鄭麗萍,龍 濤,馮艷紅,張 亞,林玉鎖,王國(guó)慶①
(1.環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所,江蘇 南京 210042;2.國(guó)家環(huán)境保護(hù)土壤環(huán)境管理與污染控制重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210042)
?
基于生態(tài)風(fēng)險(xiǎn)的鉛(Pb)土壤環(huán)境基準(zhǔn)研究
鄭麗萍1,2,龍 濤1,2,馮艷紅1,2,張 亞1,2,林玉鎖1,2,王國(guó)慶1,2①
(1.環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所,江蘇 南京 210042;2.國(guó)家環(huán)境保護(hù)土壤環(huán)境管理與污染控制重點(diǎn)實(shí)驗(yàn)室,江蘇 南京 210042)
環(huán)境基準(zhǔn)是指環(huán)境介質(zhì)中的有毒有害物質(zhì)對(duì)特定受體不產(chǎn)生不良或有害效應(yīng)的臨界限值。環(huán)境基準(zhǔn)是制修訂環(huán)境標(biāo)準(zhǔn)的科學(xué)依據(jù)。通過(guò)文獻(xiàn)調(diào)研篩選獲得土壤Pb的生態(tài)毒性數(shù)據(jù),采用物種敏感性分布法對(duì)所獲生態(tài)毒理數(shù)據(jù)進(jìn)行建模分析?;?5%物種保護(hù)水平,外推得到基于生態(tài)風(fēng)險(xiǎn)的Pb的土壤環(huán)境基準(zhǔn)值為80.5 mg·kg-1。與其他國(guó)家和地區(qū)類似土壤環(huán)境基準(zhǔn)值相比,筆者研究得到的外推基準(zhǔn)處于中等偏保守水平。研究結(jié)果可為制訂保護(hù)陸生生態(tài)物種的Pb土壤環(huán)境標(biāo)準(zhǔn)值提供科學(xué)依據(jù)。
Pb;土壤;環(huán)境基準(zhǔn);物種敏感分布
人為活動(dòng)是土壤鉛(Pb)污染的主要來(lái)源,金屬冶煉與礦床開(kāi)發(fā),城市交通運(yùn)輸,工業(yè)固廢排放和堆積,以農(nóng)業(yè)生產(chǎn)過(guò)程中施用化肥、農(nóng)藥、污泥和進(jìn)行污水灌溉,都導(dǎo)致Pb在土壤中大量積累。Pb蓄電池制備等工業(yè)進(jìn)一步促進(jìn)Pb在環(huán)境中的大量釋放,對(duì)土壤、大氣和水體環(huán)境產(chǎn)生不同程度的影響[1]。Pb進(jìn)入大氣和水體后,可以通過(guò)生態(tài)系統(tǒng)循環(huán)進(jìn)入土壤環(huán)境,造成土壤Pb污染加劇。研究表明,遠(yuǎn)離城市及未受污染土壤Pb含量為10~30 mg·kg-1,城市公路兩旁及低污染區(qū)土壤Pb含量為30~100 mg·kg-1,而受到鉛鋅礦企業(yè)污染的土壤Pb含量可超過(guò)10 000 mg·kg-1[2]。
環(huán)境基準(zhǔn)是指環(huán)境介質(zhì)(水、土壤和空氣)中的有毒有害物質(zhì)對(duì)特定保護(hù)對(duì)象不產(chǎn)生不良或有害效應(yīng)的最大限值[3],是制修訂環(huán)境標(biāo)準(zhǔn)的科學(xué)依據(jù)。由于土壤屬于高異質(zhì)性介質(zhì),且生態(tài)受體(土壤微生物、土壤動(dòng)物及植物)數(shù)量眾多,故生態(tài)風(fēng)險(xiǎn)基準(zhǔn)的建立相對(duì)健康風(fēng)險(xiǎn)基準(zhǔn)更加復(fù)雜,目前也只有為數(shù)不多的國(guó)家建立了生態(tài)基準(zhǔn),并基于此制定了旨在保護(hù)生態(tài)安全的土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)[4]。美國(guó)環(huán)保局(USEPA)自2003年起已逐步建立了17種金屬(或類金屬)和4種(類)有機(jī)物對(duì)植物、土壤無(wú)脊椎動(dòng)物和野生動(dòng)物(鳥類和哺乳動(dòng)物)的土壤生態(tài)篩選值。澳大利亞國(guó)家環(huán)境保護(hù)委員會(huì)(National Environmental Protection Council,NEPC)在其《國(guó)家環(huán)境保護(hù)措施1999(場(chǎng)地污染評(píng)價(jià))》中制定了一套主要基于植物毒性數(shù)據(jù)的土壤生態(tài)調(diào)查值(ecological investigation levels,EILs)。德國(guó)、丹麥、西班牙和奧地利等國(guó)家也頒布了可用于土壤污染物篩選的生態(tài)篩選值,瑞典和比利時(shí)等國(guó)家也在構(gòu)建類似的生態(tài)基準(zhǔn)值[5]。目前,已有10多個(gè)國(guó)家已經(jīng)制定或正在制定土壤生態(tài)篩選基準(zhǔn),這些篩選值的公布促進(jìn)了污染土壤生態(tài)風(fēng)險(xiǎn)評(píng)估技術(shù)的發(fā)展,也給污染土壤的環(huán)境管理提供了有力支持。同時(shí),國(guó)內(nèi)一些學(xué)者參考國(guó)外相關(guān)技術(shù)導(dǎo)則開(kāi)展了基于生態(tài)風(fēng)險(xiǎn)的土壤基準(zhǔn)制定與生態(tài)閾值研究。例如,中國(guó)農(nóng)業(yè)科學(xué)院馬義兵課題組利用典型地帶性土壤和本地敏感物種(如白菜),通過(guò)實(shí)驗(yàn)室、溫室和田間試驗(yàn)建立了包含土壤基本理化性質(zhì)的Cu、Zn和Ni對(duì)植物和微生物生態(tài)毒性的經(jīng)驗(yàn)預(yù)測(cè)模型,并用于制定土壤Cu、Zn和Ni的環(huán)境基準(zhǔn)[6]。
