of Lake Chaohu, a shallow eutrophic lake in Eastern China [J]. Ecological Indicators, 2015, 57: 1-10
[7] Li C C, Huo S L, Xi B D, et al. Historical deposition behaviors of organochlorine pesticides (OCPs) in the sediments of a shallow eutrophic lake in Eastern China: Roles of the sources and sedimentological conditions [J]. Ecological Indicators, 2015, 53: 1-10
[8] Liu E F, Shen J. A comparative study of metal pollution and potential eco-risk in the sediment of Chaohu Lake (China) based on total concentration and chemical speciation [J]. Environmental Science and Pollution Research, 2014, 21(12): 7285-7295
[9] Yang L B, Kun L, Wei M, et al.Temporal and spatial changes in nutrients and chlorophyll-α in a shallow lake, Lake Chaohu, China: An 11-year investigation [J]. Journal of Environmental Sciences, 2013, 25(6): 1117-1123
[10] Liu E F, Shen J, Birch G F, et al. Human-induced change in sedimentary trace metals and phosphorus in Chaohu Lake, China, over the past half-millennium [J]. Journal of Paleolimnology, 2012, 47(4): 677-691
[11] Han Y M, Can J J, Kenna T C, et al. Distribution and ecotoxicological significance of trace element contamination in a similar to 150 yr record of sediments in Lake Chaohu, Eastern China [J]. Journal of Environmental Monitoring, 2011, 13(3): 743-752
[12] 王維, 趙影, 黃曉沐, 等. 巢湖水有機污染物的遺傳毒性及對飲用水水質(zhì)的影響[J]. 癌變·畸變·突變, 2004, 16(6): 352-354, 358
Wang W, Zhao Y, Huang X M, et al. Genotoxicity organic pollutants of Chaohu Lake and effects on drinking water quality [J]. Carcinogenesis, Teratogenesis and Mutagenesis, 2004, 16(6): 352-354, 358 (in Chinese)
[13] He Q S, Wang Q M, Wang Y, et al. Temporal and spatial variations of organochlorine pesticides in the suspended particulate matter from Lake Chaohu, China [J]. Ecological Engineering, 2015, 80(S1): 214-222
[14] Ouyang H L, Wang Q M, He W, et al. Organochlorine pesticides in the dust fall around Lake Chaohu, the fifth largest lake in China [J]. Environmental Monitoring and Assessment, 2014, 186(1): 383-393
[15] Liu W X, He W, Qin N, et al. Residues, distributions, sources, and ecological risks of OCPs in the water from Lake Chaohu, China [J]. The Scientific World Journal, 2012, 897697, 16 pages
[16] Liu W X, He W, Qin N, et al. The residues, distribution, and partition of organochlorine pesticides in the water, suspended solids, and sediments from a large Chinese lake (Lake Chaohu) during the high water level period [J]. Environmental Science and Pollution Research, 2013, 20(4): 2033-2045
[17] Ouyang H L, He W, Qin N, et al. Water-gas exchange of organochlorine pesticides at Lake Chaohu, a large Chinese lake [J]. Environmental Science and Pollution Research, 2013, 20(4): 2020-2032
[18] Ouyang H L, He W, Qin N, et al. Levels, temporal-spatial variations, and sources of organochlorine pesticides in ambient air of Lake Chaohu, China [J]. The Scientific World Journal, 2012, 504576, 12 pages
[19] 王雁, 何偉, 秦寧, 等. 巢湖表層沉積物中有機氯農(nóng)藥的殘留與風險[J]. 環(huán)境科學學報, 2012, 32(2): 308-316
Wang Y, He W, Qin N, et al. Residual levels and ecological risks of organochlorine pesticides in surface sediments from Lake Chaohu [J]. Acta Scientiae Circumstantiae, 2012, 32(2): 308-316 (in Chinese)
[20] 王卿梅, 何玘霜, 王雁, 等. 巢湖懸浮物中有機氯農(nóng)藥的分布、來源與風險[J]. 湖泊科學, 2014, 26(6): 887-896
Wang Q M, He Q S, Wang Y, et al. Distribution, source identification and risk assessment of organochlorine pesticides (OCPs) in suspended particulate matter (SPM) from Lake Chaohu [J]. Journal of Lake Sciences, 2014, 26(6): 887-896 (in Chinese)
