亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        ENDOMORPHISM ALGEBRAS IN THE YETTER-DRINFEL'D MODULE CATEGORY OVER A REGULAR MULTIPLIER HOPF ALGEBRA

        2016-12-07 08:58:47YANGTaoLIUGuangjinZHOUXuan
        數(shù)學(xué)雜志 2016年6期
        關(guān)鍵詞:周璇乘子自同構(gòu)

        YANG Tao,LIU Guang-jin,ZHOU Xuan

        (1.School of Science,Nanjing Agricultural University,Nanjing 210095,China)

        (2.School of Veterinary Medicine,Nanjing Agricultural University,Nanjing 210095,China)

        (3.School of Mathematics and Information Technology,Jiangsu Second Normal University, Nanjing 210013,China)

        ENDOMORPHISM ALGEBRAS IN THE YETTER-DRINFEL'D MODULE CATEGORY OVER A REGULAR MULTIPLIER HOPF ALGEBRA

        YANG Tao1,LIU Guang-jin2,ZHOU Xuan3

        (1.School of Science,Nanjing Agricultural University,Nanjing 210095,China)

        (2.School of Veterinary Medicine,Nanjing Agricultural University,Nanjing 210095,China)

        (3.School of Mathematics and Information Technology,Jiangsu Second Normal University, Nanjing 210013,China)

        Endomorphism algebras in Yetter-Drinfel’d module category over a regular multiplier Hopf algebra are studied in this paper.By the tools of multiplier Hopf algebra and Homological algebra theories,we get that two endomorphism algebras are isomorphic in the Yetter-Drinfel’d module category,which generalizes the results of Panaite et al.in Hopf algebra case.

        multiplier Hopf algebra;Yetter-Drinfel’d module;Yetter-Drinfel’d module category

        2010 MR Subject Classification:16T05;16T99

        Document code:AArticle ID:0255-7797(2016)06-1111-09

        1 Introduction

        Multiplier Hopf algebra,introduced by Van Daele[1],can be naturally considered as a generalization of Hopf algebra when the underlying algebra is no longer assumed to have a unit.Yetter-Drinfel'd module category,as an important content in Hopf algebras theory, was also studied by Van Daele and his collaborators.All the objects they discussed are (non-degenerate)algebras(see[2]).

        However,in the well-known Hopf algebras case,the objects of Yetter-Drinfel'd module category are only vector spaces satisfying some certain conditions.So in[3],the authors gave a new category structure for regular multiplier Hopf algebra A:(α,β)-Yetter-Drinfel'd module categoryAyDA(α,β),in which the objects were vector spaces,generalizing the former notions.

        In this paper,we focus our work on(α,β)-Yetter-Drinfel'd module,mainly consider some algebras in Yetter-Drinfel'd modules category and get some isomorphisms.

        The paper is organized in the following way.In Section 2,we recall some notions which we will use in the following,such as multiplier Hopf algebras,modules and complete modules for a multiplier Hopf algebras,comodules and(α,β)-Yetter-Drinfel'd modules.

        In Section 3,we consider algebras inAyDA(α,β).Let α,β∈Aut(A),and M∈AyDA(α,β)be finite dimensional.Consider the object M'∈AyDA(αβ-1α,α),coinciding with M as left A-modules,and having a right A-comodule structure given by

        2 Preliminaries

        Throughout this paper,all spaces we considered are over a fixed field k.We consider A as an algebra with a nondegenerate product,it is possible to construct the multiplier algebra M(A).M(A)is an algebra with identity such that A sits in M(A)as an essential two-sided ideal,it can be also characterized as the largest algebra with identity containing A as an essential ideal.More details about the concept of the multiplier algebra of an algebra,we refer to[1].

        An algebra morphism(or homomorphism)?:A-→M(A?A)is called a comultiplication on A if(a?b)=?(a)(1?b)and(a?b)=(a?1)?(b)are elements of A?A for all a,b∈A and if?is coassociative in the sense that the linear mappings:A?A-→A?A obey the relation where id denotes the identity map.

        A pair(A,?)of an algebra A with nondegenerate product and a comultiplication?on A is called a multiplier Hopf algebra ifandare bijective(see[1]),(A,?)is regular if and only if the antipode of(A,?cop)is bijective.

        Let(A,?,ε,S)be a regular multiplier Hopf algebra and M a vector space.Then M is called a(left-right)(α,β)-Yetter-Drinfel'd module over regular multiplier Hopf algebra A,if

        (1)(M,·)is a left unital A-module,i.e.,A·M=M.

        (2)(M,Γ)is a(right)A-comodule,where Γ:M→M0(M?A)denotes the right coaction of A on M,M0(M?A)denote the completed module.

        (3)Γ and·satisfy the following compatible conditions

        By the definition of Yetter-Drinfel'd modules,we can define(left-right)Yetter-Drinfel'd module categoryAyDA(α,β).The other three Yetter-Drinfel'd module categories are similar (more details see[3-5]).