目前,我國(guó)針對(duì)Pb的土壤生態(tài)基準(zhǔn)研究較少,主要集中在Cu、Zn等重金屬的環(huán)境基準(zhǔn)研究[6]。現(xiàn)行《農(nóng)用地土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)》的修訂草案收嚴(yán)了土壤中Pb含量限值,Pb含量限值最低值為80 mg·kg-1。與國(guó)外相比,我國(guó)尚未出臺(tái)有關(guān)Pb的土壤生態(tài)基準(zhǔn)。為加強(qiáng)我國(guó)Pb污染土壤的風(fēng)險(xiǎn)管控,保障農(nóng)業(yè)和生態(tài)環(huán)境安全,相關(guān)土壤Pb生態(tài)基準(zhǔn)和濃度閾值還有待建立,因此,構(gòu)建基于生態(tài)安全的土壤Pb環(huán)境基準(zhǔn)是符合國(guó)情的科研需求。筆者通過(guò)大量文獻(xiàn)調(diào)研,篩選獲得土壤Pb的生態(tài)毒性數(shù)據(jù),采用物種敏感性分布法對(duì)獲得的生態(tài)毒理數(shù)據(jù)進(jìn)行建模分析,并與國(guó)外已有的土壤Pb環(huán)境基準(zhǔn)值進(jìn)行比較。該研究結(jié)果可為制訂保護(hù)陸生生態(tài)物種的Pb土壤環(huán)境標(biāo)準(zhǔn)值提供科學(xué)依據(jù)。
1.1 物種和數(shù)據(jù)篩選
參照荷蘭國(guó)家公共衛(wèi)生與環(huán)境研究所基準(zhǔn)毒性數(shù)據(jù)篩選原則[7],收集鉛化物的土壤生態(tài)毒性數(shù)據(jù)。鉛化物的毒性數(shù)據(jù)主要來(lái)源于USEPA 的ECOTOX 毒性數(shù)據(jù)庫(kù)(http:∥epa.gov/ecotox/)、中國(guó)知網(wǎng)(http:∥www.cnki.net)和Web of Science(http:∥isiknowledge.com)。收集了2015年10月以前發(fā)布、發(fā)表的數(shù)據(jù)與文獻(xiàn)。采用的毒性終點(diǎn)為慢性暴露試驗(yàn)結(jié)果:無(wú)觀察效應(yīng)濃度(NOEC)或10%效應(yīng)濃度(EC10)。此外,所選毒性研究的毒性試驗(yàn)方法應(yīng)符合經(jīng)濟(jì)合作與發(fā)展組織(OECD)、美國(guó)材料與試驗(yàn)協(xié)會(huì)(ASTM)、USEPA以及中國(guó)《化學(xué)品測(cè)試方法》中發(fā)布的標(biāo)準(zhǔn)試驗(yàn)方法。毒性數(shù)據(jù)篩選原則[7]如下:(1)同一物種相同毒性終點(diǎn)的多個(gè)毒理數(shù)據(jù)取幾何平均值;(2)同一物種不同毒性終點(diǎn)的多個(gè)毒理數(shù)據(jù)選擇最低值;(3)優(yōu)先選擇最敏感生命期的試驗(yàn)數(shù)據(jù);(4)一般選擇最常用的暴露時(shí)間對(duì)應(yīng)的毒理數(shù)據(jù);(5)篩選無(wú)脊椎動(dòng)物、陸生植物和微生物過(guò)程試驗(yàn)數(shù)據(jù);(6)不同土壤中的同一生態(tài)毒理數(shù)據(jù)可同時(shí)采用,同一供試土壤的同一生態(tài)過(guò)程選用同一個(gè)毒理數(shù)據(jù)。
1.2 陸生生態(tài)基準(zhǔn)推導(dǎo)方法
物種敏感度分布曲線法最初是由KOOIJMANS[8]提出的,后來(lái)很多學(xué)者對(duì)其進(jìn)行了改進(jìn),目前在生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)中應(yīng)用廣泛[9]。該方法假設(shè)從整個(gè)生態(tài)系統(tǒng)中隨機(jī)選取物種并獲得毒性數(shù)據(jù),且假設(shè)生態(tài)系統(tǒng)中不同物種的毒性數(shù)據(jù)符合一定概率函數(shù),即物種敏感度分布。首先,檢驗(yàn)所獲毒性數(shù)據(jù)的正態(tài)性,然后采用統(tǒng)計(jì)模型將污染物濃度和物種敏感度分布的累計(jì)概率進(jìn)行擬合分析,計(jì)算可以保護(hù)大多數(shù)物種的污染物濃度,一般采用5%物種受危害的濃度(HC5)表示,或稱作95%保護(hù)水平的濃度。通常有多種分布模型可用于毒性數(shù)據(jù)擬合,比如 log-normal、log-logistic和 Burr TypeⅢ[10-11]等。目前還沒(méi)有研究表明,在曲線擬合分析中某一特定的分布模型適用于任何數(shù)據(jù)集。因此,使用校正決定系數(shù)(Radj2)、加權(quán)卡方檢驗(yàn)系數(shù)(reduced Chi-Sqr)和估計(jì)標(biāo)準(zhǔn)偏差(root-MSE)判斷模型的擬合優(yōu)度,選擇最佳擬合模型。
2.1 毒性數(shù)據(jù)的篩選
將可用的Pb毒性數(shù)據(jù)分為總濃度和環(huán)境背景濃度,文獻(xiàn)調(diào)研數(shù)據(jù)皆為實(shí)驗(yàn)室外源添加Pb污染物獲得,故可將文獻(xiàn)數(shù)據(jù)轉(zhuǎn)換為外源添加濃度[12-13]。共有含16種植物、6種土壤無(wú)脊椎動(dòng)物和5個(gè)微生物過(guò)程的96個(gè)Pb有效數(shù)據(jù)(表1)[14-46]。
2.2 物種敏感度分布曲線法(SSD)計(jì)算結(jié)果
針對(duì)構(gòu)建的SSD 曲線,學(xué)者們提出了不同的參數(shù)擬合方法,美國(guó)環(huán)保局風(fēng)險(xiǎn)評(píng)價(jià)推薦使用log-normal模型,澳大利亞和新西蘭則采用Burr Type Ⅲ模型。筆者選用Burr Type Ⅲ、log-normal、log-logistic和Weibull 這4種常用累計(jì)概率分布函數(shù)(表2),建立對(duì)應(yīng)土壤類型的Pb的SSD曲線并比較其擬合精度。
