亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        ENDOMORPHISM ALGEBRAS IN THE YETTER-DRINFEL'D MODULE CATEGORY OVER A REGULAR MULTIPLIER HOPF ALGEBRA

        2016-12-07 08:58:47YANGTaoLIUGuangjinZHOUXuan
        數(shù)學(xué)雜志 2016年6期
        關(guān)鍵詞:周璇乘子自同構(gòu)

        YANG Tao,LIU Guang-jin,ZHOU Xuan

        (1.School of Science,Nanjing Agricultural University,Nanjing 210095,China)

        (2.School of Veterinary Medicine,Nanjing Agricultural University,Nanjing 210095,China)

        (3.School of Mathematics and Information Technology,Jiangsu Second Normal University, Nanjing 210013,China)

        ENDOMORPHISM ALGEBRAS IN THE YETTER-DRINFEL'D MODULE CATEGORY OVER A REGULAR MULTIPLIER HOPF ALGEBRA

        YANG Tao1,LIU Guang-jin2,ZHOU Xuan3

        (1.School of Science,Nanjing Agricultural University,Nanjing 210095,China)

        (2.School of Veterinary Medicine,Nanjing Agricultural University,Nanjing 210095,China)

        (3.School of Mathematics and Information Technology,Jiangsu Second Normal University, Nanjing 210013,China)

        Endomorphism algebras in Yetter-Drinfel’d module category over a regular multiplier Hopf algebra are studied in this paper.By the tools of multiplier Hopf algebra and Homological algebra theories,we get that two endomorphism algebras are isomorphic in the Yetter-Drinfel’d module category,which generalizes the results of Panaite et al.in Hopf algebra case.

        multiplier Hopf algebra;Yetter-Drinfel’d module;Yetter-Drinfel’d module category

        2010 MR Subject Classification:16T05;16T99

        Document code:AArticle ID:0255-7797(2016)06-1111-09

        1 Introduction

        Multiplier Hopf algebra,introduced by Van Daele[1],can be naturally considered as a generalization of Hopf algebra when the underlying algebra is no longer assumed to have a unit.Yetter-Drinfel'd module category,as an important content in Hopf algebras theory, was also studied by Van Daele and his collaborators.All the objects they discussed are (non-degenerate)algebras(see[2]).

        However,in the well-known Hopf algebras case,the objects of Yetter-Drinfel'd module category are only vector spaces satisfying some certain conditions.So in[3],the authors gave a new category structure for regular multiplier Hopf algebra A:(α,β)-Yetter-Drinfel'd module categoryAyDA(α,β),in which the objects were vector spaces,generalizing the former notions.

        In this paper,we focus our work on(α,β)-Yetter-Drinfel'd module,mainly consider some algebras in Yetter-Drinfel'd modules category and get some isomorphisms.

        The paper is organized in the following way.In Section 2,we recall some notions which we will use in the following,such as multiplier Hopf algebras,modules and complete modules for a multiplier Hopf algebras,comodules and(α,β)-Yetter-Drinfel'd modules.

        In Section 3,we consider algebras inAyDA(α,β).Let α,β∈Aut(A),and M∈AyDA(α,β)be finite dimensional.Consider the object M'∈AyDA(αβ-1α,α),coinciding with M as left A-modules,and having a right A-comodule structure given by

        2 Preliminaries

        Throughout this paper,all spaces we considered are over a fixed field k.We consider A as an algebra with a nondegenerate product,it is possible to construct the multiplier algebra M(A).M(A)is an algebra with identity such that A sits in M(A)as an essential two-sided ideal,it can be also characterized as the largest algebra with identity containing A as an essential ideal.More details about the concept of the multiplier algebra of an algebra,we refer to[1].

        An algebra morphism(or homomorphism)?:A-→M(A?A)is called a comultiplication on A if(a?b)=?(a)(1?b)and(a?b)=(a?1)?(b)are elements of A?A for all a,b∈A and if?is coassociative in the sense that the linear mappings:A?A-→A?A obey the relation where id denotes the identity map.

        A pair(A,?)of an algebra A with nondegenerate product and a comultiplication?on A is called a multiplier Hopf algebra ifandare bijective(see[1]),(A,?)is regular if and only if the antipode of(A,?cop)is bijective.

        Let(A,?,ε,S)be a regular multiplier Hopf algebra and M a vector space.Then M is called a(left-right)(α,β)-Yetter-Drinfel'd module over regular multiplier Hopf algebra A,if

        (1)(M,·)is a left unital A-module,i.e.,A·M=M.

        (2)(M,Γ)is a(right)A-comodule,where Γ:M→M0(M?A)denotes the right coaction of A on M,M0(M?A)denote the completed module.

        (3)Γ and·satisfy the following compatible conditions

        By the definition of Yetter-Drinfel'd modules,we can define(left-right)Yetter-Drinfel'd module categoryAyDA(α,β).The other three Yetter-Drinfel'd module categories are similar (more details see[3-5]).