        AyDA(id,id)=AyDA,the left-right Yetter-Drinfel'd module category.

        3 Endomorphism Algebras

        Let A be a regular multiplier Hopf algebra,in this section,we mainly consider(left-right) Yetter-Drinfel'd module categoryAyDAover regular multiplier Hopf algebra A.

        Definition 3.1 Let A be a multiplier Hopf algebra and C a unital algebra.C is called a left A-module algebra,if

        (1)(C,·)is a left unital A-module,

        (2)the module action satisfies

        C is called right A-comodule algebra,if

        (1)(C,ρ)is a right A-comodule,

        (2)the comodule structure map ρ satisfies:for all a∈A,

        Let C be a unital associative algebra inAyDA.That means C is an object inAyDA, and the multiplication C?C→C and a unit map ι:k→C satisfying associativity and unit axioms.

        Proposition 3.2 C is a unital algebra inAyDAif and only if C is an object inAyDAand C is a left A-module algebra and a right Aop-comodule algebra.

        We denote by Copthe usual opposite algebra,with the multiplication c·c'=c'c for all c,c'∈C,and bythe A-opposite algebra,which means C as an object inAyDA,but with the multiplicationfor all c,c'∈C,i.e.,the opposite of C in the categoryAyDA.

        Proposition 3.3 By above notation,if C is an algebra inAyDA,thenis an algebra inAyDA.

        Proposition 3.4 If C,D are algebras inAyDA,then C?D is also an algebra inAyDAwith the following structures

        Proof It is obvious.Indeed,this algebra structure on C?D given above is just the braided tensor product of C and D in the braided tensor categoryAyDA.

        We now introduce the endomorphism algebras associated to(α,β)-Yetter-Drinfel'd modules.

        Proposition 3.5 Let α,β∈Aut(A)and M∈AyDA(α,β)be finite dimensional.Then

        (1)End(M)is an algebra inAyDAwith structures

        for all a,a'∈A,u∈End(M)and m∈M.

        (2)End(M)opis an algebra inAyDAwith structures

        for all a,a'∈A,u∈End(M)opand m∈M.

        Proof We only prove(1)here,(2)is similar.For(1),we first show that End(M)is an object inAyDA.In the following,we show the main process:the compatible condition ofAyDA,i.e.,

        It holds,since

        and

        Then we need to show that the product defined in(1)is A-linear and A-colinear.

        and

        It is easy to get a·id=ε(a)id and ρ(id)=id?1,where id is the unit in End(M).This completes the proof.

        Remark here that

        are equivalent.

        Proposition 3.6 Let α,β∈Aut(A),and M∈AyDA(α,β).Define a new object M'as follows:M'coincides with M as left A-modules,and has a right A-comodule structure

        given by

        for all a'∈A and m∈M,where

        and ρ is the comodule structure of M.Then

        Proof We can get the conclusion by direct computation.

        this implies M'∈AyDA(αβ-1α,α).

        Theorem 3.7 Let α,β∈Aut(A),and M∈AyDA(α,β)be finite dimensional.Consider the object M'∈AyDA(αβ-1α,α)as above.Define the map

        for all u∈End(M)and m∈M'.Then τ is an isomorphism of algebras inAyDA.

        Proof Similar to the proof of Proposition 4.10 in[6].

        First,τ is a homomorphism,since for u,v∈End(M),

        Second,τ is A-linear,since

        Third,τ is A-colinear.To prove this,we have to show that ρτ=(τ?l)ρ,where ρ is the A-comodule structure of End(M')op.Denote ρ(v)(1?a)=v(0)?v(1)a,we have to prove

        for all a∈A,

        Finally,we will show that τ is bijective,we define

        for v∈End(M')op.We can check that ττ-1=τ-1τ=id and τ-1is A-linear and A-colinear.

        This completes the proof.

        The definition of τ is meaningful.Because for finite i,there is an e∈A such that eai=aifor all i=1,···,n.Here

        where ρ is the right A-comodule structure of End(M).

        From Proposition 3.5 and the notion◇M defined in Section 3 of[5],we can get the following results:

        Proposition 3.8 Let α,β∈Aut(A),and M∈AyDA(α,β)be finite dimensional.Then End(M)opEnd(◇M)as algebras inAyDA.

        Proof Denote the map ?:End(M)op-→End(◇M)by ?(u)=u?for u∈End(M)op.It is an algebra isomorphism.

        The map ? is A-linear,the proof is similar as in Proposition 4.11 in[6].Then we need to show ? is A-colinear.Indeed,by Proposition 3.5 and the structures of◇M,we can compute as follows:for all u∈End(M)op,f∈◇M,m∈M,and a∈A,

        and

        From all above,we use the adapted Sweedler notation,it seems that the definitions and proofs are similar as in the(weak)Hopf algebra case(see,e.g.[7]).However,we should notice the‘cover’technique introduced in[8].

        References

        [1]Van Daele A.Multiplier Hopf algebras[J].Trans.American Math.Soc.,1994,342(2):917-932.