基于Pb的NOEC/EC10的SSD曲線見(jiàn)圖1,共有包括植物、動(dòng)物和微生物在內(nèi)的27個(gè)物種。該分布圖反映了不同物種對(duì)Pb的敏感性變化,在目前所能獲得的陸生生物數(shù)據(jù)支撐下,植物、動(dòng)物和微生物3種類型生物毒性數(shù)據(jù)的分布發(fā)生疊合,可以用于Pb的土壤生態(tài)基準(zhǔn)的推導(dǎo)。
表1 土壤無(wú)脊椎動(dòng)物、植物和微生物過(guò)程的Pb毒性數(shù)據(jù)[14-46]
Table 1 Geometric means of the toxicity data of lead(Pb) to soil invertebrates, plants and soil microbial processes
試驗(yàn)物種或微生物過(guò)程幾何平均值1)/(mg·kg-1)文獻(xiàn)來(lái)源數(shù)據(jù)量試驗(yàn)物種或微生物過(guò)程幾何平均值1)/(mg·kg-1)文獻(xiàn)來(lái)源數(shù)據(jù)量紅毛枝蚓(Dendrobaenarubi-da)129[14]3安德愛(ài)勝蚓(Eiseniaandrei)614[15]3赤子愛(ài)勝蚓(Eiseniafoetida)1000[16-19]4歐洲正蚓(Lumbricusrubellus)1200[20]2跳蟲(Folsomiacandida)1797[21-24]9線蟲(Caenorhabditiselegans)2235[25]5大麥(Hordeumvulgare)50[13]3胡蘿卜(Daucuscarota)85[26]2燕麥(Avenasativa)100[27]3萵苣(Lactucasativa)112[15,28]5紅云杉(Picearubens)141[29]3玉米(Zeamays)173[30-31]4蘿卜(Raphanussativus)245[32-33]4紫花苜蓿(Medicagosativa)250[34]3白菜(Brassicapekinensis)300[31]2番茄(Solanumlycopersicum)300[31]2大豆(Glycinemax)500[31]3火炬松(Pinustaeda)512[29,35]4小麥(Triticumaestivum)570[23,36]4菠菜(Spinaciaoleracea)600[37]4黃瓜(Cucumissativus)800[25]2韭菜(Alliumtuberosum)800[31]3反硝化作用250[38]2硝化作用337[23]4礦化作用447[39-40]2呼吸作用655[41-45]9底物誘導(dǎo)作用1733[46]2
1)無(wú)觀察效應(yīng)濃度(NOEC)或10%效應(yīng)濃度(EC10)。
表2 不同統(tǒng)計(jì)模型的擬合優(yōu)度比較
Table 2 Comparison of statistical models in fitness
統(tǒng)計(jì)模型R2Radj2標(biāo)準(zhǔn)誤差HC5/(mg·kg-1)HC20/(mg·kg-1)HC50/(mg·kg-1)log-logistic0.99110.99040.027850143376log-normal0.99150.99080.027150143383BurrTypeⅢ0.99070.98990.028470140380Weibull0.99220.99120.026660144379
R2為決定系數(shù);Radj2為校正決定系數(shù);HC5、HC20和HC50分別為5%、20%和50%物種受危害的濃度。
NOEC—無(wú)觀察效應(yīng)濃度。土壤質(zhì)量以干重計(jì)。
2.3 SSD 擬合函數(shù)的優(yōu)選
利用Burr Type Ⅲ、log-normal、log-logistic和Weibull 4種常用函數(shù)分別擬合土壤中Pb的SSD曲線,得到較為一致的HC5,由表2中Radj2可知Weibull模型對(duì)鉛化物的毒性數(shù)據(jù)擬合最好,4種函數(shù)的擬合度都較高,推導(dǎo)出的結(jié)果基本處于同一數(shù)量級(jí),HC5的閾值范圍為50~70 mg·kg-1。
2.4 Pb的土壤環(huán)境背景值
地球Pb元素的平均豐度為4 mg·kg-1[13],地殼中Pb平均含量范圍為10~16 mg·kg-1[47]。自然界中,由巖石風(fēng)化而進(jìn)入Pb元素地質(zhì)大循環(huán)的Pb為5.6 t·a-1[48]295。各類巖石中Pb含量也有很大差異,火成巖類中橄欖巖含量最低為0.2 mg·kg-1[48]295,沉積巖類中鉛土礦含量最高為100 mg·kg-1[13]。巖石是土壤成土母質(zhì)的物質(zhì)來(lái)源,巖石Pb含量影響著土壤母質(zhì)的Pb含量,土壤母質(zhì)Pb含量又進(jìn)一步影響土壤Pb含量。受成土母質(zhì)和其他成土環(huán)境的影響,土壤Pb含量差異明顯。世界土壤中Pb平均含量為15~25 mg·kg-1[49]。
我國(guó)地域遼闊,氣候復(fù)雜多樣,降水條件有很大差異,不同地區(qū)的巖石構(gòu)成也有區(qū)別。因此,我國(guó)不同地區(qū)土壤發(fā)育的外部條件和內(nèi)部條件都極不相同[50]。我國(guó)不同地區(qū)土壤Pb含量有很大差異,地理分異現(xiàn)象非常明顯(表3)。該研究采用我國(guó)土壤背景值基本統(tǒng)計(jì)量的75%和95%值,即30.5和55.6 mg·kg-1。
表 3 我國(guó)部分省市土壤Pb背景值[51]
Table 3 Soil Pb background values in some provinces and cities of China
土壤名稱幾何平均值/(mg·kg-1)標(biāo)準(zhǔn)差/(mg·kg-1)黑土25.51.36潮土20.61.44水稻土31.41.53赤紅壤28.41.90紅壤26.81.49黃壤26.91.52棕壤23.41.46褐土20.31.36棕漠土16.81.39鹽土21.11.50石灰土33.51.71紫色土25.81.46
2.5 Pb的生態(tài)基準(zhǔn)值
