金利泰
(溫州醫(yī)科大學藥學院,溫州 325035)
組學在轉(zhuǎn)化醫(yī)學中的應(yīng)用進展
金利泰
(溫州醫(yī)科大學藥學院,溫州 325035)
金利泰,教授,博士生導(dǎo)師。主要研究領(lǐng)域包括蛋白質(zhì)組學,慢性疾病及皮膚創(chuàng)傷等發(fā)病機制研究,生物大分子檢測技術(shù)的開發(fā)及其機理研究。以蛋白質(zhì)組學平臺為基礎(chǔ),對心肌病、糖尿病和皮膚創(chuàng)傷等發(fā)病機理及FGF對相關(guān)疾病治療機制展開了深入的研究,并開發(fā)了多種DNA和蛋白質(zhì)等大分子檢測技術(shù)。
E-mail:jin-li-tai@163.com
作為當前醫(yī)學科學研究領(lǐng)域的熱點方向,轉(zhuǎn)化醫(yī)學(translational medicine)是指以患者為中心,從臨床應(yīng)用的實際需求出發(fā),將基礎(chǔ)研究成果快速有效地轉(zhuǎn)化為臨床技術(shù)的過程,并通過臨床數(shù)據(jù)的深入分析進一步指導(dǎo)基礎(chǔ)研究,以循環(huán)的方式不斷高效促成醫(yī)療水平的提升與完善,從而更好地服務(wù)于人類健康。作為轉(zhuǎn)化醫(yī)學的重要研究手段,基因組學、轉(zhuǎn)錄組學、蛋白組學和代謝組學等技術(shù)平臺為其高速發(fā)展提供了強勁的動力。文章對轉(zhuǎn)化醫(yī)學及其相關(guān)組學平臺的應(yīng)用進行了闡述,并對其發(fā)展趨勢進行了探討。
傳統(tǒng)的基礎(chǔ)研究和臨床應(yīng)用之間相互獨立,缺少必要的溝通和聯(lián)系,具有局限性、盲目性和滯后性等不足,迫使醫(yī)學研究一度陷入了發(fā)展的瓶頸。轉(zhuǎn)化醫(yī)學的產(chǎn)生為現(xiàn)代醫(yī)學發(fā)展提供了革命性的理念,其概念的內(nèi)涵也在不斷的延伸、發(fā)展和完善。Sung將轉(zhuǎn)化醫(yī)學定義為“從實驗臺到臨床”單向通道的概念,其主要目標是將基礎(chǔ)研究的成果轉(zhuǎn)化為實用技術(shù),應(yīng)用于臨床的治療,即基礎(chǔ)醫(yī)學研究-人類實驗轉(zhuǎn)化-臨床科學知識-臨床實踐應(yīng)用;而Marincola認為轉(zhuǎn)化醫(yī)學是高效地將醫(yī)學基礎(chǔ)研究的成果轉(zhuǎn)化為臨床技術(shù)和產(chǎn)品,并把臨床治療凝練得到的科學問題反饋給實驗室,作為進一步研究的基礎(chǔ)7。這種雙向通道的模式不僅打破了基礎(chǔ)研究和應(yīng)用之間的壁壘,而且可以推動醫(yī)療水平持續(xù)的進步與完善。疾病的發(fā)生和發(fā)展與基因組、轉(zhuǎn)錄組、蛋白組及代謝組等多個不同層次的病理過程息息相關(guān)1~15。組學概念出現(xiàn)于21世紀初期,隨著生物技術(shù)的不斷更新與蓬勃發(fā)展,已拓展到不同的研究領(lǐng)域。多組學技術(shù)平臺的快速更新為轉(zhuǎn)化醫(yī)學體系的發(fā)展、完善提供了多層次的高通量組學數(shù)據(jù)研究和獲取的策略,如疾病基因的查找,生物標志物、給藥靶點的篩選,信號通路的分析等,為疾病預(yù)防、診斷、治療等提供了更多必要的8~途徑和重要的手段1617。
1.1 基因組學與轉(zhuǎn)化醫(yī)學
全基因組關(guān)聯(lián)分析(genomewide association study,GWAS)可在人類全基因組范圍內(nèi)找出存在的序列變異,通過對比分析病例與對照樣本的基因組學數(shù)據(jù)信息,獲得與疾病相關(guān)的靶點1819。自2005年首個GWAS研究與年齡相關(guān)性黃斑變性相關(guān)的報道發(fā)表在《科學》雜志以來,該技術(shù)使許多復(fù)雜疾病的研究獲得了突破性進展,在醫(yī)學領(lǐng)域中受到了極大的重視18~20。人們已通過GWAS技術(shù)發(fā)現(xiàn)并鑒定了大量與復(fù)雜性狀相關(guān)聯(lián)的遺傳變異。