亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        ON CONFORMABLE NABLA FRACTIONAL DERIVATIVE ON TIME SCALES

        2016-12-07 08:58:55ZHAODafangYOUXuexiaoHUChangsong
        數(shù)學(xué)雜志 2016年6期
        關(guān)鍵詞:時(shí)標(biāo)黃石師范大學(xué)

        ZHAO Da-fang,YOU Xue-xiao,HU Chang-song

        (School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

        ON CONFORMABLE NABLA FRACTIONAL DERIVATIVE ON TIME SCALES

        ZHAO Da-fang,YOU Xue-xiao,HU Chang-song

        (School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

        In this paper,we introduce and investigate the concept of conformable nabla fractional derivative on time scales.By using the theory of time scales,we obtain some basic properties of the conformable nabla fractional derivative,which extend and improve both the results in[9,10]and the usual nabla derivative.

        conformable nabla fractional derivative;nabla derivative;time scales

        2010 MR Subject Classification:26A33;26E70

        Document code:AArticle ID:0255-7797(2016)06-1142-07

        1 Introduction

        Fractional Calculus is a generalization of ordinary differentiation and integration to arbitrary(non-integer)order.The subject is as old as the calculus of differentiation and goes back to times when Leibniz,Gauss,and Newton invented this kind of calculation.During three centuries,the theory of fractional calculus developed as a pure theoretical field,useful only for mathematicians.Nowadays,the fractional calculus attracts many scientists and engineers.There were several applications of this mathematical phenomenon in mechanics, physics,chemistry,control theory and so on[1-8].

        Recently,the authors in[9]defined a new well-behaved simple fractional derivative called the conformable fractional derivative depending just on the basic limit definition of the derivative.Especialy,in[10],Nadia Benkhettou,Salima Hassani and Delfim Torres introduced a conformable time-scale fractional derivative,which providing a natural extension of the conformable fractional derivative.In this paper,we define the conformable nabla fractional derivative on time scales,which give another type of generalization of the conformable fractional derivative and the usual nabla derivative[11-14].

        2 Preliminaries

        A time scale T is a nonempty closed subset of real numbers R with the subspace topology inherited from the standard topology of R.For a,b∈T we define the closed interval[a,b]Tby[a,b]T={t∈T:a≤t≤b}.For t∈T we define the forward jump operator σ by σ(t)=inf{s>t:s∈T},where inf?=supT,while the backward jump operator ρ is defined by ρ(t)=sup{s<t:s∈T},where sup?=inf T.

        If σ(t)>t,we say that t is right-scattered,while if ρ(t)<t,we say that t is leftscattered.If σ(t)=t,we say that t is right-dense,while if ρ(t)=t,we say that t is left-dense.A point t∈T is dense if it is right and left dense;isolated if it is right and left scattered.The forward graininess functionμ(t)and the backward graininess function η(t) are defined byμ(t)=σ(t)-t,η(t)=t-ρ(t)for all t∈T,respectively.If supT is finite and left-scattered,then we define Tk:=TsupT,otherwise Tk:=T;if inf T is finite and right-scattered,then Tk:=Tinf T,otherwise Tk:=T.We set

        A function f:T→R is nabla(?)differentiable at t∈Tkif there exists a number f?(t)such that,for each ε>0,there exists a neighborhood U of t such that

        for all s∈U.We call f?(t)the?-derivative of f at t.Throughout this paper,α∈(0,1].

        3 Conformable Nabla Fractional Derivative

        Definition 3.1 Let T be a time scale and α∈(0,1].A function f:T→R is conformable?-fractional differentiable of order α at t∈Tkif there exists a number Tα(f?)(t) such that,for each ε>0,there exists a neighborhood U of t such that

        for all s∈U.We call Tα(f?)(t)the conformable?-fractional derivative of f of order α at t and we say that f is conformable?-fractional differentiable if f is conformable?-fractional differentiable for all t∈Tk.

        Theorem 3.2 Let T be a time scale,t∈Tkand α∈(0,1].Then we have the following:

        (i)If f is conformal?-fractional differentiable of order α at t,then f is continuous at t.

        (ii)If f is continuous at t and t is left-scattered,then f is conformable?-fractional differentiable of order α at t with

        (iii)If t is left-dense,then f is conformable?-fractional differentiable of order α at t if and only if the limitexists as a finite number.In this case,

        (iv)If f is conformal?-fractional differentiable of order α at t,then

        Proof (i)The proof is easy and will be omitted.

        (ii)Assume that f is continuous at t and t is left-scattered.By continuity,

        Hence given ε>0,there exists a neighborhood U of t such that

        for all s∈U.It follows that

        for all s∈U.Hence we get the desired result

        (iii)Assume that f is conformable?-fractional differentiable of order α at t and t is right-dense.Then for each ε>0,there exists a neighborhood U of t such that

        for all s∈U.Since ρ(t)=t we have thatfor all s∈U.It follows thatHence we get the desired result.