采用澳大利亞的土壤基準(zhǔn)值研究方法[52],利用效應(yīng)數(shù)據(jù)統(tǒng)計(jì)外推結(jié)合額外添加法構(gòu)建Pb的土壤生態(tài)基準(zhǔn)值(圖2),即:Pb的生態(tài)基準(zhǔn)值=外源添加閾值+土壤背景值。由2.3節(jié)得出外源添加閾值為50~70 mg·kg-1,取最保守閾值50 mg·kg-1,采用2.4節(jié)的30.5和55.6 mg·kg-12個(gè)土壤背景值基本統(tǒng)計(jì)量,得出Pb的生態(tài)基準(zhǔn)值為80.5~105.6 mg·kg-1。
PNEC—預(yù)測(cè)無(wú)效應(yīng)濃度;NOEC—無(wú)觀察效應(yīng)濃度。
將筆者研究結(jié)果與不同國(guó)家的土壤環(huán)境基準(zhǔn)或篩選值(表4)進(jìn)行比較發(fā)現(xiàn),不同國(guó)家的環(huán)境基準(zhǔn)或篩選值差異較大,這可能是由于不同國(guó)家所采用的制定方法不同所致。美國(guó)環(huán)保局是根據(jù)10%效應(yīng)濃度值(EC10)和最大允許閾值濃度(maximum allowable threshold concentrations),通過(guò)計(jì)算幾何平均值作為土壤生態(tài)基準(zhǔn)值,相當(dāng)于50%的物種保護(hù)水平[53]。荷蘭土壤干預(yù)值是基于10-4致癌風(fēng)險(xiǎn)的土壤人體健康基準(zhǔn)值(human serious risk concentration,SRChuman)和基于保護(hù)50%陸地生態(tài)物種和生態(tài)過(guò)程的土壤生態(tài)基準(zhǔn)值(ecological serious risk concentration,SRCeco)制定[54]。
表4 不同國(guó)家的土壤環(huán)境基準(zhǔn)或篩選值[55-56]
Table 4 Environmental quality criteria for lead in soil in different countries and regions
國(guó)家土壤環(huán)境基準(zhǔn)指導(dǎo)值/(mg·kg-1)美國(guó)Eco-SSL(植物)120美國(guó)Eco-SSL(軟體動(dòng)物)1700美國(guó)Eco-SSL(鳥類)11美國(guó)Eco-SSL(哺乳類動(dòng)物)56荷蘭(目標(biāo)值)85荷蘭(干預(yù)值)530
Eco-SSL為生態(tài)篩選基準(zhǔn)值(ecological soil screening levels)。
筆者基于生態(tài)風(fēng)險(xiǎn)的土壤Pb環(huán)境基準(zhǔn)研究結(jié)果(80.5 mg·kg-1),與表4中其他國(guó)家和地區(qū)的土壤環(huán)境基準(zhǔn)或篩選值相比,處于中等偏保守的水平。80.5 mg·kg-1是95%物種保護(hù)水平的濃度閾值,為相對(duì)保守濃度,可以根據(jù)用地方式或土壤pH值的不同,對(duì)物種保護(hù)水平進(jìn)行梯度水平調(diào)節(jié),保護(hù)水平可以是HC5、HC20和HC50;可以根據(jù)不同土壤利用方式調(diào)節(jié)保護(hù)水平,如農(nóng)業(yè)用地的保護(hù)水平可選擇HC5,居住用地可選擇HC20等;可根據(jù)不同用地方式來(lái)決定物種的保護(hù)水平。
由于筆者研究所采用的數(shù)據(jù)包括我國(guó)的毒理數(shù)據(jù)和國(guó)外毒理數(shù)據(jù)(如USEPA ECOTOX數(shù)據(jù)庫(kù)),因此對(duì)于我國(guó)基于生態(tài)風(fēng)險(xiǎn)的Pb的基準(zhǔn)值還需要進(jìn)行持續(xù)研究。筆者研究中所搜集的數(shù)據(jù)主要是生態(tài)毒性數(shù)據(jù),其中部分文獻(xiàn)所用土壤的pH值、有機(jī)質(zhì)和黏粒等理化性質(zhì)未做完整交待。因此,筆者從文獻(xiàn)中獲得的數(shù)據(jù)沒(méi)有根據(jù)土壤理化性質(zhì)對(duì)生態(tài)毒性數(shù)據(jù)進(jìn)行歸一化處理,主要是對(duì)毒性數(shù)據(jù)進(jìn)行整合處理,并在此基礎(chǔ)上再進(jìn)行SSD擬合和數(shù)據(jù)外推。在今后的研究工作中應(yīng)結(jié)合我國(guó)基礎(chǔ)毒性數(shù)據(jù)、本土代表性生物篩選和生態(tài)毒理試驗(yàn)數(shù)據(jù)以及暴露途徑和暴露模型估算值,通過(guò)開(kāi)展不同性質(zhì)土壤中基于不同生態(tài)受體和測(cè)試終點(diǎn)的Pb的生態(tài)風(fēng)險(xiǎn)閾值研究,并開(kāi)展針對(duì)不同性質(zhì)土壤基準(zhǔn)值的不確定性分析,構(gòu)建基于生態(tài)受體的土壤環(huán)境基準(zhǔn)體系。
(1)利用物種敏感度分布法推算基于生態(tài)風(fēng)險(xiǎn)的Pb的土壤環(huán)境基準(zhǔn)值為80.5 mg·kg-1。