        AyDA(id,id)=AyDA,the left-right Yetter-Drinfel'd module category.

        3 Endomorphism Algebras

        Let A be a regular multiplier Hopf algebra,in this section,we mainly consider(left-right) Yetter-Drinfel'd module categoryAyDAover regular multiplier Hopf algebra A.

        Definition 3.1 Let A be a multiplier Hopf algebra and C a unital algebra.C is called a left A-module algebra,if

        (1)(C,·)is a left unital A-module,

        (2)the module action satisfies

        C is called right A-comodule algebra,if

        (1)(C,ρ)is a right A-comodule,

        (2)the comodule structure map ρ satisfies:for all a∈A,

        Let C be a unital associative algebra inAyDA.That means C is an object inAyDA, and the multiplication C?C→C and a unit map ι:k→C satisfying associativity and unit axioms.

        Proposition 3.2 C is a unital algebra inAyDAif and only if C is an object inAyDAand C is a left A-module algebra and a right Aop-comodule algebra.

        We denote by Copthe usual opposite algebra,with the multiplication c·c'=c'c for all c,c'∈C,and bythe A-opposite algebra,which means C as an object inAyDA,but with the multiplicationfor all c,c'∈C,i.e.,the opposite of C in the categoryAyDA.

        Proposition 3.3 By above notation,if C is an algebra inAyDA,thenis an algebra inAyDA.

        Proposition 3.4 If C,D are algebras inAyDA,then C?D is also an algebra inAyDAwith the following structures

        Proof It is obvious.Indeed,this algebra structure on C?D given above is just the braided tensor product of C and D in the braided tensor categoryAyDA.

        We now introduce the endomorphism algebras associated to(α,β)-Yetter-Drinfel'd modules.

        Proposition 3.5 Let α,β∈Aut(A)and M∈AyDA(α,β)be finite dimensional.Then

        (1)End(M)is an algebra inAyDAwith structures

        for all a,a'∈A,u∈End(M)and m∈M.

        (2)End(M)opis an algebra inAyDAwith structures

        for all a,a'∈A,u∈End(M)opand m∈M.

        Proof We only prove(1)here,(2)is similar.For(1),we first show that End(M)is an object inAyDA.In the following,we show the main process:the compatible condition ofAyDA,i.e.,

        It holds,since

        and

        Then we need to show that the product defined in(1)is A-linear and A-colinear.

        and

        It is easy to get a·id=ε(a)id and ρ(id)=id?1,where id is the unit in End(M).This completes the proof.

        Remark here that

        are equivalent.

        Proposition 3.6 Let α,β∈Aut(A),and M∈AyDA(α,β).Define a new object M'as follows:M'coincides with M as left A-modules,and has a right A-comodule structure

        given by

        for all a'∈A and m∈M,where

        and ρ is the comodule structure of M.Then

        Proof We can get the conclusion by direct computation.

        this implies M'∈AyDA(αβ-1α,α).

        Theorem 3.7 Let α,β∈Aut(A),and M∈AyDA(α,β)be finite dimensional.Consider the object M'∈AyDA(αβ-1α,α)as above.Define the map

        for all u∈End(M)and m∈M'.Then τ is an isomorphism of algebras inAyDA.

        Proof Similar to the proof of Proposition 4.10 in[6].

        First,τ is a homomorphism,since for u,v∈End(M),

        Second,τ is A-linear,since

        Third,τ is A-colinear.To prove this,we have to show that ρτ=(τ?l)ρ,where ρ is the A-comodule structure of End(M')op.Denote ρ(v)(1?a)=v(0)?v(1)a,we have to prove

        for all a∈A,

        Finally,we will show that τ is bijective,we define

        for v∈End(M')op.We can check that ττ-1=τ-1τ=id and τ-1is A-linear and A-colinear.

        This completes the proof.

        The definition of τ is meaningful.Because for finite i,there is an e∈A such that eai=aifor all i=1,···,n.Here

        where ρ is the right A-comodule structure of End(M).

        From Proposition 3.5 and the notion◇M defined in Section 3 of[5],we can get the following results:

        Proposition 3.8 Let α,β∈Aut(A),and M∈AyDA(α,β)be finite dimensional.Then End(M)opEnd(◇M)as algebras inAyDA.

        Proof Denote the map ?:End(M)op-→End(◇M)by ?(u)=u?for u∈End(M)op.It is an algebra isomorphism.

        The map ? is A-linear,the proof is similar as in Proposition 4.11 in[6].Then we need to show ? is A-colinear.Indeed,by Proposition 3.5 and the structures of◇M,we can compute as follows:for all u∈End(M)op,f∈◇M,m∈M,and a∈A,

        and

        From all above,we use the adapted Sweedler notation,it seems that the definitions and proofs are similar as in the(weak)Hopf algebra case(see,e.g.[7]).However,we should notice the‘cover’technique introduced in[8].