[21] Wang J Z, Liu L Y, Zhang K, et al. Halogenated organic contaminants (HOCs) in sediment from a highly eutrophicated lake, China: Occurrence, distribution and mass inventories [J]. Chemosphere, 2012, 89(8): 1003-1008
[22] Wang X W, Xi B D, Huo S L, et al. Polychlorinated biphenyls residues in surface sediments of the eutrophic Chaohu Lake (China): Characteristics, risk, and correlation with trophic status [J]. Environmental Earth Sciences, 2014, 71(2): 849-861
[23] Qin N, He W, Kong X Z, et al. Atmospheric partitioning and the air-water exchange of polycyclic aromatic hydrocarbons in a large shallow Chinese lake (Lake Chaohu) [J]. Chemosphere, 2013, 93(9): 1685-1693
[24] Qin N, He W, Kong X Z, et al. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in the water-SPM-sediment system of Lake Chaohu, China [J]. Science of the Total Environment, 2014, 496: 414-423
[25] Qin N, He W, Kong X Z, et al. Ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the water from a large Chinese lake based on multiple indicators [J]. Ecological Indicators, 2013, 24: 599-608
[26] Ren C, Wu Y, Zhang S, et al. PAHs in sediment cores at main river estuaries of Chaohu Lake: Implication for the change of local anthropogenic activities [J]. Environmental Science and Pollution Research, 2015, 22(3): 1687-1696
[27] Li C C, Huo S L, Yu Z Q, et al. Spatial distribution, potential risk assessment, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Lake Chaohu, China [J]. Environmental Science and Pollution Research, 2014, 21(20): 12028-12039
[28] 秦寧, 何偉, 王雁, 等. 巢湖水體和水產(chǎn)品中多環(huán)芳烴的含量與健康風險[J]. 環(huán)境科學學報, 2013, 33(1): 230-239
Qin N, He W, Wang Y, et al. Residues and health risk of polycyclic aromatic hydrocarbons in the water and aquatic products from Lake Chaohu [J]. Acta Scientiae Circumstantiae, 2013, 33(1): 230-239 (in Chinese)
[29] He W, Qin N, He Q S, et al. Atmospheric PBDEs at rural and urban sites in central China from 2010 to 2013: Residual levels, potential sources and human exposure [J]. Environmental Pollution, 2014, 192: 232-243
[30] He W, Qin N, Kong X Z, et al. Polybrominated diphenyl ethers (PBDEs) in the surface sediments and suspended particulate matter (SPM) from Lake Chaohu, a large shallow Chinese lake [J]. Science of the Total Environment, 2013, 463: 1163-1173
[31] Wang X W, Xi B D, Huo S L, et al. Polybrominated diphenyl ethers occurrence in major inflowing rivers of Cross Mak Lake Chaohu (China): Characteristics, potential sources and inputs to lake [J]. Chemosphere, 2013, 93(8): 1624-1631
Wang W J, Zhou J L, Pei S W, et al. Research progress on status of environmental pollutions of polybrominated diphenyl ethers [J]. Environmental Chemistry, 2014, 33(7): 1084-1093 (in Chinese)
[33] He W, Qin N, Kong X Z, et al. Spatio-temporal distributions and the ecological and health risks of phthalate esters (PAEs) in the surface water of a large, shallow Chinese lake [J]. Science of the Total Environment, 2013, 461: 672-680
[34] Liu W X, He W, Qin N, et al. Temporal-spatial distributions and ecological risks of perfluoroalkyl acids (PFAAs) in the surface water from the fifth-largest freshwater lake in China (Lake Chaohu) [J]. Environmental Pollution, 2015, 200: 24-34
[35] Yang S W, Wang S R, Wu F C, et al. Tetrabromobisphenol A: Tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China [J]. Environmental Science and Pollution Research, 2012, 19(9): 4090-4096
[36] Tang J, Shi T Z, Wu X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment [J]. Chemosphere, 2015, 122: 154-161
[37] 唐俊, 張付海, 王晨晨, 等. 巢湖及入湖河流中磺胺抗生素殘留現(xiàn)狀分析[J]. 安全與環(huán)境學報, 2014, 14(4): 334-338
