亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        OPTIMAL EXISTENCE OF SYMMETRIC POSITIVE SOLUTIONS FOR A FOURTH-ORDER SINGULAR BOUNDARY VALUE PROBLEM

        2016-12-07 08:59:13ZHANGYanhong
        數(shù)學(xué)雜志 2016年6期

        ZHANG Yan-hong

        (School of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China)

        OPTIMAL EXISTENCE OF SYMMETRIC POSITIVE SOLUTIONS FOR A FOURTH-ORDER SINGULAR BOUNDARY VALUE PROBLEM

        ZHANG Yan-hong

        (School of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China)

        In this paper,we study a fourth-order singular boundary value problem.Using the Leggett-Williams fixed point theorem together with constructing a special cone,we establish optimal existence of symmetric positive solutions for a fourth-order singular boundary value problem under certain conditions,which generalizes optimal existence of symmetric positive solutions to singular boundary value problem.

        symmetric positive solutions;boundary value problem;cone

        2010 MR Subject Classification:34B15;34B25

        Document code:AArticle ID:0255-7797(2016)06-1209-06

        1 Introduction

        We consider existence of symmetric positive solutions for a fourth-order singular boundary value problem:

        which describes the deformations of an elastic beam with both endpoints fixed,where f: (0,1)×(0,+∞)→(0,+∞)is conditions and f(t,x)=f(1-t,x)for each(0,1)×(0,+∞). f(t,x(t))may be singular at t=0 and/or t=1.

        Here symmetric positive solutions for a fourth-order singular boundary value problem (1)satisfying x(t)=x(1-t)and x(t)>0,t∈(0,1).

        Boundary value problems arise in a variety of different areas of applied mathematics and physics(see[1,2]and the references therein).Recently many authors studied the existence of positive solutions for four-order singular boundary value problems for example [3-13]and the references therein.Most of these results are obtained via transforming the four-order boundary value problems into a second-order boundary value problems,and thenapplying the Leray-Schauder continuation method,the topologial degree theory,the fixed point theorems on cones,the critical point theory,or the lower and upper solution method. However results about the existence of symmetric positive solutions to singular boundary value problem(1)are few.Motivated by the results in[9,11]we try to establish optimal existence of symmetric positive solutions to problem(1)by applying Leggett-Williams fixed point theorem.

        2 Preliminary

        We consider problem(1)in a Banach space C[0,1]equipped with the norm‖x‖=|x(t)|.A function x(t)∈C[0,1]is said to be a concave function if x(τt1+(1-τ)t2)≥ τx(t1)+(1-τ)x(t2)for all t1,t2,τ∈[0,1].We denote

        Let K be a cone of C[0,1]and m,n be constants,0<m<n.Define

        Let G(t,s)be the Green's function of the corresponding boundary value problem(1),i.e.,

        After a simple calculation,we get

        (IV)(see[9])q(t)G(τ(s),s)≤G(t,s)≤G(τ(s),s),q(t)=min{t2,(1-t)2},t∈[0,1].

        Lemma 2.1(see[14])Let A:K→K be a completely continuous operator,u be a nonnegative continuous concave function on K,and satisfies u(x)≤‖x‖for all x∈In addition,assume that there exist 0<d<m<n≤r satisfy the following conditions:

        (iii)u(Ax)>m for x∈K(u,m,r)and‖Ax‖>n; then A has at least three fixed points x1,x2,x3onsatisfy‖x1‖<d,m<u(x2),and‖x3‖>d for u(x3)<m.

        3 Main Results

        Theorem 3.1 Suppose the following conditions hold:

        (H1)f∈C((0,1)×[0,+∞),[0,+∞)),f(t,x)≤g(t)h(x),g∈C((0,1),[0,+∞)),h∈C([0,+∞),[0,+∞));

        then problem(1)has triple symmetric positive solutions x1,x2,x3satisfy‖x1‖<d,m<u(x2),and‖x3‖>d for u(x3)<m.

        Proof Denote K={x∈C+[0,1]:x(t)is convex function and x(t)=x(1-t),t∈[0,1]},then K is a cone of C+[0,1].

        Define operator A:K→K by Ax(t)=G(t,s)f(s,x(s))ds.Obviously Ax(t)≥ 0,(Ax)''(t)<0 for 0<t<1,and for x∈K,

        consequently Ax∈K,that is A:K→K.By Arzela-Ascoli theorem,we can prove A:K→K is completely continuous.

        From(H1)and 3)in(H3),for any x∈we know that

        Thus condition(i)of Lemma 2.1 holds.

        Next from(H1)and 1)in(H3),for any x∈we have

        Finally we prove u(Ax)>m for x∈K(u,m,r)and‖Ax‖>4m.

        From 2)in(H3),for x∈K(u,m,r)and‖Ax‖>4m,we know that

        Therefore condition(iii)of Lemma 2.1 holds too.The proof is completed.

        RemarkTheorem 3.1 also holds when nonlinearity f(t,x(t))is nonsingular at t=0 and t=1.

        4 Example

        Example 4.1The following boundary value problem:

        has triple symmetric positive solutions,where

        Proof Let f(t,x)=h(x)g(t),g(t)=Obviously g(t)is signular at t=0 and t=1.h(x)∈C[0,+∞).So(H1)holds.