        References

        [1]Van Daele A.Multiplier Hopf algebras[J].Trans.American Math.Soc.,1994,342(2):917-932.

        [2]Delvaux L.Yetter-Drinfel’d modules for group-cograded multiplier Hopf algebras[J].Commun.Algebra,2008,36(8):2872-2882.

        [3]Yang T,Wang S H.Constructing new braided T-categories over regular multiplier Hopf algebras[J]. Commun.Algebra,2011,39(9):3073-3089.

        [4]Delvaux L,Van Daele A,Wang Shuanhong.Bicrossproducts of multiplier Hopf algebras[J].J.Algebra,2011,343(1):11-36.

        [5]Yang T,Zhou X,Ma T S.On braided T-categories over multiplier Hopf algebras[J].Commun. Algebra,2013,41(8):2852-2868.

        [6]Panaite F,Van Oystaeyen F.Quasi-elementary H-Azumaya algebras arising from generalized(anti) Yetter-Drinfel’d modules[J].Appl.Categ.Struct.,2009,19(5):803-820.

        [7]Zhou X,Yang T.Kegel’s theorem over weak Hopf group coalgebras[J].J.Math.,2013,33(2):228-236.

        [8]Van Daele A.Tools for working with multiplier Hopf algebras[J].Arabian J.Sci.Engin.,2008, 33(2C):505-527.

        正則乘子Hopf代數(shù)上Yetter-Drinfel'd模范疇中的自同構(gòu)代數(shù)

        楊濤1,劉廣錦2,周璇3

        (1.南京農(nóng)業(yè)大學(xué)理學(xué)院,江蘇南京210095)
        (2.南京農(nóng)業(yè)大學(xué)動物醫(yī)學(xué)院,江蘇南京210095)
        (3.江蘇第二師范學(xué)院數(shù)學(xué)與信息技術(shù)學(xué)院,江蘇南京210013)

        本文研究了正則乘子Hopf代數(shù)上Yetter-Drinfel’d模范疇中自同構(gòu)代數(shù)的問題.利用乘子Hopf代數(shù)以及同調(diào)代數(shù)理論中的方法,獲得了Yetter-Drinfel’d模范疇中兩個自同構(gòu)代數(shù)是同構(gòu)的結(jié)果,推廣了Panaite等人在Hopf代數(shù)中的結(jié)果.

        乘子Hopf代數(shù);Yetter-Drinfel’d模;Yetter-Drinfel’d模范疇

        MR(2010)主題分類號:16T05;16T99O153.3

        ?date:2014-03-24Accepted date:2014-11-11

        Supported by National Natural Science Foundation of China(11226070; 11326063).

        Biography:Yang Tao(1984-),male,born at Huaian,Jiangsu,doctor,major in Hopf algebras.

        猜你喜歡
        周璇乘子自同構(gòu)
        如何制作一張賀卡
        一類無限?ernikov p-群的自同構(gòu)群
        再談單位球上正規(guī)權(quán)Zygmund空間上的點乘子
        敬德出山
        “金嗓子”周璇:絢爛中的凄涼
        海峽姐妹(2020年1期)2020-03-03 13:35:56
        關(guān)于有限Abel p-群的自同構(gòu)群
        雙線性傅里葉乘子算子的量化加權(quán)估計
        剩余有限Minimax可解群的4階正則自同構(gòu)
        單位球上正規(guī)權(quán)Zygmund空間上的點乘子
        單位球上正規(guī)權(quán)Zygmund空間上的點乘子
        白色白在线观看免费2| 中文字幕亚洲无线码在一区| 久久婷婷色香五月综合激情 | 亚洲天堂av在线一区| 日韩精品人妻久久久一二三| 国产精品欧美一区二区三区| 亚洲人成网站在线播放观看| 丝袜美腿一区二区在线观看| 国产伦一区二区三区色一情| 在线 | 一区二区三区四区| 爽妇网国产精品| 日韩精品成人一区二区三区久久久| 日本不卡的一区二区三区中文字幕| 伊人久久大香线蕉av不卡| 最新国产乱视频伦在线| 亚洲国产精品美女久久久| 成人国产精品一区二区八戒网| 色偷偷偷久久伊人大杳蕉| 欧美激情五月| 蜜臀av一区二区三区精品| 亚洲国产精品美女久久| 亚洲色www成人永久网址| 99JK无码免费| 尤物蜜桃视频一区二区三区| 成在线人av免费无码高潮喷水| 欧美真人性做爰一二区| 最近亚洲精品中文字幕| 国产在线视频91九色| 日韩亚洲欧美中文在线| 99久久99久久久精品久久| 日本精品少妇一区二区| 人妻无码一区二区三区| 97一区二区国产好的精华液| 久久综合一本中文字幕| 日韩女同精品av在线观看| 麻豆国产原创视频在线播放| 久久中文字幕日韩无码视频| 日本一区二区三区综合视频| 免费观看18禁无遮挡真人网站| 久青草国产视频| 亚洲男人在线天堂av|