Tang J, Zhang F H, Wang C C, et al. Investigation of sulfonamide antibiotics residue in the water of Chaohu Lake and its inlet rivers [J]. Journal of Safety and Environment, 2014, 14(4): 334-338 (in Chinese)
[38] 唐俊, 陳海燕, 史陶中, 等. 巢湖喹諾酮及四環(huán)素類藥物污染現(xiàn)狀及來源分析[J]. 安徽農(nóng)業(yè)大學學報, 2013, 40(6): 1043-1048
Tang J, Chen H Y, Shi T Z, et al. Occurrence of quinolones and tetracyclines antibiotics in the aquatic environment of Chaohu Lake [J]. Journal of Anhui Agricultural University, 2013, 40(6): 1043-1048 (in Chinese)
[39] Wu Y, Zhang S, Ren C, et al. Residues of organophosphorus insecticides in sediment around a highly eutrophic lake, Eastern China [J]. Journal of Soils and Sediments, 2015, 15(2): 436-444
[40] Liang B, Yang C L, Gong M B, et al. Adsorption and degradation of triazophos, chlorpyrifos and their main hydrolytic metabolites in paddy soil from Chaohu Lake, China [J]. Journal of Environmental Management, 2011, 92(9): 2229-2234
[41] Kong X Z, He W, Qin N, et al. Simulation of the fate and seasonal variations of α-hexachlorocyclohexane in Lake Chaohu using a dynamic fugacity model [J]. The Scientific World Journal, 2012, 691539, 12 pages
[42] Kong X Z, He W, Qin N, et al. Modeling the multimedia fate dynamics of γ-hexachlorocyclohexane in a large Chinese lake [J]. Ecological Indicators, 2014, 41: 65-74
[43] Stockholm Convention. Listing of POPs in the Stockholm Convention [EB/OL]. http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx
[44] Jones K C, de Voogt P. Persistent organic pollutants (POPs): State of the science [J]. Environmental Polution, 1999, 100(1-3): 209-221
[45] Tao S, Xu F L, Wang X J, et al. Organochlorine pesticides in agricultural soil and vegetables from Tianjin, China [J]. Environmental Science & Technology, 2005, 39 (8): 2494-2499
[46] Gong Z M, Xu F L, Dawson R, et al. Residues of hexachlorocyclohexane isomers and their distribution characteristics in soils in the Tianjin area, China [J]. Archives of Environmental Contamination and Toxicology, 2004, 46(4): 432-437
[47] Qiu X H, Zhu T, Yao B, et al. Contribution of dicofol to the current DDT pollution in China [J]. Environmental Science & Technology, 2005, 39(12): 4385-4390
[48] Miller S. The persistent PCB problem [J]. Environmental Science & Technology, 1982, 16(2): A98-A99
[49] Choi H, Al-Abed S R. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism [J]. Journal of Hazardous Materials, 2009, 165(1-3): 860-866
[50] Doong R A, Peng C K, Sun Y C, et al. Composition and distribution of organochlorine pesticide residues in surface sediments from the Wu-Shi River estuary, Taiwan [J]. Marine Pollution Bulletin, 2002, 45(1-12): 246-253
[51] Feng H, Cochran J K, Lwiza H, et al. Distribution of heavy metal and PCB contaminants in the sediments of an urban estuary: The Hudson River [J]. Marine Environmental Research, 1998, 45(1): 69-88
[52] Zhao Z H, Zhang L, Wu J L, et al. Distribution and bioaccumulation of organochlorine pesticides in surface sediments and benthic organisms from Taihu Lake, China [J]. Chemosphere, 2009, 77(9): 1191-1198
[53] Petry T, Schmid P, Schlatter C. The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs) [J]. Chemosphere, 1996, 32(4): 639-648
[54] Subramanian A, Kunisue T, Tanabe S. Recent status of organohalogens, heavy mentals and PAHs pollution in specific locations in India [J]. Chemosphere, 2015, 137: 122-134
[55] Louvado A, Gomes N C M, Simoes M M Q, et al. Polycyclic aromatic hydrocarbons in deep sea sediments: Microbe-pollutant interactions in a remote environment [J]. Science of the Total Environment, 2015, 526: 312-328
[56] Duan L, Naidu R, Thavamani P, et al. Managing long-term polycyclic aromatic hydrocarbon contaminated soils: A risk-based approach [J]. Environmental Science and Pollution, 2015, 22(12): 8927-8941