(2)應(yīng)用物種敏感度分布法充分考慮了所有試驗(yàn)物種的毒性數(shù)據(jù)。計(jì)算結(jié)果表明,log-normal模型基準(zhǔn)值≈log-logistic模型基準(zhǔn)值 (3)筆者研究得出了基于生態(tài)風(fēng)險(xiǎn)的Pb的土壤環(huán)境基準(zhǔn)值,從基準(zhǔn)轉(zhuǎn)化到相應(yīng)的標(biāo)準(zhǔn)還需進(jìn)行技術(shù)經(jīng)濟(jì)分析等一系列研究,在今后的研究工作中需優(yōu)化和集成國(guó)內(nèi)外已成熟的土壤基準(zhǔn)研究方法,結(jié)合我國(guó)基礎(chǔ)毒性數(shù)據(jù)、本土代表性生物篩選和生態(tài)毒理試驗(yàn)數(shù)據(jù),通過(guò)開(kāi)展不同性質(zhì)土壤中基于不同生態(tài)受體和測(cè)試終點(diǎn)的Pb的生態(tài)風(fēng)險(xiǎn)閾值研究,構(gòu)建基于生態(tài)受體的土壤環(huán)境基準(zhǔn)體系。 [1] 楊金燕,楊肖娥,何振立.土壤中Pb的來(lái)源及生物有效性[J].土壤通報(bào),2005,36(5):765-772. [2] 王卓,邵澤強(qiáng).土壤Pb污染及其治理措施[J].農(nóng)業(yè)技術(shù)與裝備,2009,158(1):6-8. [3] USEPA.Ambient Water Quality Criteria (Series)[R].Washington DC,USA:USEPA,1980. [4] 張紅振.土壤中重金屬的自由態(tài)離子濃度測(cè)定、作物富集預(yù)測(cè)和環(huán)境基準(zhǔn)研究[D].南京:中國(guó)科學(xué)院南京土壤研究所,2010. [5] CHAPERON S,SAUVE S.Toxicity Interactions of Cadium,Copper,and Lead on Soil Urease and Dehydrogenase Activity in Relation to Chemical Speciation[J].Ecotoxicology and Environmental Safety,2008,70(1):1-9. [6] 王小慶,韋東普,馬義兵,等.物種敏感性分布法在土壤中銅生態(tài)閾值建立中的應(yīng)用研究[J].環(huán)境科學(xué)學(xué)報(bào),2013,33(6):1787-1794. [7] LIJZEN J P A,BAARS A J,OTTE P F,etal.Technical Evaluation of the Intervention Values for Soil/Sediment and Groundwater[R].RIVM Report 711701023,2001. [8] KOOIJMANS A L M.A Safety Factor for LC50Values Allowing for Differences in Sensitivity Among Species[J].Water Resource,1987,21(3):269-276. [9] USEPA.Guidelines for Ecological Risk Assessment[S].EPA 630-R-95-002F.Washington DC:USEPA,1998. [10]ALDENBERG T,SLOB W.Confidence Limits for Hazardous Concentrations Based on Logistically Distributed Toxicity Data[J].Ecotoxicology and Environmental Safety,1998,25(1):48-63. [11]NEWMAN M C,OWNBY D R,MéZIN L C A,etal.Applying Species-Sensitivity Distributions in Ecological Risk Assessment:Assumptions of Distribution Type and Sufficient Numbers of Species[J].Environmental Toxicology and Chemistry,2000,19(2):508-515. [12]B??TH E.Effects of Heavy Metals in Soil on Microbial Processes and Populations[J].Water,Air,and Soil Pollution,1989,47(3):335-379. [13]AERY N C,JAGETIYA B L.Relative Toxicity of Cadmium,Lead and Zinc on Barley[J].Communications in Soil Science and Plant Analysis,1997,28(11):949-960. [14]BENGTSSON G,GUNNARSSON T,RUNDGREN S.Effects of Metal Pollution on the EarthwormDendrobaenarubidain Acidified Soils[J].Water,Air,and Soil Pollution,1986,28(3):361-383. [15]VAUGHAN G T,GREENSADE P M.Sensitive Bioassays for Risk Assessment of Contaminated Sites[R].Final Report CET/IR 55,Commonwealth Scientific and Industrial Research Organization (CSIRO).Sydney,Australia:[s. n. ],1998. [16]SPURGEON D J,HOPKIN S P.Extapolation of the Laboratory-Based OECD Earthworm Toxicity Test to Metal-Contaminated Field Sites[J].Ecotoccology,1995,4(3):190-205. [17]SPURGEON D J,HOPKIN S P,JONES D T.Effects of Cadmium,Copper,Lead and Zinc on Growth,Reproduction and Survival of the EarthwormEiseniafoetida:Assessing the Environmental Impact of Point-Source Metal Contamination in Terrestrial Ecosystems[J].Environmental Pollution,1994,84(2):123-130. [18]DAVIES N A,HODSON M E,BLACK S.Is the OECD Acute Worm Toxicity