截至2016年9月18日,GWAS Catalog數(shù)據(jù)庫共收載了GWAS相關(guān)研究文章2546篇,發(fā)現(xiàn)了22 037個單核苷酸多態(tài)性(SNP)與24 916個疾病/性狀關(guān)聯(lián)。包括消化系統(tǒng)疾病、心血管疾病、代謝性疾病、神經(jīng)系統(tǒng)疾病、免疫系統(tǒng)疾病和腫瘤等多種疾病/性狀被 美國NIH權(quán)威數(shù)據(jù)庫收錄。2009年,張學軍教授團隊驗證了銀屑病中已報道的MHC和IL12B基因,并發(fā)現(xiàn)了一個新的易感基因LCE,該成果作為中國第一篇GWAS論文以“Psoriasis genomewide association study identifies susceptibility variants within LCE gene cluster at 1q21”為題發(fā)表在《Nature Genetics》雜志上21。張學軍教授認為,未來GWAS研究將應(yīng)用在疾病預(yù)警、遺傳咨詢、早期診斷、風險評估以及藥物選擇中。隨著基因組學技術(shù)的不斷發(fā)展,人們將會對變異與疾病之間的關(guān)系有更深入、更系統(tǒng)的理解,并將其高效地轉(zhuǎn)化到臨床應(yīng)用中。
1.2 轉(zhuǎn)錄組學與轉(zhuǎn)化醫(yī)學
從廣義上講,轉(zhuǎn)錄組的研究對象為特定細胞在某一生理狀態(tài)下所轉(zhuǎn)錄加工的RNA分子,包括信使RNA、核糖體RNA、轉(zhuǎn)運RNA及非編碼RNA等功能單元22。其主要研究內(nèi)容是RNA與蛋白質(zhì)分子和它們所組成的基因功能網(wǎng)絡(luò)分析,及它們與細胞功能的關(guān)系等變化規(guī)律。轉(zhuǎn)錄組譜不但可以根據(jù)某些基因表達的信息推斷相應(yīng)未知基因的功能,探究特定調(diào)節(jié)基因的作用機制,而且還可以依照基因表達譜的分子標簽用于疾病的診斷分析23~25。
新一代高通量測序技術(shù)RNA-seq是目前深入研究轉(zhuǎn)錄組的強大工具26~28。Chen等
29對肝癌進行轉(zhuǎn)錄組測序分析,結(jié)果顯示編碼抑制酶AZIN1的RNA編輯發(fā)生了改變,導(dǎo)致其空間構(gòu)象也發(fā)生了變化,進而增強了癌癥細胞的侵襲性。在非小細胞肺癌的研究30發(fā)現(xiàn)新的融合基因(ALK-PTPN3)會促使抑癌基因PTPN3的等位失活,該發(fā)現(xiàn)對肺癌的診斷和靶向治療有重要意義。通過RNA-seq和 ChIRP-seq等技術(shù)對非編碼RNA進行研究,發(fā)現(xiàn) lncRNA在前列腺癌、肺癌和心臟病等疾病中也具有重要作用中,Jung等33通過對 7256組RNA-seq數(shù)據(jù)進行分析比較,發(fā)現(xiàn)機體中高達68%的轉(zhuǎn)錄產(chǎn)物為lncRNA,大約有7%的lncRNA和疾病相關(guān)的SNP重合。
目前,轉(zhuǎn)錄組研究已經(jīng)成為揭示疾病的基因突變規(guī)律、探究疾病發(fā)生和發(fā)展的重要機制、發(fā)現(xiàn)致病基因調(diào)控的關(guān)鍵靶點等問題的重要手段, 對分子病因?qū)W分析、藥物個性化治療、預(yù)后評價及發(fā)現(xiàn)新的藥物靶點等諸多新領(lǐng)域具有重要意義73132。 Lyer等34~36。
1.3 蛋白組學與轉(zhuǎn)化醫(yī)學
蛋白組學通過對機體的細胞或組織內(nèi)的蛋白質(zhì)組成、表達水平、修飾情況以及蛋白質(zhì)間相互作用關(guān)系等進行系統(tǒng)的分析,揭示蛋白質(zhì)與生命活動的內(nèi)在聯(lián)系和規(guī)律。在臨床醫(yī)學研究中,通過對比分析正常機體及病理條件下的機體蛋白質(zhì)組差異,發(fā)現(xiàn)與疾病密切相關(guān)的特異性的蛋白質(zhì)分子,進而推測某些特異性蛋白質(zhì)與疾病的關(guān)系。這些蛋白質(zhì)不但可以作為疾病早期診斷的生物標記物,還可能作為新藥設(shè)計的潛在靶點37。