[57] Rahman M, Brazel C S. The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges [J]. Progress in Polymer Science, 2004, 29: 1223-1248
[58] Zhang L L, Liu J L, Liu H Y, et al. The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China [J]. Ecotoxicology, 2015, 24(5): 967-984
[59] de Wit C A. An overview of brominated flame retardants in the environment [J]. Chemosphere, 46(5): 583-624
[60] Yu B Q, Zhang R R, Liu P Y, et al. Determination of nine hydroxylated polybrominated diphenyl ethers in water by precolumn derivatization-gas chromatography-mass spectrometry [J]. Journal of Chromatography A, 2015, 1419: 19-25
[61] Johnston G P, Lineman D, Johnston C G, et al. Characterization, sources and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in long-term contaminated riverbank sediments [J]. Environmental Earth Sciences, 2015, 74(4): 3519-3529
[62] Wang L L, Yang Z F, Niu J F, et al. Characterization, ecological risk assessment and source diagnostics of polycyclic aromatic hydrocarbons in water column of the Yellow River Delta, one of the most plenty biodiversity zones in the world [J]. Journal of Hazardous Materials, 2009, 169(1-3): 460-465
[63] Brown J N, Peake B M. Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff [J]. Science of the Total Environment, 2006, 359(1-3): 145-155
[64] Rahman M, Brazel C S. The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges [J]. Progress in Polymer Science, 2004, 29(12): 1223-1248
[65] Lu Q, Johnson A C, Juergens M D, et al. The distribution of polychlorinated biphenyls (PCBs) in the River Thames Catchment under the scenarios of climate change [J]. Science of the Total Environment, 2015, 533: 187-195
[66] Okuda T, Kumata H, Zakaria M P, et al. Source identification of Malaysian atmospheric polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions [J]. Atmospheric Environment, 2002, 36(4): 611-618
[67] Wang Y, Jin X H, Hu J Y, et al. Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) in a marine food web from Bohai Bay, North China [J]. Environmental Science & Technology, 2007, 41(9): 3109-3114
[68] Schwanz T G, Llorca M, Farre M, et al. Perfluoroalkyl substances assessment in drinking waters from Brazil, France and Spain [J]. Science of the Total Environment, 2016, 539: 143-152
[69] Armstrong D L, Lozano N, Rice C P, et al. Temporal trends of perfluoroalkyl substances in limed biosolids from a large municipal water resource recovery facility [J]. Journal of Environmental Management, 2016, 165: 88-95
[70] Letcher R J, Su G Y, Moore J N, et al. Perfluorinated sulfonate and carboxylate compounds and precursors in herring gull eggs from across the Laurentian Great Lakes of North America: Temporal and recent spatial comparisons and exposure implications [J]. Science of the Total Environment, 2015, 538: 468-477
[71] Goralczyk K, Pachocki K A, Hernik A, et al. Perfluorinated chemicals in blood serum of inhabitants in central Poland in relation to gender and age [J]. Science of the Total Environment, 2015, 532: 548-555
[72] 劉琰, 江秋楓, 韓梅, 等. 紅楓湖流域表層沉積物中全氟化合物的污染特征[J]. 環(huán)境科學研究, 2015, 28(4): 517-523
Liu Y, Jiang Q F, Han M, et al. Contamination profiles of perfluorinated substances in surface sediments of Hongfeng Lake Basin [J]. Research of Environmental Sciences, 2015, 28(4): 517-523 (in Chinese)
[73] 胡國成, 鄭海, 張麗娟, 等. 珠江三角洲土壤中全氟化合物污染特征研究[J]. 中國環(huán)境科學, 2013, 33(S1): 37-42
Hu G C, Zheng H, Zhang L J, et al. Contamination characteristics of perfluorinated compounds in soil from Pearl River Delta,South China [J]. China Environmental Science, 2013, 33(S1): 37-42 (in Chinese)
