孟義杰
(湖北文理學(xué)院 數(shù)學(xué)與計算機科學(xué)學(xué)院,湖北 襄陽 441053)
一類基于比率和帶收獲率的捕食反應(yīng)擴散模型的全局漸近穩(wěn)定性
孟義杰
(湖北文理學(xué)院 數(shù)學(xué)與計算機科學(xué)學(xué)院,湖北 襄陽 441053)
討論一類在齊次Neumann邊界條件下具有擴散項和按比率收獲的捕食模型解的全局漸近穩(wěn)定性,并利用改進的迭代方法和比較原理討論其非負半平凡解和正平衡解的全局漸近穩(wěn)定性,得到了一些充分條件.
捕食模型;齊次Neumann邊界;非負半平凡解;平衡解;全局漸近穩(wěn)定性
近年來,捕食-食餌模型具有的動力學(xué)行為已成為很多生物數(shù)學(xué)和微分方程學(xué)者所研究的熱點問題.由于現(xiàn)實生活中的生物現(xiàn)象復(fù)雜多樣,因此描述捕食者與食餌之間相互作用的數(shù)學(xué)模型也很多,比如Beddington-DeAngeli、Holling類型、階段結(jié)構(gòu)、飽和與競爭項和比率型功能反應(yīng)等,并得到很多結(jié)果[1-5].而越來越多的生物現(xiàn)象表明,當(dāng)捕食者不得不搜尋食物時,用基于比率依賴型功能反應(yīng)函數(shù)來描述捕食者和食餌之間的相互作用更切合實際,即每一個捕食者個體的增長率應(yīng)該是關(guān)于食餌和捕食者數(shù)量比的函數(shù).由于人類活動也對生物種群密度變化產(chǎn)生的影響越來越大,其捕獲行為對種群密度的改變這一現(xiàn)象引起了很多學(xué)者和科研人員的廣泛關(guān)注,并已取得一些研究成果,如Chakraborty K.,Jana S.和Kar T.K.在文獻[4]中研究了一類具有階段性結(jié)構(gòu)的捕食與被捕食收獲模型的全局動力行為及分歧,Lan and Zhu在文獻[6]中研究了一類帶有Beddington-DeAngeli功能反應(yīng)函數(shù)的捕食模型在常數(shù)收獲率下解的性質(zhì).本文將討論基于比率和帶收獲的反應(yīng)擴散捕食模型,即
其中,u和v是定義在RN上一個具有光滑邊界?Ω的有界區(qū)域Ω中,分別表示兩種群的數(shù)量.a(chǎn),b,q,E和k為正常數(shù),a表示捕食者對食餌的捕獲率,b表示食餌對捕食者的轉(zhuǎn)化率,k表示捕食種群在沒有食餌時的自然死亡率,q表示外界對食餌種群的捕撈系數(shù),E表示捕撈強度,0<qE<1.n是邊界?Ω的單位外法線方向向量,初值u0(x)和v0(x)是連續(xù)函數(shù).
注意到式(1)有唯一的非負全局解(u,v),并且如果u0和v0都不恒等于零,那么解(u,v)為正,即對一切t> 0,都有
文獻[7]研究了模型(1)的耗散性,正平衡解的局部漸近穩(wěn)定性和局部分歧解的存在性.本文主要利用改進的上下解迭代方法[8-10]和比較原理討論該模型的非負半平衡解和正平衡解的全局漸近穩(wěn)定性.
系統(tǒng)(1)經(jīng)過計算可知,當(dāng)b≤k時,存在惟一的半平凡非負常數(shù)穩(wěn)態(tài)解(1-qE,0);當(dāng)b>k,時,存在惟一的正常數(shù)穩(wěn)態(tài)解(u*,v*),且滿足
[1]CANTRELL R S,COSNE C.On the dynamics of predator-prey models with the Beddington-DeAngelis functional response[J].Journal of Mathematics Analysis&Application,2001,257(1):206-222.
[2]BAZYKIN A D.Nonlinear Dynamics of Interacting Populations[M].Singapore:World Scientific,1998.
[3]KO W,RYU K.Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge[J].Journal of Differential Equations,2006,231(2):534-550.
[4]CHAKRABORTY K,JANA S,KAR T K.Global dynamics and bifurcation in a stage-structured prey-predator fishery model with harvesting[J]. Applied Mathematics and Computation,2012,218(18):9271-9290.
[5]WANG M X,WU Q.Positive solutions of a prey-predator model with predator saturation and competition[J].Journal of Mathematical Analysis& Applications,2008,345(2):708-718.
[6]LAN KUNQUAN,ZHU CHANGRONG.Phase portraits of Predator-prey systems with harvesting rates[J].Discrete&Continuous Dynamical Systems,2012,32(3):901-933.
[7]劉 清,李艷玲.一類基于比率和帶收獲率的捕食模型解的性質(zhì)[J].河北師范大學(xué)學(xué)報:自然科學(xué)版,2013,37(2):119-124.
[8]WANG Y F,MENG Y J.Asymptotic behavior of a competition-diffusion system with time delays[J].Mathematical&Computer Modelling,2003, 38(5-6):509-517.
[9]MENG YIJIE,WANG YIFU.Asymptotic behavior of a predator-prey system with time delays[J].Electronic Journal of Differential Equations,2005(4): 357-370.
[10]MENG YIJIE,XIAO SHIWU.Global asymptotic behavior of a predator-prey diffusion system with Beddington-DeAngelis function response[J].Journal of Partial Differential Equations,2014(2):125-135.
Global Asymptotic Stability of a Predator-Prey Reaction Diffusion Model with Ratio-dependent and Harvesting Rate
MENG Yijie
(College of Mathematical and Computer Sciences,Hubei University of Arts and Science,Xiangyang 441053,China)
In this paper,we consider the global asymptotic stability of solutions of a predator-prey reactiondiffusion model with ratio-dependent and harvesting function response under homogeneous Neumann boundary condition.Via iteration method and the parabolic equation comparison principle,the global asymptotical stability of the nonnegative semi-trivial solutions and positive steady-state solution are discussed,and some sufficient conditions are given.
Predator-prey model;Homogeneous Neumann boundary;Nonnegative semi-trivial solutions;Steady-state solution;Global asymptotical stability
O175.26
A
2095-4476(2016)11-0005-05
(責(zé)任編輯:饒 超)
2016-09-01
國家自然科學(xué)青年基金(11501186)
孟義杰(1972—),男,湖北襄陽人,湖北文理學(xué)院數(shù)學(xué)與計算機科學(xué)學(xué)院副教授.