在癌癥預(yù)測與診斷中,生物標記物的應(yīng)用已較為成熟,如HER-2/ neu 可特異地作為 乳腺癌及胃癌診斷的重要參考指標,CD20抗原則與淋巴癌聯(lián)系緊密38~40。在阿爾茨海默癥的研究中,Song等41通過蛋白組學技術(shù)對411位認知正常的對照受試者、261位輕度認知障礙者和19位阿爾茨海默癥患者的血漿蛋白樣本進行分析,并通過Western對質(zhì)譜數(shù)據(jù)進一步驗證,發(fā)現(xiàn) 30種蛋白在阿爾茨海默癥患者和輕度認知障礙者樣本中調(diào)節(jié)異常, Afamin和IGHM兩種蛋白質(zhì)的表達在阿爾茨海默癥患者樣本中發(fā)生了顯著的改變,可作為該疾病診斷的潛在生物標記物。新一代蛋白質(zhì)芯片技術(shù)的發(fā)展將使臨床疾病的篩查和治療變得更便捷、高效42~44。
1.4 代謝組學與轉(zhuǎn)化醫(yī)學
代謝組學通過高分辨的質(zhì)譜、核磁等技術(shù),對機體體液或組織中代謝物進行高通量分析,并結(jié)合多元統(tǒng)計學,模式識別模型篩選與疾病相關(guān)且具有顯著差異的代謝標志物,為疾病的診治提供科學依據(jù)。
目前,代謝標志物被廣泛應(yīng)用在臨床各類癌癥的預(yù)測分析。前列腺癌患者的血漿中,葡萄糖、賴氨酸、苯丙氨酸、乙酰半胱氨酸等代謝標志物濃度明顯升高而脂質(zhì)的濃度降低,在臨床預(yù)測中,其準確率達93%以上45。在卵巢癌預(yù)測分析中,酮體、丙氨酸、纈氨酸、低密度脂蛋白、神經(jīng)酰胺和溶血磷脂等標志物通常作為重要的參考依據(jù)46。此外,對癌細胞的代謝通路進行研究發(fā)現(xiàn),其代謝通路中的IDH1和IDH2兩個異檸檬酸脫氫酶突變體可以促進癌細胞的能量代謝,提高癌細胞的存活率。因此,代謝組學不但可以通過代謝標志物對疾病的進程做出直觀的預(yù)測,而且能夠通過代謝通路探尋疾病發(fā)生的機理47。
1.5 多組學與轉(zhuǎn)化醫(yī)學
傳統(tǒng)的單組學研究已為疾病的篩查、診斷、治療和預(yù)防等提供了重要的參考信息,極大地提高了人們對疾病的深層認知水平,豐富了臨床治療的手段。然而,機體是一個非常復(fù)雜的生命系統(tǒng),疾病的發(fā)生將促使機體產(chǎn)生一系列的連鎖反應(yīng),單組學數(shù)據(jù)分析通常只能探尋疾病狀態(tài)多種變化的單一層面信息2548~51。隨著高通量組學技術(shù)對疾病研究的不斷深入,單組學分析愈加難以滿足轉(zhuǎn)化醫(yī)學的需求。多組學的關(guān)聯(lián)組合分析,不僅可以更全面、更系統(tǒng)地發(fā)掘疾病的形成機理,也可以通過相互補充、確證來提升診療的成功率52~56。
多組學分析與轉(zhuǎn)化醫(yī)學的具體研究策略為多源數(shù)據(jù)的 標準化處理-數(shù)據(jù)間相互關(guān)聯(lián)的建立-疾病相關(guān)因子的過濾篩選-疾病診療模型的建立-對疾病進行預(yù)測和干預(yù)的實施-診療后臨床數(shù)據(jù)的分析-對診療模型的進一步完善48。
從宏觀角度分析,機體由健康狀態(tài)向疾病狀態(tài)的轉(zhuǎn)變,是各種因素綜合作用的結(jié)果。在疾病發(fā)展進程中,各種生物分子的種類及含量不斷發(fā)生改變,且疾病發(fā)展的趨勢也不盡相同,各種復(fù)雜的因素的疊加給疾病的研究與臨床治療的整合(即轉(zhuǎn)化醫(yī)學)帶來了巨大的挑戰(zhàn),而組學技術(shù)的蓬勃發(fā)展為轉(zhuǎn)化醫(yī)學的發(fā)展帶來了新的契機。