        Since

        then(H2)holds.

        2)In(H3)is immediate,since we may take m=2 then

        3)In(H3)is immediate,since we may take r=100>2m=4 then

        Thus from Theorem 3.1,we know that problen(2)has triple symmetric positive solutions x1,x2,x3satisfy‖x1‖<2<u(x2),and‖x3‖>for u(x3)<2.

        References

        [1]Davis J M,Erbe L H,Henderson J.Multiplicity of positive solutions for higher order Sturm-Liouville problems[J].Rocky Mountain J.Math.,2001,31:169-184.

        [2]Liu L S,Sun Y.Positive solutions of singular boundary value problems for differential equations[J]. Acta Math.Sci.Ser.A.Chin.Ed.,2005,25(4):554-563.

        [3]Tang Rongrong.A class of fourth-order nonlinear boundary layer solution of singular perturbation boundary value equation[J].J.Math.,2007,27(4):385-390.

        [4]Alves E,Ma T F,Pelicer M L.Monotone positive solutions for a fourth order equation with nonlinear boundary conditions[J].Nonl.Anal.TMA,2009,71:3834-3841.

        [5]Graef J R,Yang B.Positive solutions of a nonlinear fourth order boundary value problem[J].Comm. Appl.Nonl.Anal.,2007,14(1):61-73.

        [6]Ma H L.Symmetric positive solutions for nonlocal boundary value problems of fourth order[J].Nonl. Anal.,2008,68:645-651.

        [7]Liu B.Positive solutions of fourth-order two-point boundary value problems[J].Appl.Math.Comput.,2004,148:407-420.

        [8]Ma R,Wang H.On the existence of positive solutions of fourth-order ordinary differential equations[J].Appl.Anal.,1995,59:225-231.

        [9]Pei M,Chang S K.Monotone iterative technique and symmetric positive solutions for a fourth-order boundary value problem[J].Math.Comput.Model.,2010,51:1260-1267.

        [10]Yang B.Positive solutions for the beam equation under certain boundary conditions,electron[J].J. Diff.Equ.,2005,78:1-8.

        [11]Yao Q.Positive solutions for eigenvalue problems of fourth-order elastic beam equations[J].Appl. Math.Lett.,2004,17:237-243.

        [12]Zhang X P.Existence and iteration of monotone positive solutions for an elastic beam with a corner[J].Nonl.Anal.RWA,2009,10:2097-2103.

        [13]Jankowski T,Jankowski R.Multiple solutions of boundary-value problems for fourth-order differential equations with deviating arguments[J].J.Optim.The.Appl.,2010,146:105-115.

        [14]Guo D J,Lakashmikantham V.Nonlinear problems in abstract cones[M].New York:Academic Press,1988.

        一類四階奇異邊值問題對稱正解的最優(yōu)存在性

        張艷紅

        (福州大學(xué)數(shù)學(xué)與計算機科學(xué)學(xué)院,福建福州350108)

        本文研究了一類四階奇異邊值問題.通過建立一個特定的錐,利用Leggett-Williams不動點定理,從而在一定的條件下得到一類四階奇異邊值問題對稱正解的最優(yōu)存在性,推廣了奇異邊值問題對稱正解的最優(yōu)存在性的結(jié)果.

        對稱正解;邊值問題;錐

        MR(2010)主題分類號:34B15;34B25O175

        ?date:2014-10-14Accepted date:2015-07-06

        Supported by the Science and Technology Development Fund of Fuzhou University(2014-XQ-30).

        Biography:Zhang Yanhong(1976-),female,born at Fuzhou,Fujian,associate professor,major in differential equation.

        国产综合开心激情五月| 伊人精品无码AV一区二区三区| 日韩精品久久久中文字幕人妻| 精品日韩av专区一区二区 | 天天摸天天做天天爽天天舒服| 日韩精品人妻视频一区二区三区| 国产精品天天看天天狠| 人人妻人人妻人人片av| 无码免费人妻超级碰碰碰碰| 福利视频自拍偷拍视频| 手机看片自拍偷拍福利| 精品人妻午夜一区二区三区四区| 国产女在线| 人妻熟女妇av北条麻记三级| 女女同恋一区二区在线观看| 久久精品国产亚洲av麻豆| 亞洲綜合一區二區三區無碼| 国产麻豆一区二区三区在线播放| 国产婷婷色一区二区三区深爱网| 熟女精品视频一区二区三区| 亚洲AV无码成人网站久久精品| 国产一区二区一级黄色片| 偷拍一区二区视频播放器| 国产成年无码v片在线| 成 人 网 站 在线 看 免费| 亚洲av网一区二区三区成人| 久久久久亚洲av综合波多野结衣| 最近日本中文字幕免费完整| 中文字幕乱码人妻无码久久久1| 成人免费av高清在线| 精品无码国产自产拍在线观看蜜| 日本成人久久| 亚洲一区二区一区二区免费视频| 亚洲成在人线视av| 国产人妻久久精品二区三区| 国产中文久久精品| 手机在线播放av网址| 亚洲精品天堂成人片av在线播放 | 亚洲熟妇在线视频观看| 高清成人在线视频播放| 亚洲精品乱码久久久久久不卡 |