童蕾,姚林林,劉慧,王焰新
中國地質(zhì)大學(xué)(武漢) 環(huán)境學(xué)院,武漢 430074
?
抗生素在地下水系統(tǒng)中的環(huán)境行為及生態(tài)效應(yīng)研究進(jìn)展
童蕾,姚林林,劉慧,王焰新
中國地質(zhì)大學(xué)(武漢) 環(huán)境學(xué)院,武漢 430074
抗生素在環(huán)境中的殘留已引起廣泛關(guān)注。隨著對地下水污染的報(bào)道日益增多,抗生素對地下水系統(tǒng)的潛在影響不容忽視。本文系統(tǒng)地闡述了地下水中抗生素的來源、污染水平及遷移轉(zhuǎn)化規(guī)律,總結(jié)了抗生素對地下水微生物群落的影響以及抗生素誘導(dǎo)產(chǎn)生的抗性基因的潛在污染趨勢。因地下水賦存隱蔽,一旦污染難以及時察覺,抗生素進(jìn)入地下水系統(tǒng)后易長期殘留。目前,針對抗生素及抗性基因在地下水系統(tǒng)中的環(huán)境行為及生態(tài)效應(yīng)研究還十分有限,本文據(jù)此指出了當(dāng)前形勢下開展相關(guān)研究的必要性,并對今后的研究方向進(jìn)行了展望。
抗生素;抗性基因;地下水系統(tǒng);環(huán)境行為;生態(tài)效應(yīng)
抗生素作為藥物可選擇性地抑制或影響生物功能而被廣泛使用,主要類型有:大環(huán)內(nèi)酯類、四環(huán)素類、氟喹諾酮類、磺胺類、β-內(nèi)酰胺類、氯霉素類、林可霉素類、氨基糖苷類等[1]。根據(jù)用途不同,抗生素分為人用和獸用兩類。人用抗生素主要用于疾病的防治及個人護(hù)理;獸用抗生素除治療疾病外,常作為促生長劑在農(nóng)業(yè)、畜牧及水產(chǎn)養(yǎng)殖業(yè)大量使用。全世界每年抗生素的消費(fèi)量多達(dá)10~20萬噸[1],中國作為人口及農(nóng)業(yè)生產(chǎn)大國,抗生素生產(chǎn)量和使用量位居世界首位[2-3]。由于抗生素不能被有機(jī)體完全吸收,約有40%以上以母體或代謝產(chǎn)物的形式隨尿或糞便排出體外[4]。2013年,我國抗生素總體用量達(dá)9.27萬噸[5],其中約5.40萬噸經(jīng)排出后進(jìn)入污水處理廠,由于污水處理系統(tǒng)無法完全去除抗生素,導(dǎo)致其最終進(jìn)入地表和地下水環(huán)境中[6]。地下水中抗生素的濃度雖然較低,但其持續(xù)低水平的暴露將誘導(dǎo)環(huán)境微生物產(chǎn)生抗性(耐藥性),這些耐藥菌所攜帶的抗性基因可通過移動遺傳元件的水平轉(zhuǎn)移在不同細(xì)菌之間傳遞,引發(fā)超級耐藥致病菌的產(chǎn)生,人體一旦感染將無藥可救[7-8]。因此,地下水一旦被抗生素污染,將給人類健康帶來巨大威脅。本文從地下水系統(tǒng)中抗生素的來源、污染現(xiàn)狀、環(huán)境行為和生態(tài)效應(yīng)等幾方面進(jìn)行綜述,以期為地下水污染防治及相關(guān)法規(guī)的建立提供參考。
地下水系統(tǒng)由地下水含水系統(tǒng)和地下水流動系統(tǒng)所組成,根據(jù)研究對象有不同的邊界劃分[9]。本文研究的地下水系統(tǒng)包括包氣帶和飽水帶,包氣帶是地面以下潛水面以上的部分,土壤位于包氣帶表層,因此,地表水和土壤的抗生素污染直接影響地下水系統(tǒng)。據(jù)報(bào)道,地表水環(huán)境中抗生素的集中排放源包括:醫(yī)藥廢水、生活污水、畜牧及水產(chǎn)養(yǎng)殖廢水等[10];土壤環(huán)境中抗生素的主要來源為禽畜糞肥施用及垃圾填埋處理等[11]。檢測結(jié)果表明,污水集中排放口附近水體中的抗生素濃度明顯高于遠(yuǎn)離排污口的濃度[12-14],施用糞肥的農(nóng)田土壤中抗生素的殘留較高[15]。地表殘留的抗生素進(jìn)入包氣帶后,經(jīng)歷一系列復(fù)雜的物理、化學(xué)和生物作用,如吸附、光解、水解和微生物降解等,通過淋溶、滲濾、地表水-地下水相互作用等途徑最終進(jìn)入地下水[16-18]。在向下遷移過程中,發(fā)生的一系列物理化學(xué)反應(yīng)均有利于降低環(huán)境中母體化合物的殘留量,但抗生素的廣泛及持續(xù)使用,使外源輸入量與環(huán)境自凈量比例失衡,地表水和土壤中抗生素含量不斷增加,導(dǎo)致地下水中抗生素的濃度不斷升高。
表1 世界范圍內(nèi)地下水中常見抗生素的殘留濃度
地下水是環(huán)境中抗生素的最終歸宿地,其污染水平和來源早已受到國內(nèi)外的廣泛關(guān)注,但系統(tǒng)的調(diào)查于20世紀(jì)末才開始進(jìn)行。美國地調(diào)局2000年對美國18個州47個地下水樣(涵蓋不同氣候環(huán)境、水文地質(zhì)條件及土地利用類型等)進(jìn)行采樣分析,對21種抗生素及其代謝產(chǎn)物的檢測結(jié)果表明,磺胺甲惡唑的檢出率達(dá)23%,林可霉素、磺胺甲基嘧啶和磺胺甲惡唑3種化合物的最高濃度分別為0.32、0.36和1.11 μg·L-1[19]。美國內(nèi)布拉斯加州和華盛頓郊區(qū)的地下水中均發(fā)現(xiàn)了磺胺類抗生素的存在[20],法國、英國和丹麥等國的地下水中也檢測到高于環(huán)境安全水平的抗生素濃度[21]。López-Serna等[22]對巴塞羅那市地下水中31種抗生素及其代謝產(chǎn)物的濃度進(jìn)行分析,結(jié)果表明,克拉霉素、伊諾沙星、恩諾沙星和氧氟沙星的檢出率為100%,阿奇霉素和螺旋霉素的平均濃度分別高達(dá)0.26 μg·L-1和0.30 μg·L-1。表1為世界范圍內(nèi)地下水中抗生素的平均殘留濃度。由表可知,同一抗生素在不同地區(qū)的濃度水平差別較大[23-24]。