基因組學、轉(zhuǎn)錄組學、蛋白組學和代謝組學等多項組學綜合技術(shù)平臺的構(gòu)建,多組學信息庫的發(fā)展與完善,使人們可以對機體病理狀態(tài)下不同層次的調(diào)控因子的改變進行深層發(fā)掘和解析。例如,通過基因組學和轉(zhuǎn)錄組學查找疾病控制基因及靶點,通過蛋白組學探究發(fā)病關(guān)聯(lián)信號通路機理、生物標志物及相關(guān)靶點,通過代謝組學分析基因表達蛋白調(diào)控的最終影響和表現(xiàn)55。從不同水平系統(tǒng)分析、相互驗證,54全面地解讀疾病發(fā)生、發(fā)展進程,從而為臨床疾病診斷、治療提供全新而有效的方案36。以臨床的實際需求為切入點,通過對不同來源數(shù)據(jù)信息系統(tǒng)地分析與研究,使之轉(zhuǎn)化為高效的診療技術(shù),并最終服務(wù)于臨床。
1 SUND N S, JR C W, GENEL M, et al. Central challenges facing the national clinical research enterprise. Jama, 2003, 289(10):1278-1287.
2 MARINCOLA F M. The trouble with translational medicine. Journal of Internal Medicine, 2011, 270(2):123-127.
3 THEOCHARIS A D, SKANDALIS S S, NEILL T, et al. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochimica et Biophysica Acta, 2015, 1855(2):276-300.
4 FAN J, KITAJIMA S, WATANABE T, et al. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacology & Therapeutics, 2015, 146:104-119.
5 MACHADO C M, REBHOLZ S D, FREITAS A T, et al. The semantic web in translational medicine: current applications and future directions. Briefings in Bioinformatics, 2015, 16(1):89-103.
6 SCHMIDT H H, STOCKER R, VOLLBRACHT C, et al. Antioxidants in translational medicine. Antioxidants & Redox Signaling, 2015, 23(14):1130-1143.
7 MALIK R, PATEL L, PRENSNER J R, et al. The lncRNA PCAT29 inhibits oncogenic phenotypes in prostate cancer. Molecular Cancer Research, 2014, 12(8):1081-1087.
8 GEMMATI D, TOGNAZZO S, SERINO M L, et al. Factor ⅩⅢ V34L polymorphism modulates the risk of chronic venous leg ulcer progression and extension. Wound Repair and Regeneration, 2004, 12(5):512-517.
9 ZAMBONI P, DE MATTEI M, ONGARO A, et al. Factor ⅩⅢ contrasts the effects of metalloproteinases in human dermal fibroblast cultured cells. Vascular and Endovascular Surgery, 2004, 38(5):431-438.
10 CUI C, LIU G, HUANG Y, et al. MicroRNA profiling in great saphenous vein tissues of patients with chronic venous insufficiency. Tohoku Journal of Experimental Medicine, 2012, 228(4):341-350.