[74] 孟晶, 王鐵宇, 王佩, 等. 淮河流域土壤中全氟化合物的空間分布及組成特征[J]. 環(huán)境科學, 2013, 34(8): 3188-3194
Meng J, Wang T Y, Wang P, et al. Spatial distribution and composition of perfluorinated compounds in soils around the Huaihe River [J]. Environmental Science, 2013, 34(8): 3188-3194 (in Chinese)
[75] Ngumba E, Gachanja A, Tuhkanen T. Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya [J]. Science of the Total Environment, 2016, 539: 206-213
[76] 梁惜梅, 施震, 黃小平. 珠江口典型水產(chǎn)養(yǎng)殖區(qū)抗生素的污染特征[J]. 生態(tài)環(huán)境學報, 2013, 22(2): 304-310
Liang X M, Shi Z, Huang X P. Occurrence of antibiotics in typical aquaculture of the Pearl River Estuary [J]. Ecology and Environmental Sciences, 2013, 22(2): 304-310 (in Chinese)
[77] Vennemo H, Aunan K, Lindhjem H, et al. Environmental pollution in China: Status and trends [J]. Review of Environmental Economics and Policy, 2009, 3(2): 209-230
[78] Zhang Y X, Tao S, Shen H Z, et al. Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21063-21067
[79] Wang T Y, Wang P, Meng J, et al. A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China [J]. Chemosphere, 2015, 129: 87-99
[80] Guo C S, Zhang Y, Zhao X, et al. Distribution, source characterization and inventory of perfluoroalkyl substances in Taihu Lake, China [J]. Chemosphere, 2015, 127: 201-207
[81] Zuccato E, Castiglioni S, Bagnati R, et al. Source, occurrence and fate of antibiotics in the Italian aquatic environment [J]. Journal of Hazardous Materials, 2010, 179(1-3): 1042-1048
[82] Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759
[83] Mackay D. Finding fugacity feasible [J]. Environmental Science & Technology, 1979, 13: 1218-1223
[84] Mackay D, Diamond M. Application of the QWASI (Quatitative Water Air Sediment Interaction) fugacity model to the dynamics of organic and inorganic chemicals in lakes [J]. Chemosphere, 1989, 18: 1343-1365
[85] Mackay D, Joy M, Paterson S. A Quantitative Water, Air Sediment Interaction (QWASI) fugacity model for describong the fate of chemicals in lakes [J]. Chemosphere, 1983, 12: 981-997
[86] Mackay D, Paterson S. Calculating fugacity [J]. Environmental Science & Technology, 1981, 15: 1006-1014
[87] Mackay D, Paterson S. Fugacity revisite—The fugacity approach to environmental transport [J]. Environmental Science & Technology, 1982, 16: A654-A660
[88] Mackay D, Paterson S. Ecalusting the multimedia fate of organic-chemicals—A level-III fugacity model [J]. Environmental Science & Technology, 1991, 25: 427-436
[89] Mackay D, Paterson S, Joy M. A Quatitative Water, Air, Sediment Interaction (QEASI) fugacity model for describing the fate of chemicals in rivers [J]. Chemosphere, 1983, 12: 1193-1208
[90] Mackay D, Paterson S, Schroeder W H. Model describing the rates of transfer processes of organic-chemicals between atmosphere and water [J]. Environmental Science & Technology, 1986, 20: 810-816
[91] Wang X L, Tao S, Dawson R W, et al. Characterizing and comparing risks of polycyclic aromatic hydrocarbons in a Tianjin wastewater-irrigated area [J]. Environmental Research, 2002, 90: 201-206
[92] Cao H Y, Tao S, Xu F L, et al. Multimedia fate model for hexachlorocyclohexane in Tianjin, China [J]. Environmental Science & Technology, 2004, 38: 2126-2132
[93] Cao H Y, Liang T, Tao S, et al. Simulating the temporal changes of OCP pollution in Hangzhou, China [J]. Chemosphere, 2007, 67: 1335-1345
[94] Liu Z Y, Quan X, Yang F L. Long-term fate of three hexachlorocyclohexanes in the lower reach of Liao River basin: Dynamic mass budgets and pathways [J]. Chemosphere, 2007, 69: 1159-1165