目前,我國地下水中抗生素污染報(bào)道相對匱乏,童蕾等[12]在江漢平原沙湖鎮(zhèn)共采集27個地下水樣品,并對其中19種抗生素殘留濃度進(jìn)行分析,探討了不同季節(jié)地下水中抗生素濃度的變化;結(jié)果表明,秋季氯四環(huán)素在地下水中的殘留濃度達(dá)86.6 ng·L-1;春季四環(huán)素和脫水紅霉素的濃度最高分別為115.2 ng·L-1和377.8 ng·L-1;氟喹諾酮和四環(huán)素類抗生素在地下水中的平均濃度遠(yuǎn)高于磺胺類和大環(huán)內(nèi)酯類。部分抗生素如甲氧芐氨嘧啶、恩諾沙星、四環(huán)素、脫水紅霉素和羅紅霉素在地下水中的濃度甚至高于地表水。Hu等[32]通過對菜地內(nèi)不同深度(地表以下10, 15, 20, 30, 40 m)地下水中11種抗生素的分析,結(jié)果表明,氯霉素和環(huán)丙沙星的濃度在地表以下10~15 m范圍內(nèi)隨深度增加逐漸降低,而15~40 m范圍內(nèi)則隨深度增加逐漸升高。姚林林等[13]對不同深度(10、25、50 m)地下水中25種抗生素隨季節(jié)的變化情況進(jìn)行分析,結(jié)果表明,春季地下水中抗生素的殘留濃度高于冬季,且氟喹諾酮類和四環(huán)素類抗生素為主要?dú)埩舫煞?,這與童蕾等的研究一致;春季不同深度地下水中抗生素總濃度的平均值分別為217.88 (10 m)、159.06 (25 m)和123.25 (50 m) ng·L-1;隨著采樣深度的增加,抗生素的總濃度呈遞減趨勢。自地表向地下遷移過程中,抗生素在包氣帶土壤和含水層沉積物上發(fā)生的物理、化學(xué)和生物過程,有利于阻礙其向深層地下水中遷移。
抗生素在地下水系統(tǒng)中易發(fā)生吸附解吸、水解、氧化還原及微生物轉(zhuǎn)化等環(huán)境行為,根據(jù)土壤介質(zhì)和地下水化學(xué)組成的不同,其遷移轉(zhuǎn)化規(guī)律有所不同。
3.1 抗生素在地下水系統(tǒng)中的吸附遷移
抗生素從地表進(jìn)入到地下首先要經(jīng)過包氣帶,包氣帶土壤對抗生素污染地下水具有阻隔和緩沖作用。目前,研究多集中于抗生素在不同土壤組分中的吸附,以及環(huán)境因子對吸附行為的影響。由于抗生素種類繁多,結(jié)構(gòu)差異大,土壤對抗生素的吸附強(qiáng)度因土壤類型和抗生素種類不同而有很大變化。辛醇-水分配系數(shù)和有機(jī)碳分配系數(shù)常用來表示吸附性能,由于抗生素多帶有親水極性官能團(tuán)(如醛基、胺基、羧基等),其在土壤中的吸附性能多用土壤水分配系數(shù)Kd來表示,Kd值越大吸附作用越強(qiáng)。而Kd值又與抗生素類型和土壤礦物組成、pH、離子強(qiáng)度、溫度和共存物質(zhì)等有關(guān)[33]。Tolls[34]總結(jié)得出,獸藥抗生素的Kd值在0.2~6 000 L·kg-1之間變化,四環(huán)素類和氟喹諾酮類抗生素隨土壤溶解性有機(jī)質(zhì)含量不同,變化范圍為100~5 000 L·kg-1,隨著相關(guān)報(bào)道增多,此范圍也在不斷擴(kuò)大。
一般來說,抗生素的吸附量隨土壤粘土含量、有效陽離子交換量、有機(jī)質(zhì)含量的增加而增加[35]。蒙脫土、伊利土和高嶺土為粘土礦物的主要成分,由于礦物結(jié)構(gòu)不同,對抗生素的吸附能力差異較大。蒙脫土具有層狀結(jié)構(gòu),抗生素易于插入層間使層間距擴(kuò)大,導(dǎo)致吸附容量增大[36-37]。高嶺土的吸附則以陽離子交換作用為主,其吸附容量較低,但吸附速率較快,受環(huán)境pH條件影響大。由于多數(shù)抗生素為兩性電解質(zhì),具有多個解離常數(shù),易隨土壤溶液pH的變化發(fā)生質(zhì)子化和去質(zhì)子化反應(yīng)帶上電荷,從而在高嶺土表面發(fā)生陽離子交換作用,其作用強(qiáng)弱受物質(zhì)的電離程度支配[38-40]。在低pH條件下,抗生素多以陽離子形式存在,易于吸附在粘土礦物和土壤有機(jī)質(zhì)上[41-42]。土壤溶液的離子強(qiáng)度和抗生素初始濃度同樣影響吸附性能,部分磺胺抗生素的Kd值隨著土壤溶液離子強(qiáng)度的升高而降低[43],帶有供電子基團(tuán)的四環(huán)素則與土壤溶液中共存的二價金屬離子形成復(fù)合結(jié)構(gòu),穩(wěn)定的復(fù)合體可增強(qiáng)吸附作用[44]。延長吸附時間同樣可提高吸附量,磺胺類抗生素在蒙脫土和伊利土短期吸附過程中(< 2 d)具有較低的土壤水分配比(Kd< 40 L·kg-1),然而經(jīng)過14 d作用后吸附量明顯增加[45]。土壤和沉積物中的活性鐵錳礦物對抗生素吸附作用較顯著,有機(jī)質(zhì)濃度和pH等環(huán)境因素同樣影響吸附效果[46]。因此,作為地下水防污屏障的包氣帶在一定程度上阻隔了抗生素向下的遷移,然而地下水的污染仍無法避免。Dalkmann等[47]采用實(shí)驗(yàn)+模擬的方式預(yù)測了長期污灌土壤中抗生素的擴(kuò)散過程,發(fā)現(xiàn)磺胺甲惡唑在不同類型土壤中的擴(kuò)散半衰期為2~33 d,同樣Baumgarten等[48]也對磺胺甲惡唑的遷移進(jìn)行了實(shí)驗(yàn)?zāi)M,結(jié)果得出在好氧、缺氧和厭氧條件下其半衰期分別為1~9 d、49 d和16 d,底物濃度、氧化還原條件和可生物降解有機(jī)碳含量等均對衰減有顯著影響。