Environmentally Relevant? The Effect of Mineral Form on Calculated Lead Toxicity[J].Environmental Pollution,2003,121(1):49-54. [19]DAVIES N A,HODSON M E,BLACK S.Changes in Toxicity and Bioavailability of Lead in Contaminated Soils to the EarthwormEiseniafoetidaAfter Bone Meal Amendments to the Soil[J].Environmental Toxicology and Chemistry,2002,21(12):2685-2691. [20]MA W C.The Influence of Soil Properties and Worm-Related Factors on the Concentration of Heavy Metals in Earthworms[J].Pedobiologia,1982,24(1):109-119. [21]SANDIFER R D,HOPKIN S P.Effects of pH on the Toxicity of Cadmium,Copper,Lead and Zinc toFolsomiacandidaWillem,1902(Collembola) in a Standard Laboratory Test System[J].Chemosphere,1996,33(12):2475-2486. [22]SANDIFER R D,HOPKIN S P.Effects of Temperature on the Relative Toxicities of Cd,Cu,Pb and Zn toFolsomiacandida(Collembola)[J].Ecotoxicology and Environmental Safety,1997,37(2):125-130. [23]WAEGENEERS N,VASSILIEVA E,SMOLDERS E.Toxicity of Lead in the Terrestrial Environment,Final Report to the International Lead Zinc Research Organization and the Lead Development Association International[R].Leuven,Belgium:Laboratory for Soil and Water Management,Kathiolique University of Leuven,2004. [24]BONGERS M,RUSCH B,VAN GESTEL C A M.The Effect of Counterion and Percolation on the Toxicity of Lead for the SpringtailFolsomiacandidain Soil[J].Environmental Toxicology and Chemistry,2004,23(1):195-199. [25]PEREDNEY C L,WILLIAMS P L.Utility ofCaenorhabditiselegansfor Assessing Heavy Metal Contamination in Artificial Soil[J].Archives Environmental Contamination and Toxicology,2000,39(1):113-118. [26]KADAR I,MORVAI B.Effect of Micropollutants on Soil and Crop on Calcareous Sandy Soil[J].Agrokemiaes Talajtan,1998,47(1/2/3/4):207-214. [27]KHAN D H,FRANKLAND B.Cellulolytic Activity and Root Biomass Production in Some Metal-Contaminated Soils[J].Environmental Pollution Series A:Ecological and Biological,1984,33(1):63-74. [28]STEVENS D P,MCLAUGHLIN M J.Determining Toxicity of Lead and Zinc Runoff in Soils:Salinity Effects on Metal Partitioning and on Phytotoxicity[J].Environmental Toxicology and Chemistry,2003,22(12):3017-3024. [29]SEILER J R,PAGANELLI D J.Photosynthesis and Growth-Response of Red Spruce and Loblolly-Pine to Soil-Applied Lead and Simulated Acid-Rain[J].Frost Science,1987,33(3):668-675. [30]LDA.European Union Voluntary Risk Assessment Report:Lead Metal,Leadoxide,Lead Tetroxide and Lead Stabilizer Compounds Lead Development Association[R/OL].(2008-01)[2016-03-12].http:∥echa.europa.eu/chem-data/transit-measures/vrar-en.asp. [31]陳麗紅,王婉華,劉征濤,等.保定潮土Pb的生態(tài)毒性及其土壤環(huán)境基準(zhǔn)推導(dǎo)[C].化學(xué)物質(zhì)環(huán)境風(fēng)險(xiǎn)評(píng)估與基準(zhǔn)/標(biāo)準(zhǔn)國(guó)際學(xué)術(shù)研討會(huì).