[95] Tao S, Cao H Y, Liu W X, et al. Fate modeling of phenanthrene with regional variation in Tianjin, China [J]. Environmental Science & Technology, 2003, 37: 2453-2459
[96] Tao S, Yang Y, Cao H Y, et al. Modeling the dynamic changes in concentrations of gamma-hexachlorocyclohexane (gamma-HCH) in Tianjin region from 1953 to 2020 [J]. Environmental Pollution, 2006, 139: 183-193
[97] Lang C, Tao S, Wang X J, et al. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) in Pearl River Delta region, China [J]. Atmospheric Environment, 2007, 41: 8370-8379
[98] Wang R, Cao H Y, Li W, et al. Spatial and seasonal variations of polycyclic aromatic hydrocarbons in Haihe Plain, China [J]. Environmental Pollution, 2011, 159: 1413-1418
[99] Xu F L, Qin N, Zhu Y, et al. Multimedia fate modeling of polycyclic aromatic hydrocarbons (PAHs) in Lake Small Baiyangdian, Northern China [J]. Ecological Modelling, 2013, 252: 246-257
[100] 張永春, 林玉鎖, 孫勤芳, 等. 有害廢物生態(tài)風險評價[M]. 北京: 中國環(huán)境科學出版社, 2002: 11-12
[101] Xu F L, Li Y L, Wang Y, et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment [J]. Ecological Indicators, 2015, 54: 227-237
[102] He W, Qin N, Kong X Z, et al. Water quality benchmarking (WQB) and priority control screening (PCS) of persistent toxic substances (PTSs) in China: Necessity, method and a case study [J]. Science of the Total Environment, 2014, 472: 1108-1120
[103] He W, Qin N, He Q S, et al. Characterization, ecological and health risks of DDTs and HCHs in water from a large shallow Chinese lake [J]. Ecological Informatics, 2012, 12: 77-84
◆
Progresses in the Studies on Trace Organic Contaminants in Lake Chaohu Ecosystem
He Yong, Xu Fuliu*, He Wei, Qin Ning, Kong Xiangzhen, Liu Wenxiu, Wang Qinmei
Laboratory for Earth Surface Processes of Ministry of Education, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
Major progresses in the studies on trace organic contaminants in Lake Chaohu ecosystem are reviewed. The studies on trace organic contaminants in Lake Chaohu started relatively late, but developed relatively fast. At present, the investigated trace organic contaminants include organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), phthalate esters (PAEs), perfluoroalkyl acids (PFAAs), tetrabromobisphenol A (TBBPA), antibiotics and organophosphorus pesticides (OPs). Their distributions in multimedia including water, gas, dust fall, sediment, suspended particular matter, and aquatic organisms as well as their source apportionments, interface transportations, fate and transport simulations, and risk assessments have been studied. It is expected that this paper could provide an important decision-making support for the risk management of trace organic contaminants and water quality improvement in Lake Chaohu, and it would be helpful to carry out similar studies in other lakes.
Lake Chaohu; trace organic contaminants; multimedia distribution; source apportionment; interface transportation; fate and transport simulation; risk assessment
10.7524/AJE.1673-5897.20151130012
國家水體污染控制與治理科技重大專項項目(2012ZX07103-002);國家自然科學基金項目(41271462, 41030529)
賀勇(1995-),男,在讀本科生,研究方向為毒害污染物生態(tài)風險評估,E-mail: 1400013229@pku.edu.cn
*通訊作者(Corresponding author), E-mail: xufl@urban.pku.edu.cn
2015-11-30 錄用日期:2016-01-06
1673-5897(2016)2-111-13
X171.5
A
簡介:徐福留(1962—),男,博士,教授,博士生導師,國家杰出青年科學基金獲得者,主要從事污染物表生行為與環(huán)境效應研究。
賀勇, 徐福留, 何偉, 等. 巢湖生態(tài)系統(tǒng)中微量有機污染物的研究進展[J]. 生態(tài)毒理學報,2016, 11(2): 111-123
He Y, Xu F L, He W, et al. Progresses in the studies on trace organic contaminants in Lake Chaohu ecosystem [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 111-123 (in Chinese)