另有實(shí)驗(yàn)證明,pH、離子強(qiáng)度、腐殖酸含量和入滲速率等水動力條件對砂質(zhì)飽和含水層中抗生素遷移的影響較大[49-52],相比磺胺類抗生素而言,氟喹諾酮類抗生素較難遷移,短期滲濾實(shí)驗(yàn)較難穿透[53-55],四環(huán)素則在模擬強(qiáng)降雨條件下有少量穿透[56]。有研究證明,氧四環(huán)素于好氧條件下在土壤中的擴(kuò)散速率比缺氧條件快,其在好氧條件下有菌和無菌存在的半衰期分別為29~56 d和99~120 d,而缺氧條件下有菌和無菌存在的半衰期分別為43~62 d和69~104 d[57]。
3.2 抗生素在地下水系統(tǒng)中的生物/非生物轉(zhuǎn)化
抗生素在環(huán)境中的轉(zhuǎn)化主要包括光解、水解和微生物降解等。光解作用主要發(fā)生在表層水體和土壤中,分為直接光解和間接光解[58],地下水系統(tǒng)中的抗生素以水解和微生物降解為主要轉(zhuǎn)化途徑。水解是抗生素降解的重要途徑之一,Loftin等[59]對四環(huán)素類、磺胺類和大環(huán)內(nèi)酯類藥物的水解影響因子進(jìn)行研究,發(fā)現(xiàn)離子強(qiáng)度對抗生素水解無明顯影響。在環(huán)境pH偏離中性和溫度升高的條件下,金霉素、土霉素和四環(huán)素的水解速率加快;此條件下,磺胺類和大環(huán)內(nèi)酯類藥物未發(fā)生明顯水解,且活性較低。β-內(nèi)酰胺類由于脫羧和開環(huán)作用,在弱酸性至堿性條件下水解速率較快,如青霉素水解為青霉醛和青霉胺等,這也是其大量使用但環(huán)境中檢出率較低的主要原因[60-61]。頭孢菌素類抗生素在酸性、堿性和中性條件的水環(huán)境中都能發(fā)生水解反應(yīng)[62]。水解作用可導(dǎo)致抗生素藥效失活,然而其降解產(chǎn)物對環(huán)境的影響仍有待探究。
盡管地下水中微生物數(shù)量十分稀缺,生物降解仍是地下水中抗生素降解的重要途徑。近年來,抗生素的生物降解研究多集中于污水處理廠活性污泥降解過程,自然環(huán)境中抗生素的生物降解報(bào)道較少,以地表環(huán)境篩選的單一菌種或復(fù)合菌群對抗生素的降解作用為主,地下水中抗生素的生物降解研究十分有限??股卦诃h(huán)境中的長期存在可導(dǎo)致耐藥菌的產(chǎn)生,地下水也同樣面臨耐藥菌的威脅。耐藥菌可直接破壞和修飾抗生素使其失活并降解,降解機(jī)理主要為水解、基團(tuán)轉(zhuǎn)移和氧化還原等[63]。環(huán)境中已發(fā)現(xiàn)的可降解菌種類有不動桿菌、紅球菌、放線菌、假單胞菌、發(fā)酵絲狀菌、芽孢桿菌和硝化細(xì)菌等[64]。這些耐藥菌多通過功能酶的催化作用來破壞化學(xué)鍵,如降解青霉素的β-內(nèi)酰胺環(huán)的酰胺酶,降解磺胺甲惡唑的乙?;饷傅萚65]。環(huán)境因素可影響微生物的生存及活性,它們(pH、水分、溫度、氧化還原條件、營養(yǎng)物質(zhì)等)對抗生素的生物降解均有一定影響[66]。
地下水環(huán)境以低溫、缺氧、避光為主要特點(diǎn),多數(shù)抗生素在好氧條件下降解速率較快,部分抗生素如磺胺甲惡唑?qū)ρ鹾坎幻舾?,且在厭氧條件下的降解速率(0.071 d-1)比好氧條件(0.0651 d-1)下大。同樣條件下,磺胺二甲基嘧啶和磺胺二甲氧嘧啶則無明顯降解[67]。已發(fā)現(xiàn)的磺胺甲惡唑的降解菌以細(xì)菌(紅球菌、芽孢桿菌、微桿菌、無色菌、滕黃微球菌等)為主,也有少量真菌(煙管菌),純培養(yǎng)下真菌降解率可高達(dá)80%[68]。復(fù)合菌對降解也有協(xié)同作用,磺胺甲基異惡唑和磺胺甲惡唑在紅球菌和黑曲霉菌共代謝作用下降解率達(dá)20%[69]。地下水的低溫條件在一定程度上減緩了抗生素的降解速率,研究表明磺胺甲惡唑在4oC和25oC水-沉積物系統(tǒng)中的降解速率分別為40.5%和82.9%,隨著有機(jī)質(zhì)含量的增加降解率也相應(yīng)提高[70]。Gavalchin等[71]研究了7種抗生素在30oC、20oC和4oC條件下土壤中30 d的殘留量,結(jié)果表明,除了青霉素和鏈霉素外,其他5種抗生素隨溫度降低殘留量明顯升高。適宜溫度下,紅霉素和泰樂菌素的微生物降解率可分別達(dá)76.6%和99%,最佳降解溫度在30℃以上,低溫同樣影響降解效果[72-73]。除溫度外,降解時間也十分重要,環(huán)丙沙星在微生物量較少的水環(huán)境中比較穩(wěn)定,1個月無顯著降解,而土壤培養(yǎng)2個月降解速率為0.039 d-1,3個月后才略有礦化[74-75]。因此,與地表環(huán)境相比,抗生素一旦進(jìn)入地下水系統(tǒng),其殘留時間將延長,降解也更加困難。
地下水系統(tǒng)中存在不同種類的微生物,當(dāng)抗生素在水體中殘留時間及濃度超過水體微生物的耐受性限度時,能殺死環(huán)境中某些微生物或抑制其生長,并顯著地影響環(huán)境中微生物的種類、數(shù)量以及群落結(jié)構(gòu)功能,使微生物群落產(chǎn)生抗性[76],破壞生態(tài)系統(tǒng)的平衡。