北京:北京會(huì)議中心,2015:35-36. [32]KHAN D H,FRANKLAND B.Effects of Cadmium and Lead on Radish Plants With Particular Reference to Movement of Metals Through Soil Profile and Pant[J].Plant and Soil,1983,70(3):335-345. [33]ZAMAN M S,ZEREEN F.Growth Responses of Radish Plants to Soil Cadmium and Lead Contamination[J].Bulletin of Environmental Contamination and Toxicology,1998,61(1):44-50. [34]TAYLOR R W.Presence and Influence of Certain Heavy Metals on the Yield and Utilization ofMedicagosativaL.M.S.Thesis[C].Storrs,USA:University of Connecticut,1974:113-114. [35]CHAPPELKA A H,KUSH J S,RUNION G B.Effects of Soil-Applied Lead Onseedling Growth and Ectomycorrhizal Colonization of Loblolly Pine[J].Environmental Pollution,1991,72(4):307-316. [36]KHAN D H,FRANKLAND B.Cellulolytic Activity and Root Biomass Production in Some Metal-Contaminated Soils[J].Environmental Pollution Series A:Ecological and Biological,1984,33(1):63-74. [37]GAWEDA M.The Uptake of Lead by SpinachSpinaciaoleraceaL. and RadishRaphanusraphanistrumL. subvar.radiculaPers. as Affected by Organic Matter in Soil[J].Acta Physiology Plant,1991,13(3):167-174. [38]BOLLAG J M,BARABASZ W.Effect of Heavy Metals on the Denitrification Process in Soil[J].Journal of Environmental Quality,1979,8(1):196-201. [39]CHANG F H,BROADBENT F E.Influence of Trace Metals on Some Soil Nitrogen Transformations[J].Journal of Environmental Quality,1982,11(1):1-4. [40]WILKE B M.Long-Term Effects of Inorganic Pollutants on Microbial Activity of a Sandy Cambisol[J].Biology and Fertility of Soils,1989,7(2):254-258. [41]DOELMAN P,HAANSTRA L.Effect of Lead on Soil Respiration and Dehydrogenase Activity[J].Soil Biology and Biochemistry,1979,11(5):475-479. [42]DOELMAN P,HAANSTRA L.Short-Term and Long-Term Effects of Cadmium,Chromium,Copper,Nickel,Lead and Zinc on Soil Microbial Respiration in Relation to Abiotic Soil Factors[J].Plant and Soil,1984,79(3):317-327. [43]CHANG F H,BROADBENT F E.Influence of Trace Metals on Carbon Dioxide Evolution From a Yolo Soil[J].Soil Science,1981,132(6):416-421. [44]SAVIOZZI A,LEVIMINZI R,CARDELLI R,etal.The Influence of Heavy Metals on Carbon Dioxide Evolution From a Typic Xerochrept Soil[J].Water,Air,and Soil Pollution,1997,93(1):409-417. [45]SPEIR T W,KETTLES H A,PERCIVAL H J,etal.Is Soil Acidification the Cause of Biochemical Responses When Soils Are Amended With Heavy Metal Salts?[J].Soil Biology and Biochemistry,1999,31(14):1953-1961. [46]SPEIR T W,KETTLES H A,PERCIVAL H J,etal.Is Soil Acidification the Cause of Biochemical Responses When Soils Are Amended With Heavy Metal Salts?[J].Soil Biology and Biochemistry,1999,319(14):1953-1961. [47]中國(guó)大百科全書:環(huán)境科學(xué)卷[M].北京:中國(guó)大百科全書出版社,1983:12-93. [48]劉英俊.元素地球化學(xué)[M].北京:科學(xué)出版社,1986:295. [49]繆天成,王慧琪.環(huán)境背景值研究[J].