        [2]Delvaux L.Yetter-Drinfel’d modules for group-cograded multiplier Hopf algebras[J].Commun.Algebra,2008,36(8):2872-2882.

        [3]Yang T,Wang S H.Constructing new braided T-categories over regular multiplier Hopf algebras[J]. Commun.Algebra,2011,39(9):3073-3089.

        [4]Delvaux L,Van Daele A,Wang Shuanhong.Bicrossproducts of multiplier Hopf algebras[J].J.Algebra,2011,343(1):11-36.

        [5]Yang T,Zhou X,Ma T S.On braided T-categories over multiplier Hopf algebras[J].Commun. Algebra,2013,41(8):2852-2868.

        [6]Panaite F,Van Oystaeyen F.Quasi-elementary H-Azumaya algebras arising from generalized(anti) Yetter-Drinfel’d modules[J].Appl.Categ.Struct.,2009,19(5):803-820.

        [7]Zhou X,Yang T.Kegel’s theorem over weak Hopf group coalgebras[J].J.Math.,2013,33(2):228-236.

        [8]Van Daele A.Tools for working with multiplier Hopf algebras[J].Arabian J.Sci.Engin.,2008, 33(2C):505-527.

        正則乘子Hopf代數(shù)上Yetter-Drinfel'd模范疇中的自同構(gòu)代數(shù)

        楊濤1,劉廣錦2,周璇3

        (1.南京農(nóng)業(yè)大學(xué)理學(xué)院,江蘇南京210095)
        (2.南京農(nóng)業(yè)大學(xué)動物醫(yī)學(xué)院,江蘇南京210095)
        (3.江蘇第二師范學(xué)院數(shù)學(xué)與信息技術(shù)學(xué)院,江蘇南京210013)

        本文研究了正則乘子Hopf代數(shù)上Yetter-Drinfel’d模范疇中自同構(gòu)代數(shù)的問題.利用乘子Hopf代數(shù)以及同調(diào)代數(shù)理論中的方法,獲得了Yetter-Drinfel’d模范疇中兩個自同構(gòu)代數(shù)是同構(gòu)的結(jié)果,推廣了Panaite等人在Hopf代數(shù)中的結(jié)果.

        乘子Hopf代數(shù);Yetter-Drinfel’d模;Yetter-Drinfel’d模范疇

        MR(2010)主題分類號:16T05;16T99O153.3

        ?date:2014-03-24Accepted date:2014-11-11

        Supported by National Natural Science Foundation of China(11226070; 11326063).

        Biography:Yang Tao(1984-),male,born at Huaian,Jiangsu,doctor,major in Hopf algebras.

        猜你喜歡
        周璇乘子自同構(gòu)
        如何制作一張賀卡
        一類無限?ernikov p-群的自同構(gòu)群
        再談單位球上正規(guī)權(quán)Zygmund空間上的點乘子
        敬德出山
        “金嗓子”周璇:絢爛中的凄涼
        海峽姐妹(2020年1期)2020-03-03 13:35:56
        關(guān)于有限Abel p-群的自同構(gòu)群
        雙線性傅里葉乘子算子的量化加權(quán)估計
        剩余有限Minimax可解群的4階正則自同構(gòu)
        單位球上正規(guī)權(quán)Zygmund空間上的點乘子
        單位球上正規(guī)權(quán)Zygmund空間上的點乘子
        日本女同伦理片在线观看| 久久国产精品-国产精品| 精品无码一区二区三区爱欲九九| 日韩精品久久久中文字幕人妻| 日本熟妇裸体视频在线| 曰韩少妇内射免费播放| 黑人巨大无码中文字幕无码| 无码日韩人妻AV一区免费| 超短裙老师在线观看一区二区| 国产精品妇女一区二区三区| 欧美成人精品三级网站| 色999欧美日韩| 国内偷拍第一视频第一视频区| 亚洲中文字幕av天堂自拍| 在线亚洲+欧美+日本专区| 极品 在线 视频 大陆 国产| 日韩av一区二区无卡| 亚洲中文字幕无码爆乳app| 精品人人妻人人澡人人爽牛牛| 免费视频成人 国产精品网站| av在线不卡一区二区| 亚洲av久久久噜噜噜噜| 丁香综合网| 亚洲男女视频一区二区| 久久777国产线看观看精品| 9lporm自拍视频区| 国产亚洲欧美在线播放网站| 黄色精品一区二区三区| 精品视频无码一区二区三区 | 熟妇熟女乱妇乱女网站| 日韩无码无播放器视频| 色青青女同性恋视频日本熟女| 一二三四区中文字幕在线| 亚洲欧美一区二区三区 | 一级r片内射视频播放免费| 国产高清在线精品一区| 亚洲国产剧情在线精品视| 国产一区二区免费在线视频| 亚洲热妇无码av在线播放 | 国产一区二区三区最新视频| 99久久免费看精品国产一|