污染物對生態(tài)系統(tǒng)的影響一般從3個方面考慮:一是生物量;二是生物組成和多樣性;三是系統(tǒng)穩(wěn)定性,即抵抗外界環(huán)境變化的能力。而抗生素對地下水生態(tài)系統(tǒng)的影響主要從微生物個體、種群和系統(tǒng)生態(tài)功能的影響間接反映,包括微生物的生物量、活性、群落結(jié)構(gòu)和毒性效應(yīng)的影響等方面[77]。多數(shù)研究表明,抗生素可抑制微生物的生長,使生物量明顯下降[74],但氧四環(huán)素在低濃度(< 15 mg·kg-1)下對細(xì)菌和真菌的生物量,及土壤酶活性并不造成影響[78],也有實(shí)驗(yàn)證明,磺胺嘧啶和氧四環(huán)素在高濃度(1 000 mg·kg-1)下對土壤基礎(chǔ)呼吸和脫氫酶活性無明顯作用[79]。抗生素的毒性效應(yīng)多以單一菌種的急性毒性試驗(yàn)為主,長期慢性效應(yīng)研究的較少,實(shí)驗(yàn)設(shè)置的抗生素濃度范圍比實(shí)際情況通常高出2個數(shù)量級以上[80]。研究證明,環(huán)境中的藥物殘留對生物體的急性毒性影響較小[81],而長期慢性毒性效應(yīng)還有待確證。Haack等[82]研究結(jié)果表明,地下水微生物群落結(jié)構(gòu)在較低濃度的磺胺甲惡唑(240~520 μg·L-1) 30 d持續(xù)暴露后有顯著變化,這種變化可能引起微生物群落功能的改變。為反映整體群落結(jié)構(gòu)的變化,近年來,人們采用“污染誘導(dǎo)群落耐性”來評價生態(tài)系統(tǒng)的污染效應(yīng)[83],Schmitt等[84]將不同濃度的磺胺氯噠嗪加入土壤,在黑暗條件下培養(yǎng)20 d后,采用Biolog方法分析不同濃度磺胺氯噠嗪對土壤微生物群落的誘導(dǎo)抗性效應(yīng),結(jié)果表明,與對照相比,磺胺氯噠嗪含量為7.3 mg·kg-1時微生物群落抗性增長10%。
由于抗生素可誘導(dǎo)產(chǎn)生微生物群落耐藥性,如魚類養(yǎng)殖場中的細(xì)菌對阿莫西林、紅霉素、氯霉素、甲氧芐啶等抗生素均具有耐藥性[85],磺胺氯噠嗪在土壤中僅暴露7 d就使微生物耐藥性提高[84]。微生物耐藥性的提高可加速抗性基因在細(xì)菌間的傳播和擴(kuò)散,由于土壤含有豐富的微生物資源,抗生素污染引發(fā)的耐藥菌富集將導(dǎo)致其成為巨大的耐藥基因庫[86],對地下水系統(tǒng)造成威脅。目前,抗生素抗性基因在養(yǎng)殖廢棄物[87]、河流、湖泊等地表水[88]、土壤和沉積物[89]中均有檢出,地下水中也有相關(guān)報(bào)道。Chee-Sanford等[90]研究發(fā)現(xiàn),多種編碼抗性的四環(huán)素抗性基因在豬場下游250 m處的地下水中都能檢測到,證明其向地下水環(huán)境遷移的可能性。由于抗性基因可通過質(zhì)粒、轉(zhuǎn)座子、整合子等經(jīng)接合、轉(zhuǎn)化和轉(zhuǎn)導(dǎo)等方式進(jìn)行水平基因轉(zhuǎn)移[91],使不同種菌株產(chǎn)生耐藥,這將加速抗性基因從地表到地下的遷移和擴(kuò)散。地下水一旦被抗生素污染,攜帶有抗性基因的微生物將通過競爭成為優(yōu)勢菌群,從而改變地下水系統(tǒng)的微生物群落結(jié)構(gòu)。當(dāng)然,環(huán)境因素(如光照、溫度、含氧量等)在一定程度上可影響抗性基因的擴(kuò)散,Knapp等[92]研究了11種紅霉素和β-內(nèi)酰胺抗性基因在抗生素暴露條件下的變化規(guī)律,發(fā)現(xiàn)僅有4種抗性基因erm(B)、erm(F)、blaSHV、blaTEM有檢出,且經(jīng)2 d的暴露后,基因數(shù)量有所上升,光照、厭氧和高溫可加速抗性基因的降解[93],可見地下水環(huán)境的低溫和黑暗條件不利于抗性基因的衰減,地下水系統(tǒng)很有可能成為抗性基因的另一儲存庫。
抗生素的來源、遷移轉(zhuǎn)化及抗性基因的傳播、擴(kuò)散機(jī)制等方面的研究在我國還處于起步階段,中國作為畜牧業(yè)大國,抗生素和抗性基因的污染不容忽視,一旦這些抗性菌株和抗性基因進(jìn)入到食物鏈中,將會對人類公共健康造成巨大威脅[94]。目前,地下水系統(tǒng)中有關(guān)抗生素及抗性基因的報(bào)道還十分有限,其對地下水系統(tǒng)的生態(tài)風(fēng)險研究幾乎是空白,因此,今后應(yīng)從以下幾方面展開研究:
1. 開展地下水系統(tǒng)中抗生素及抗性基因的調(diào)查研究,以全面掌握我國地下水系統(tǒng)中不同類型的抗生素及抗性基因的污染現(xiàn)狀,追蹤污染來源,為地下水生態(tài)風(fēng)險評估和相關(guān)環(huán)境標(biāo)準(zhǔn)的建立提供參考。
2. 查明抗生素在地下水系統(tǒng)中的遷移轉(zhuǎn)化規(guī)律及抗性基因的擴(kuò)散、轉(zhuǎn)移機(jī)制,探討地質(zhì)介質(zhì)、地下水特殊環(huán)境因子與污染物間的耦合關(guān)系,為制定地下水污染防治方案提供基礎(chǔ)數(shù)據(jù)和科學(xué)依據(jù)。
3. 積累抗生素及抗性基因?qū)Φ叵滤到y(tǒng)的生態(tài)毒理基礎(chǔ)數(shù)據(jù),開發(fā)快速檢測和評價系統(tǒng),以建立地下水抗生素及抗性基因的安全評估及預(yù)警體系。
致謝:我校校友、先師傅家謨院士曾對本研究團(tuán)隊(duì)的工作給予指導(dǎo)和鼓勵。今特撰此文,以表達(dá)對先生的敬仰與追思。吾輩定不負(fù)先生厚望、為我國環(huán)保事業(yè)而努力奮斗!