11 BATEMAN N W, SUN M, HOOD B L, et al. Defining central themes in breast cancer biology by differential proteomics: conserved regulation of cell spreading and focal adhesion kinase. J Proteome Res, 2010, 9(10):5311-5324.
12 KRISTIANSEN T Z, HARSHA H C, GRONBORG M, et al. Differential membrane proteomics using18O-labeling to identify biomarkers for cholangiocarcinoma. J Proteome Res, 2008, 7(11):4670-4677.
13 AN H J, LEBRILLA C B. A glycomics approach to the discovery of potential cancer biomarkers. Methods in Molecular Biology, 2010, 600:199-213.
14 STECHMILLER J K, CHILDRESS B, COWAN L. Arginine supplementation and wound healing. Nutr Clin Pract, 2005, 20(1):52-61.
15 CHILDRESS B, STECHMILLER J K, SCHULTZ G S. Arginine metabolites in wound fluids from pressure ulcers: a pilot study. Biological Research for Nursing, 2008, 10(2):87-92.
16 LOPEZ E, MADERO L, LOPEZ-PASCUAL J, et al. Clinical proteomics and OMICS clues useful in translational medicine research. Proteome Science, 2012, 10(1):35.
17 MANNELLO F, LIGI D, CANALE M, et al. Omics profiles in chronic venous ulcer wound fluid: innovative applications for translational medicine. Expert Review of Molecular Diagnostics, 2014, 14(6):737-762.
18 BAINBRIDE M N, WISZNIEWSKI W, MURDOCK D R, et al. Whole-genome sequencing for optimized patient management. Science Translational Medicine, 2011, 3(87):87re3.
19 BAMSHAD M J, NG S B, BIGHAM A W, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nature Reviews Genetics, 2011, 12(11):745-755.
20 WELTER D, MACARTHUR J, MORALES J, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Research, 2014, 42:D1001-D1006.
21 ZHANG X J, HUANG W, YANG S, et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nature Genetics, 2009, 41(2):205-210.
22 SULTAN M, SCHULZ M H, RICHARD H, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 2008, 321(5891):956-960.
23 WANG E T, SANDBERG R, LUO S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature, 2008, 456(7221):470-476.
24 BURD C E, JECK W R, LIU Y, et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genetics, 2010, 6(12):e1001233.
25 LUKIW W J. Circular RNA (circRNA) in Alzheimer's disease (AD). Frontiers in Genetics, 2013, 4:307.
26 RAMSKOLD D, WANG E T, BURGE C B, et al. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Computational Biology, 2009, 5(12):e1000598.
27 HITZEMANN R, BOTOOMLY D, DARAJIAN P, et al. Genes, behavior and next-generation RNA sequencing. Genes Brain Behav, 2013, 12(1):1-12.
28 GOU Y, CHEKALUK Y, ZHANG J, et al. TSC1 involvement in bladder cancer: diverse effects and therapeutic implications. The Journal of Pathology, 2013, 230(1):17-27.
29 CHEN L, LI Y, LIN C H, et al. Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nature Medicine, 2013, 19(2):209-216.
30 JUNG Y, KIM P, JUNG Y, et al. Discovery of ALK-PTPN3 gene fusion from human non-small cell lung carcinoma cell line using next generation RNA sequencing. Genes Chromosomes & Cancer, 2012, 51(6):590-597.
31 KATOLKA M, WANG D Z. Non-coding RNAs including miRNAs and lncRNAs in cardiovascular biology and disease. Cells, 2014, 3(3):883-898.
32 WHITE N M, CABANSKI C R, SILVA-FISHER J M, et al. Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer. Genome Biology, 2014, 15(8):429.
33 LYER M K, NIKNAFS Y S, MALIK R, et al. The landscape of long noncoding RNAs in the human transcriptome. Nature Genetics, 2015, 47(3):199-208.
34 SHAK S P, KOBEL M, SENZ J, et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. New England Journal of Medicine, 2009, 360(26):2719-2729.