        On the other hand,if the limitexists as a finite number and is equal to J,then for each ε>0,there exists a neighborhood U of t such that

        for all s∈U.Since t is right-dense,we have that

        Hence f is conformable?-fractional differentiable at t and Tα(f?)(t)=

        (iv)If t is left-dense,then η(t)=0 and we have that

        If t is left-scattered,then ρ(t)<t,then by(ii)

        Corollary 3.3Again we consider the two cases T=R and T=Z.

        (i)If T=R,then f:R→R is conformable?-fractional differentiable of order α at t∈R if and only if the limitexists as a finite number.In this case,

        If α=1,then we have that Tα(f?)(t)=f?(t)=f'(t).

        (ii)if T=Z,then f:Z→R is conformable?-fractional differentiable of order α at t∈Z with

        If α=1,then we have that Tα(f?)(t)=f(t)-f(t-1)=?f(t),where?is the usual backward difference operator.

        Example 3.4If f:T→R is defined by f(t)=C for all t∈T,where C∈R is constant,then Tα(f?)(t)≡0.

        (ii)if f:T→R is defined by f(t)=t for all t∈T,then Tα(f?)(t)=ρ(t)1-α.If α=1, then Tα(f?)(t)≡1.

        Example 3.5If f:T→R is defined by f(t)=t2for all t∈T:=from Theorem 3.2(ii)we have that f is conformable?-fractional differentiable of order α at t∈T with

        Theorem 3.6 Assume f,g:T→R are conformable?-fractional differentiable of order α at t∈Tk,then

        (i)for any constant λ1,λ2,the sum λ1f+λ2g:T→R is conformable?-fractional differentiable of order α at t with Tα((λ1f+λ2g)?)(t)=λ1Tα(f?)(t)+λ2Tα(g?)(t);

        (ii)if f and g are continuous,then the product fg:T→R is conformable?-fractional differentiable of order α at t with

        Proof (i)The proof is easy and will be omitted.

        (ii)Let 0<ε<1.Define

        then 0<∈?<1.f,g:T→R are conformable?-fractional differentiable of order α at t. Then there exists neighborhoods U1and U2of t with

        for all s∈U1and

        for all s∈U2.

        From Theorem 3.2(i),there exists neighborhoods U3of t with|f(t)-f(s)|≤∈?for all s∈U3.

        Let U=U1∩U2∩U3.Then we have for all s∈U

        Thus Tα(fg)?(t)=f(t)Tα(g?)(t)+Tα(f?)(t)g(ρ(t)).The other product rule formula follows by interchanging the role of functions f and g.

        (iii)From Example 3.4,we have that Tα(t)=Tα(1)?(t)=0.Therefore

        and consequently Tα(

        (iv)We use(ii)and(iii)to calculate

        Theorem 3.7 Let c be constant and m∈N.

        (i)For f defined by f(t)=(t-c)m,we have that

        Proof (i)We prove the first formula by induction.If m=1,then f(t)=t-c,and clearly Tα(f?)(t)=ρ(t)1-αholds by Example 3.4 and Theorem 3.6(i).Now we assume that

        holds for f(t)=(t-c)mand let F(t)=(t-c)m+1=(t-c)f(t).We use Theorem 3.6(ii) to obtain

        Hence part(i)holds.

        Example 3.8 If f:T→R is defined by f(t)=we have that f is conformable?-fractional differentiable of order α at t∈T with

        References

        [1]Miller K,Ross B.An introduction to the fractional calculus and fractional differential equations[M]. New York:Wiley,1993.

        [2]Oldham K B,Spanier J.The fractional calculus[M].New York,London:Academic Press,1974.

        [3]Podlubny I.Fractional differential equations[M].San Diego:Academic Press,1999.

        [4]Herrmann R.Fractional calculus:an introduction for physicists[M].Singapore:World Sci.,2014.

        [5]Sabatier J,Agrawal O P,Machado J A T.Advances in fractional calculus:theoretical developments and applications in physics and engineering[M].Berlin:Springer,2007.

        [7]Meilanov R P,Magomedov R A.Thermodynamics in fractional calculus[J].J.Engin.Phys.Thermophys.,2014,87(6):1521-1531.

        [8]Carpinteri A,Cornetti P,Alberto Sapora.Nonlocal elasticity:an approach based on fractional calculus[J].Meccanica,2014,49(11):2551-2569.

        [9]Khalil R,Al Horani M,Yousef A,Sababheh M.A new definition of fractional derivative[J].J. Comput.Appl.Math.,2014,264:57-66.

        [10]Benkhettou N,Hassani S,Torres D F M.A conformable fractional calculus on arbitrary time scales[J].J.King Saud Univ.Sci.,2016,28:93-98.

        [11]Hilger S.Ein Makettenkalkl mit Anwendung auf Zentrumsmannigfaltigkeiten[D].Wurzburg:Universtat Wurzburg,1988.