[1] Kummerer K. Antibiotics in the aquatic environment - A review - Part I [J]. Chemosphere, 2009, 75(4): 417-434
[2] Ferech M, Coenen S, Malhotra-Kumar S, et al. Europeansurveillance of antimicrobial consumption (ESAC): Outpatient antibiotic use in Europe [J]. Journal of Antimicrobial Chemotherapy, 2006, 58(2): 401-407
[3] Hvistendahl M. Public health China takes aim at rampant antibiotic resistance [J]. Science, 2012, 336(6083): 795-795
[4] Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment [J]. Ecological Indicators, 2008, 8(1): 1-13
[5] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensiveevaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782
[6] Xu W H, Zhang G, Li X D, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China [J]. Water Research, 2007, 41(19): 4526-4534
[7] Martinez J L. Antibiotics and antibiotic resistance genes in natural environments [J]. Science, 2008, 321(5887): 365-367
[8] Dantas G, Sommer M O, Oluwasegun R D, et al. Bacteria subsisting on antibiotics [J]. Science, 2008, 320(5872): 100-103
[9] 楊會峰, 王貴玲, 張翼龍. 中國北方地下水系統(tǒng)劃分方案研究[J]. 地學(xué)前緣, 2014, 21(4): 74-82
Yang H F, Wang G L, Zhang Y L. A division scheme of groundwater systems in North China [J]. Earth Science Frontiers, 2014, 21(4): 74-82 (in Chinese)
[10] 馮寶佳, 曾強(qiáng), 趙亮, 等. 水環(huán)境中抗生素的來源分布及對健康的影響[J]. 環(huán)境監(jiān)測管理與技術(shù), 2013, 25(1): 14-21
Feng B J, Zeng Q, Zhao L, et al. Source distribution of antibiotics in water environment and its impact on human health [J]. The Administration and Technique of Environmental Monitoring, 2013, 25(1): 14-17, 21 (in Chinese)
[11] 閔敏, 陸光華. 水環(huán)境中的抗生素[J]. 化學(xué)與生物工程, 2013, 30(11): 19-22
Min M, Lu G H. Antibiotics in water environment [J]. Chemistry & Bioengineering, 2013, 30(11): 19-22 (in Chinese)
[12] Tong L, Huang S B, Wang Y X, et al. Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China [J]. Science of the Total Environment, 2014, 497: 180-187
[13] Yao L L, Wang Y X, Tong L, et al. Seasonal variation of antibiotics concentration in the aquatic environment:A case study at Jianghan Plain, central China [J]. Science of the Total Environment, 2015, 527: 56-64
[14] Michael I, Rizzo L, McArdell C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review [J]. Water Research, 2013, 47(3): 957-995
[15] Accinelli C, Koskinen W C, Becker J M, et al. Environmental fate of two sulfonamide antimicrobial agents in soil [J]. Journal of Agricultural and Food Chemistry, 2007, 55(7): 2677-2682
[16] 王冉, 劉鐵錚, 王恬. 抗生素在環(huán)境中的轉(zhuǎn)歸及其生態(tài)毒性[J]. 生態(tài)學(xué)報(bào), 2006, 26(1): 265-270
Wang R, Liu T Z, Wang T. The fate of antibiotics in environment and its ecotoxicology: A review [J]. Acta Ecologica Sinica, 2006, 26(1): 265-270 (in Chinese)
[17] 李兆君, 姚志鵬, 張杰, 等. 獸用抗生素在土壤環(huán)境中的行為及其生態(tài)毒理效應(yīng)研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2008, 3(1): 15-20
Li Z J, Yao Z P, Zhang J, et al. A review on fate and ecological toxicity of veterinary antibiotics in soil environments [J]. Asian Journal of Ecotoxicology, 2008, 3(1): 15-20 (in Chinese)
[18] Tong L, Li P, Wang Y X, et al. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS [J]. Chemosphere, 2009, 74(8): 1090-1097
[19] Barnes K K, Kolpin D W, Furlong E T, et al. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States - I) Groundwater [J]. Science of the Total Environment, 2008, 402(2-3): 192-200
[20] Batt A L, Snow D D, Aga D S. Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA [J]. Chemosphere, 2006, 64(11): 1963-1971
[21] Lapworth D J, Baran N, Stuart M E, et al. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence [J]. Environmental Pollution, 2012, 163: 287-303
[22] Lopez-Serna R, Jurado A, Vazquez-Sune E, et al. Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain [J]. Environmental Pollution, 2013, 174: 305-315
[23] Jurado A, Vazquez-Sune E, Carrera J, et al. Emerging organic contaminants in groundwater in Spain: A review of sources, recent occurrence and fate in a European context [J]. Science of the Total Environment, 2012, 440: 82-94
[24] Teijon G, Candela L, Tamoh K, et al. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain) [J]. Science of the Total Environment, 2010, 408(17): 3584-3595
[25] Garcia-Galan M J, Garrido T, Fraile J, et al. Application of fully automated online solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry for the determination of sulfonamides and their acetylated metabolites in groundwater [J]. Analytical and Bioanalytical Chemistry, 2011, 399(2): 795-806
[26] Cabeza Y, Candela L, Ronen D, et al. Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain) [J]. Journal of Hazardous Materials, 2012, 239: 32-39
[27] Fram M S, Belitz K. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California [J]. Science of the Total Environment, 2011, 409(18): 3409-3417