35 SHAH S P, MORIN R D, KHATTRAJ J, et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 2009, 461(7265):809-813.
36 PALANISAMY N, ATEEQ B, KALYANA-SUNDARAM S, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and Melanoma. Nature Medicine, 2010, 16(7):793-798.
37 EBHARDT H A, ROOT A, SANDER C, et al. Applications of targeted proteomics in systems biology and translational medicine. Proteomics, 2015, 15(18):3193-3208.
38 XIAO M, WANG X, CHEN W. The clinical translational potential of p53-related alterations as cancer biomarkers. Histology and Histopathology, 2015, 30(10):1171-1183.
39 SINICROPE F A, OKAMOTO K, KASI P M, et al. Molecular biomarkers in the personalized treatment of colorectal cancer. Clin Gastroenterol Hepatol, 2016, 14(5):651-658.
40 WADA N, IKEDA J, NOJIMA S, et al. Requirement of CXCL12-CXCR7 signaling for CD20(-) CD138(-) double-negative population in lymphoplasmacytic lymphoma. Lab Invest, 2016, 96(5):517-525.
41 SONG F, POLJAK A, KOCHAN N A, et al. Plasma protein profiling of mild cognitive impairment and Alzheimer's disease using iTRAQ quantitative proteomics. Proteome Science, 2014, 12(1):5.
42 YANG Z, CHEVOLOT Y, GEHIN T, et al. Characterization of three amino-functionalized surfaces and evaluation of antibody immobilization for the multiplex detection of tumor markers involved in colorectal cancer. Langmuir, 2013, 29(5):1498-1509.
43 MOSCHALLSKI M, EVERS A, BRANDSTETTER T, et al. Sensitivity of microarray based immunoassays using surface-attached hydrogels. Analytica Chimica Acta, 2013, 781:72-79. 44 GAGNI P, SOLA L, CRETICH M, et al. Development of a high-sensitivity immunoassay for amyloid-beta 1-42 using a silicon microarray platform. Biosensors & Bioelectronics, 2013, 47:490-495.
45 WU C L, JORDAN K W, RATAI E M, et al. Metabolomic imaging for human prostate cancer detection. Science Translational Medicine, 2010, 2(16):16ra8.
46 GARCIA E, ANDREWS C, HUA J, et al. Diagnosis of early stage ovarian cancer by1H NMR metabonomics of serum explored by use of a microflow NMR probe. J Proteome Res, 2011, 10(4):1765-1771.
47 SCHULZE A, HARRIS A L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature, 2012, 491(7424):364-373.
48 CREIGHTON C J, Fu X, HENNESSY B T, et al. Proteomic and transcriptomic profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Res, 2010, 12(3):R40.
49 ZHANG W, LIU Y, SUN N, et al. Integrating genomic, epigenomic, and transcriptomic features reveals modular signatures underlying poor prognosis in ovarian cancer. Cell Reports, 2013, 4(3):542-553.
50 BUTTERFIELD D A, DALLE-DONNE I. Redox proteomics: from protein modifications to cellular dysfunction and disease. Mass Spectrometry Reviews, 2014, 33(1):1-6.
51 GONZALES-DOMINGUEZ R, GARCIA-BARRERA T, Vitorica J, et al. Metabolomics reveals significant impairments in the immune system of the APP/PS1 transgenic mice of Alzheimer's disease. Electrophoresis, 2015, 36(4):577-587.
52 SCHUMACHER A, RUJAN T, HOEFKENS J. A collaborative approach to develop a multi-omics data analytics platform for translational research. Applied & Translational Genomics, 2014, 3(4):105-108.
53 ZHANG B, WANG J, WANG X, et al. Proteogenomic characterization of human colon and rectal cancer. Nature, 2014, 513(7518):382-387.
54 ZHANG W, LI F, NIE L. Integrating multiple 'omics' analysis for microbial biology: application and methodologies. Microbiology, 2010, 156:287-301.
55 NIE L, WU G, ZHANG W. Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: a quantitative analysis. Genetics, 2006, 174(4):2229-2243.
56 YOON S H, HAN M J, JEONG H, et al. Comparative multi-omics systems analysis of Escherichia coli strains B and K-12. Genome Biology, 2012, 13(5):R37.
10.3969/j.issn.1674-0319.2016.06.003