中國(guó)環(huán)境科學(xué),1990,10(4):255-262. [50]殷效彩.中國(guó)土壤Pb背景值的地理分異特征[J].青島大學(xué)學(xué)報(bào),1999,12(2):82-85. [51]魏復(fù)盛.中國(guó)土壤元素背景值[M].北京:中國(guó)環(huán)境科學(xué)出版社,1990:366-367. [52]NEP.Australia National Environment Protection (Assessment of Site Contamination) Measure[R].Astralia,Federal Register of Legislative Instruments,1999:69-79. [53]顏增光,谷慶寶,周娟,等.構(gòu)件土壤生態(tài)篩選基準(zhǔn)的技術(shù)關(guān)鍵及方法學(xué)概述[J].生態(tài)毒理學(xué)報(bào),2008,5(5):417-427. [54]鄭麗萍,龍濤,鄧紹坡,等.我國(guó)氟化物的淡水水生生物基準(zhǔn)研究[J].生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2015,31(6):923-927. [55]USEPA.Guidelines for Develop Ecological Soil Screening Levels[S].EPA 9285.Washington DC:USEPA,2005:7-55. [56]LIJZEN J P A,BAARS A J,OTTE P F,etal.Technical Evaluation of the Intervention Values for Soil/Sediment and Groundwater:Human and Ecotoxicological Risk Assessment and Derivation of Risk Limits for Soil,Aquatic Sediment and Groundwater[R].RIVM Report 711701023.Bilkhoven,Holland:The National Institute for Public Health and the Environment,2001. (責(zé)任編輯: 李祥敏) Environmental Quality Criteria for Lead in Soil Based on Ecological Risk. ZHENG Li-ping1,2, LONG Tao1,2, FENG Yan-hong1,2, ZHANG Ya1,2, LIN Yu-suo1,2, WANG Guo-qing1,2 (1.Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China;2.State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing 210042, China) Environmental criteria (ECs) are threshold concentrations for toxic and hazardous substances in environmental media to be harmless to given receptors. ECs are the scientific basis for formulation of environmental standards. Literature research was carried out to collect data of eco-toxicity of lead in soil. The species sensitivity distribution (SSD) method was adopted to perform modeling analysis of the data. Ecological risk-based threshold concentration for Pb in soil was figured out to be 80.5 mg·kg-1on the basis of protection of 95% of the species. Compared with similar soil environmental criteria of other countries and regions, the threshold concentration derived by the authors for Pb in soil is at a level moderate on the conservative side. All the findings of this study may serve as a scientific basis for formulation of soil Pb environmental standards for protection of terrestrial ecological species. lead; soil; environmental quality criteria; species sensitivity distribution 2016-04-25 2015年中央級(jí)公益性科研院所基本科研業(yè)務(wù)專項(xiàng);環(huán)保公益性行業(yè)科研專項(xiàng)(201409041,201409042);中國(guó)工程院全國(guó)土壤環(huán)境保護(hù)及污染防治戰(zhàn)略咨詢研究項(xiàng)目 X826 A 1673-4831(2016)06-1030-06 10.11934/j.issn.1673-4831.2016.06.026 鄭麗萍(1985—),女,山東萊蕪人,助理研究員,碩士,主要研究方向?yàn)橥寥拉h(huán)境基準(zhǔn)與生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)。E-mail: zlp@nies.org ① 通信作者E-mail: wgq@nies.org