[28] Vulliet E, Cren-Olive C. Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption [J]. Environmental Pollution, 2011, 159(10): 2929-2934
[29] Sacher F, Lang F T, Brauch H J, et al. Pharmaceuticals in groundwaters - Analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany [J]. Journal of Chromatography A, 2001, 938(1-2): 199-210
[30] Loos R, Locoro G, Comero S, et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water [J]. Water Research, 2010, 44(14): 4115-4126
[31] Grujic S, Vasiljevic T, Lausevic M. Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion trap-tandem mass spectrometry [J]. Journal of Chromatography A, 2009, 1216(25): 4989-5000
[32] Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China [J]. Environmental Pollution, 2010, 158(9): 2992-2998
[33] Carballa M, Fink G, Omil F, et al. Determination of the solid-water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge [J]. Water Research, 2008, 42(1-2): 287-295
[34] Tolls J. Sorption of veterinary pharmaceuticals in soils- A review [J]. Environmental Science & Technology, 2001, 35(17): 3397-3406
[35] Sukul P, Lamshoft M, Zuhlke S, et al. Sorption and desorption of sulfadiazine in soil and soil-manure systems [J]. Chemosphere, 2008, 73(8): 1344-1350
[36] Wu Q, Li Z, Hong H, et al. Adsorption and intercalation of ciprofloxacin on montmorillonite [J]. Applied Clay Science, 2010, 50(2): 204-211
[37] Chen H, Gao B, Yang L Y, et al. Montmorillonite enhanced ciprofloxacin transport in saturated porous media with sorbed ciprofloxacin showing antibiotic activity [J]. Journal of Contaminant Hydrology, 2015, 173: 1-7
[38] Li Z, Schulz L, Ackley C, et al. Adsorption of tetracycline on kaolinite with pH-dependent surface charges [J]. Journal of Colloid and Interface Science, 2010, 351(1): 254-260
[39] Li Z H, Hong H L, Liao L B, et al. A mechanistic study of ciprofloxacin removal by kaolinite [J]. Colloids and Surfaces B-Biointerfaces, 2011, 88(1): 339-344
[40] Fukahori S, Fujiwara T, Ito R, et al. pH-dependent adsorption of sulfa drugs on high silica zeolite: Modeling and kinetic study [J]. Desalination, 2011, 275(1-3): 237-242
[41] Parolo M E, Savini M C, Vallés J M, et al. Tetracycline adsorption on montmorillonite: pH and ionic strength effects [J]. Applied Clay Science, 2008, 40(1-4): 179-186
[42] Droge S T, Goss K U. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects [J]. Environmental Science & Technology, 2013, 47(24): 14224-14232
[43] Srinivasan P, Sarmah A K, Manley-Harris M. Sorption of selected veterinary antibiotics onto dairy farming soils of contrasting nature [J]. Science of the Total Environment, 2014, 472: 695-703
[44] Zhao Y, Tan Y, Guo Y, et al.Interactions of tetracycline with Cd (II), Cu (II) and Pb (II) and their cosorption behavior in soils [J]. Environmental Pollution, 2013, 180: 206-213
[45] Kahle M, Stamm C. Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite [J]. Chemosphere, 2007, 68(7): 1224-1231
[46] Zhao Y, Geng J, Wang X, et al. Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances [J]. Journal of Colloid and Interface Science, 2011, 361(1): 247-251
[47] Dalkmann P, Siebe C, Amelung W, et al. Does long-term irrigation with untreated wastewater accelerate the dissipation of pharmaceuticals in soil? [J]. Environmental Science & Technology, 2014, 48(9): 4963-4970
[48] Baumgarten B, Jahrig J, Reemtsma T, et al. Long term laboratory column experiments to simulate bank filtration:Factors controlling removal of sulfamethoxazole [J]. Water Research, 2011, 45(1): 211-220
[49] Chen H, Gao B, Li H, et al. Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media [J]. Journal of Contaminant Hydrology, 2011, 126(1-2): 29-36
[50] Zhang L, Zhu D, Wang H, et al. Humic acid-mediated transport of tetracycline and pyrene in saturated porous media [J]. Environmental Toxicology and Chemistry, 2012, 31(3): 534-541
[51] Chen H, Ma L Q, Gao B, et al. Influence of Cu and Ca cations on ciprofloxacin transport in saturated porous media [J]. Journal of Hazardous Materials, 2013, 262: 805-811
[52] Unold M, Kasteel R, Groeneweg J, et al. Transport of sulfadiazine in undisturbed soil columns: Effects of flow rate, input concentration and pulse duration [J]. Journal of Environmental Quality, 2010, 39: 2147-2159
[53] Banzhaf S, Nodler K, Licha T, et al. Redox-sensitivity and mobility of selected pharmaceutical compounds in a low flow column experiment [J]. Science of the Total Environment, 2012, 438: 113-121
[54] Drillia P, Stamatelatou K, Lyberatos G. Fate and mobility of pharmaceuticals in solid matrices [J]. Chemosphere, 2005, 60(8): 1034-1044
[55] Maszkowska J, Kolodziejska M, Bialk-Bielinska A, et al. Column and batch tests of sulfonamide leaching from different types of soil [J]. Journal of Hazardous Materials, 2013, 260: 468-474