        [12]Hilger S.Analysis on measure chains-a unified approach to continuous and discrete calculus[J]. Results Math.,1990,18:18-56.

        [13]Bohner M,Peterson A.Dynamic equations on time scales:an introduction with applications[M]. Boston:Birkhauser,2001.

        [14]Bohner M,Peterson A.Advances in dynamic equations on time scales[M].Boston:Birkhauser,2004.

        [15]Zhao Dafang,Ye Guoju.C-integral and denjoy-C integral[J].Comm.Korean.Math.Soc.,2007, 22(1):27-39.

        [16]Zhao Dafang,Ye Guoju.On strong C-integral of Banach-valued functions[J].J.Chungcheong Math. Soc.,2007,20(1):1-10.

        [17]Zhao Dafang.On the C1-integral[J].J.Math.,2011,31(5):823-828.

        [18]Zhao Dafang,Li Biwen.A note on the C-integral[J].J.Math.,2011,31(4):594-598.

        關(guān)于時(shí)標(biāo)上的適應(yīng)Nabla分?jǐn)?shù)階導(dǎo)數(shù)

        趙大方,游雪肖,胡長松

        (湖北師范大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖北黃石435002)

        本文研究了時(shí)標(biāo)上的適應(yīng)Nabla分?jǐn)?shù)階導(dǎo)數(shù)的問題.利用時(shí)標(biāo)理論,獲得了關(guān)于適應(yīng)Nabla分?jǐn)?shù)階導(dǎo)數(shù)的若干重要性質(zhì).這些結(jié)果推廣并改進(jìn)了文獻(xiàn)[9,10]中的有關(guān)結(jié)論以及一般Nabla導(dǎo)數(shù)的性質(zhì).

        適應(yīng)Nabla分?jǐn)?shù)階導(dǎo)數(shù);Nabla導(dǎo)數(shù);時(shí)標(biāo)

        MR(2010)主題分類號:26A33;26E70O174.1

        ?date:2016-01-22Accepted date:2016-04-22

        Supported by Educational Commission of Hubei Province of China (Q20152505).

        Biography:Zhao Dafang(1982-),male,born at Linyi,Shandong,master,major in Henstock integral theory.

        猜你喜歡
        時(shí)標(biāo)黃石師范大學(xué)
        黃石國家公園慶祝150年蠻荒歲月——這是怎樣的歷史
        英語文摘(2022年5期)2022-06-05 07:46:42
        奮力創(chuàng)造建設(shè)現(xiàn)代化新黃石的嶄新業(yè)績
        黨員生活(2022年2期)2022-04-24 13:52:19
        二階非線性中立型時(shí)標(biāo)動(dòng)態(tài)方程趨向于零的非振動(dòng)解的存在性
        時(shí)標(biāo)上具非正中立項(xiàng)的二階動(dòng)力方程的動(dòng)力學(xué)性質(zhì)
        黃石俱樂部度假別墅
        黃石高速公路改造項(xiàng)目中互聯(lián)網(wǎng)+工程建設(shè)管理系統(tǒng)的應(yīng)用
        Study on the harmony between human and nature in Walden
        長江叢刊(2018年8期)2018-11-14 23:56:26
        Balance of Trade Between China and India
        商情(2017年9期)2017-04-29 02:12:31
        Courses on National Pakistan culture in Honder College
        Film Music and its Effects in Film Appreciation
        国产精品国产av一区二区三区| 极品熟妇大蝴蝶20p| 亚洲欧美日韩中文字幕网址| 极品美女尤物嫩模啪啪| 看一区二区日本视频免费| 国产av一区二区三区性入口 | 免费观看18禁无遮挡真人网站| 国产va免费精品高清在线| 亚洲欧美日韩一区二区在线观看| 精品女同一区二区三区在线播放器 | 精品少妇人妻av免费久久久| 久久国产精品超级碰碰热| 国产精品丝袜美女久久| 婷婷色婷婷开心五月四| 国产人妻精品无码av在线| 日韩av无码成人无码免费| 久久无码中文字幕东京热| 亚洲中文字幕在线第六区| 老熟女富婆激情刺激对白| 少妇久久久久久被弄到高潮| 国产丝袜精品不卡| 午夜一区二区在线视频| 亚洲国产av一区二区三区精品| 不卡一卡二卡三乱码免费网站| 亚洲 高清 成人 动漫| 538在线视频| 亚洲国产一区二区中文字幕| 成人精品一区二区三区电影 | 女人让男人桶爽30分钟| 人妻AV无码一区二区三区奥田咲 | 国产又黄又大又粗视频| 日本一区二区三区在线播放| 亚洲av在线观看播放| 亚洲av无码国产综合专区| 国产乱子伦视频大全| 网友自拍人妻一区二区三区三州 | yy111111少妇影院| 亚洲av乱码国产精品观| 国产果冻豆传媒麻婆精东| 亚洲色无码播放| 久久精品国产亚洲av麻豆四虎|