[56] Ostermann A, Siemens J, Welp G, et al. Leaching of veterinary antibiotics in calcareous Chinese croplands [J]. Chemosphere, 2013, 91(7): 928-934
[57] Yang J F, Ying G G, Zhou L J, et al. Dissipation of oxytetracycline in soils under different redox conditions [J]. Environmental Pollution, 2009, 157(10): 2704-2709
[58] 葛林科, 張思玉, 謝晴, 等. 抗生素在水環(huán)境中的光化學(xué)行為[J]. 中國科學(xué): 化學(xué), 2010, 40(2): 124-135
Ge L K, Zhang S Y, Xie Q, et al. Progress in studies on aqueous environmental photochemical behavior of antibiotics [J]. Scientia Sinica Chimica, 2010, 40(2): 124-135 (in Chinese)
[59] Loftin K A, Adams C D, Meyer M T, et al. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics [J]. Journal of Environmental Quality, 2008, 37(2): 378-386
[60] Kümmerer K. Antibiotics in the aquatic environment - A review - Part I [J]. Chemosphere, 2009, 75: 417-434
[61] 潘祖亭, 顏承農(nóng), 王潤濤. 金屬離子催化β-內(nèi)酰胺類抗生素水解的熒光光譜研究[J]. 分析試驗(yàn)室, 2001, 20(4): 1-4
Pan Z T, Yan C N, Wang R T. Study on catalyzed hydrolysis of β-lactams antibiotics by metal ions with spectrofluorometry [J]. Chinese Journal of Analysis Laboratory, 2001, 20(4): 1-4 (in Chinese)
[62] 陳兆坤, 胡昌勤. 頭孢菌素類抗生素的降解機(jī)制[J]. 國外醫(yī)藥: 抗生素分冊, 2004, 25: 249-265
[63] 崔浩. 抗生素的細(xì)菌耐藥性: 酶降解和修飾[J]. 國外醫(yī)學(xué)藥學(xué)分冊, 2006, 33(1): 34-37
[64] 賀德春, 許振成, 吳根義, 等. 四環(huán)素類抗生素的環(huán)境行為研究進(jìn)展[J]. 動物醫(yī)學(xué)進(jìn)展, 2011, 32(4): 98-102
He D C, Xu Z C, Wu G Y, et al. Advance in heat stress mechanism effect in animals [J]. Progress in Veterinary Medicine, 2011, 32(4): 98-102 (in Chinese)
[65] Larcher S, Yargeau V. Biodegradation of sulfamethoxazole by individual and mixed bacteria [J]. Applied Microbiology and Biotechnology, 2011, 91(1): 211-218
[66] 俞慎,王敏,洪有為. 環(huán)境介質(zhì)中的抗生素及其微生物生態(tài)效應(yīng)[J]. 生態(tài)學(xué)報(bào), 2011, 31(15): 4437-4446
Yu S, Wang M, Hong Y W. Antibiotics in environmental matrices and their effects on microbial ecosystems [J]. Acta Ecologica Sinica, 2011, 31(15): 4437-4446 (in Chinese)
[67] 鐘振興. 磺胺抗生素在湖泊沉積物中的吸附和降解行為研究[D]. 重慶: 西南大學(xué), 2012: 33-38
Zhong Z X. Adsorption and degradation of sulfonamides in lake sediments [D]. Chongqing: Southwest University, 2012: 33-38 (in Chinese)
[68] Larcher S, Yargeau V. Biodegradation of sulfamethoxazole:Current knowledge and perspectives [J]. Applied Microbiology and Biotechnology, 2012, 96(2): 309-318
[69] Gauthier H, Yargeau V, Cooper D G. Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism [J]. Science of the Total Environment, 2010, 408(7): 1701-1706
[70] Xu B, Mao D, Luo Y, et al. Sulfamethoxazole biodegradation and biotransformation in the water-sediment system of a natural river [J]. Bioresource Technology, 2011, 102(14): 7069-7076
[71] Gavalchin J, Katz S. The persistence of fecal-borne antibiotics in soil [J]. Journal of Aoac International, 1994, 77(2): 481-485
[72] 毛菲菲, 劉暢, 何夢琦, 等. 紅霉素降解菌的篩分及其降解特性的研究[J]. 環(huán)境科學(xué)與技術(shù), 2013, 36(7): 9-12
Mao F F, Liu C, He M Q, et al. Isolation and identification of an erythromycin degradation and study on its biodegradation characteristics [J]. Environmental Science & Technology, 2013, 36(7): 9-12 (in Chinese)
[73] 孫瑞珠, 馬玉龍, 張娟, 等. 一株泰樂菌素高效降解菌的分離鑒定及其降解特性[J]. 微生物學(xué)通報(bào), 2014, 41(4): 681-690
Sun R Z, Ma Y L, Zhang J, et al. Isolation and identification of a tylosin-degradation strain and its degradation characteristics [J]. Microbiology China, 2014, 41(4): 681-690 (in Chinese)
[74] Girardi C, Greve J, Lamshoft M, et al. Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities [J]. Journal of Hazardous Materials, 2011, 198: 22-30
[75] Zhang C L, Guo X L, Li B Y, et al. Biodegradation of ciprofloxacin in soil [J]. Journal of Molecular Liquids, 2012, 173: 184-186
[76] 方淑霞, 王大力, 朱麗華, 等. 抗生素對微生物的聯(lián)合與低劑量毒性研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(2): 69-75
Fang S X, Wang D L, Zhu L H, et al. Progress in researches on toxicity of antibiotics in low dose and mixture exposure to microorganisms [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 69-75 (in Chinese)
[77] Martinez J L. Environmental pollution by antibiotics and by antibiotic resistance determinants [J]. Environmental Pollution, 2009, 157(11): 2893-2902
[78] Chen W, Liu W, Pan N, et al. Oxytetracycline on functions and structure of soil microbial community [J]. Journal of Soil Science and Plant Nutrition, 2013, 13(4): 967-975
[79] Thiele-Bruhn S, Beck I C. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass [J]. Chemosphere, 2005, 59(4): 457-465
[80] Escher B I, Baumgartner R, Koller M, et al. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater [J]. Water Research, 2011, 45(1): 75-92
[81] Fent K, Weston A A, Caminada D. Ecotoxicology of human pharmaceuticals [J]. Aquatic Toxicology, 2006, 76(2): 122-159
[82] Haack S K, Metge D W, Fogarty L R, et al. Effects on groundwater microbial communities of an engineered 30-day in situ exposure to the antibiotic sulfamethoxazole [J]. Environmental Science & Technology, 2012, 46(14): 7478-7486
[83] Schmitt-Jansen M, Veit U, Dudel G, et al. An ecological perspective in aquatic ecotoxicology: Approaches and challenges [J]. Basic and Applied Ecology, 2008, 9(4): 337-345
[84] Schmitt H, Haapakangas H, van Beelen P. Effects of antibiotics on soil microorganisms:Time and nutrients influence pollution-induced community tolerance [J]. Soil Biology & Biochemistry, 2005, 37(10): 1882-1892
[85] Miranda C D, Kehrenberg C, Ulep C, et al. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms [J]. Antimicrobial Agents and Chemotherapy, 2003, 47(3): 883-888
[86] 蘇建強(qiáng),黃福義,朱永官. 環(huán)境抗生素抗性基因研究進(jìn)展[J]. 生物多樣性, 2013, 21(4): 481-487
Su J Q, Huang F Y, Zhu Y G. Antibiotics resistance genes in the environment [J]. Biodiversity Science, 2013, 21(4): 481-487 (in Chinese)
[87] 高盼盼, 羅義, 周啟星, 等. 水產(chǎn)養(yǎng)殖環(huán)境中抗生素抗性基因(ARGs)的研究及進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2009, 4(6): 770-779
Gao P P, Luo Y, Zhou Q X, et al. Research advancement of antibiotics resistance genes (ARGs) in aquaculture environment [J]. Asian Journal of Ecotoxicology, 2009, 4(6): 770-779 (in Chinese)
[88] Luo Y, Mao D, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China [J]. Environmental Science & Technology, 2010, 44: 7220-7225
[89] Barkovskii A L, Green C, Hurley D. The occurrence, spatial and temporal distribution, and environmental routes of tetracycline resistance and integrase genes in Crassostrea virginica beds [J]. Marine Pollution Bulletin, 2010, 60(12): 2215-2224
[90] Chee-Sanford J, Aminov R, Krapac I, et al. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities [J]. Applied and Environmental Microbiology, 2001, 67(4): 1494-1502
[91] 楊鳳霞, 毛大慶, 羅義, 等. 環(huán)境中抗生素抗性基因的水平傳播擴(kuò)散[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2013, 24(10): 2993-3002
Yang F X, Mao D Q, Luo Y, et al. Horizontal transfer of antibiotic resistance genes in the environment [J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2993-3002 (in Chinese)
[92] Knapp C W, Zhang W, Sturm B S, et al. Differential fate of erythromycin and beta-lactam resistance genes from swine lagoon waste under different aquatic conditions [J]. Environmental Pollution, 2010, 158(5): 1506-1512
[93] 徐冰潔, 羅義, 周啟星, 等. 抗生素抗性基因在環(huán)境中的來源、傳播擴(kuò)散及生態(tài)風(fēng)險[J]. 環(huán)境化學(xué), 2010, 29(2): 169-178
Xu B J, Luo Y, Zhou Q X, et al. Sources, dissemination and ecological risks of antibiotic resistances genes (ARGs) in the environment [J]. Environmental Chemistry, 2010, 29(2): 169-178 (in Chinese)
[94] Akiyama T, Savin M C. Populations of antibiotic-resistant conform bacteria change rapidly in a wastewater effluent dominated stream [J]. Science of the Total Environment, 2010, 408(24): 6192-6201
◆
Review on the Environmental Behavior and Ecological Effect of Antibiotics in Groundwater System
Tong Lei, Yao Linlin, Liu Hui, Wang Yanxin*
School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
Received 27 November 2015 accepted 15 March 2016
The residue of antibiotics in the environment has caused great concern. With the increasing report on groundwater pollution, the potential impact of antibiotics on the groundwater system is nonnegligible. In the present paper, the source, pollution situation, transport and transformation of antibiotics in groundwater are systematically reviewed. The effects of antibiotics on the microbial community in groundwater system, and the potential pollution trend of relative resistance genes induced by antibiotics are summarized. Due to the difficulty to be noticed, antibiotics entered into the underground water will exist for a long time. Currently, the research on the environmental behavior and ecological effects of antibiotics and relative resistance genes in groundwater system is quite limited. Accordingly, the significance of relative research and future directions are pointed out here.
antibiotics; resistance genes; groundwater system; environmental behavior; ecological effect
10.7524/AJE.1673-5897.20151127002
國家自然科學(xué)基金創(chuàng)新群體項(xiàng)目(41521001);國家自然科學(xué)基金青年基金(41103063);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(CUGL100217,CUG120406)
童蕾(1982-),女,博士,副教授,研究方向?yàn)榄h(huán)境化學(xué)、地下水有機(jī)污染分析,E-mail: tonglei0710@aliyun.com
*通訊作者(Corresponding author), E-mail: yx.wang@cug.edu.cn
2015-11-27 錄用日期:2016-03-15
1673-5897(2016)2-027-10
X171.5
A
簡介:王焰新 (1963—),男,博士,教授,主要從事環(huán)境水文地質(zhì)研究,發(fā)表SCI論文130余篇。
童蕾, 姚林林, 劉慧, 等. 抗生素在地下水系統(tǒng)中的環(huán)境行為及生態(tài)效應(yīng)研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào),2016, 11(2): 27-36
Tong L, Yao L L, Liu H, et al. Review on the environmental behavior and ecological effect of antibiotics in groundwater system [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 27-36 (in Chinese)