劉君,周嘉偉,肖鴻光,王從彥
江蘇大學(xué)環(huán)境生態(tài)研究所,環(huán)境與安全工程學(xué)院,鎮(zhèn)江 212013
?
加拿大一枝黃花和小飛蓬葉浸提液對(duì)大豆幼苗生長(zhǎng)的復(fù)合化感效應(yīng)
劉君,周嘉偉,肖鴻光,王從彥*
江蘇大學(xué)環(huán)境生態(tài)研究所,環(huán)境與安全工程學(xué)院,鎮(zhèn)江 212013
加拿大一枝黃花(Solidago canadensis)和小飛蓬(Conyza canadensis)常共同入侵至同一農(nóng)田生態(tài)系統(tǒng)。探究了兩者對(duì)大豆幼苗生長(zhǎng)的復(fù)合化感作用。加拿大一枝黃花葉浸提液顯著抑制大豆幼苗地上生物量。而小飛蓬葉浸提液也明顯抑制大豆幼苗地上生物量(未達(dá)到顯著水平)。與對(duì)照處理相比,兩者復(fù)合葉浸提液處理未顯著影響大豆幼苗地上生物量。兩者復(fù)合葉浸提液處理下大豆幼苗地上生物量顯著大于加拿大一枝黃花葉浸提液?jiǎn)我惶幚?,同時(shí)也大于小飛蓬葉浸提液?jiǎn)我惶幚?未達(dá)到顯著水平)。兩者葉浸提液?jiǎn)我惶幚砭黠@降低大豆幼苗株高(未達(dá)到顯著水平)。與對(duì)照處理相比,兩者復(fù)合葉浸提液處理未顯著影響大豆幼苗株高。兩者復(fù)合葉浸提液處理下大豆幼苗株高明顯大于兩者葉浸提液?jiǎn)我惶幚?未達(dá)到顯著水平)。因此,兩者葉浸提液對(duì)大豆幼苗的生長(zhǎng)均具有一定程度的抑制效應(yīng),且加拿大一枝黃花葉浸提液對(duì)大豆幼苗產(chǎn)生的化感作用(尤其是地上生物量)明顯大于小飛蓬。兩者復(fù)合化感作用明顯低于兩者單一化感作用,尤其是兩者對(duì)大豆幼苗地上生物量的復(fù)合化感作用顯著低于加拿大一枝黃花的單一化感作用。所以,化感效應(yīng)可能在兩者共同入侵(即兩者復(fù)合作用)進(jìn)程中所起的貢獻(xiàn)低于在兩者單一入侵進(jìn)程中所起的作用。
加拿大一枝黃花;小飛蓬;大豆;化感作用;幼苗生長(zhǎng)
目前,外來植物已對(duì)其入侵地的生態(tài)系統(tǒng)結(jié)構(gòu)和功能造成諸多影響[1-2]。相關(guān)研究表明:化感作用在一些外來植物的入侵進(jìn)程中可能起著重要作用[3],如加拿大一枝黃花(Solidago canadensis)[4-5]和小飛蓬(Conyza canadensis)[6-7]等。其中加拿大一枝黃花為菊科一枝黃花屬(Solidago)多年生草本植物,原產(chǎn)北美,1935年作為觀賞植物引入上海、南京等地[8],后逸生至野外并成為惡性雜草,已被列入我國(guó)重要外來有害植物名錄[9]?,F(xiàn)分布于我國(guó)華東、華中、華北、東北和西南等地,并有可能進(jìn)一步擴(kuò)散[10]。目前,加拿大一枝黃花已發(fā)生于棉花(Gossypium hirsutum)田、玉米(Zea mays)田、大豆(Glycine max)田等,并嚴(yán)重影響農(nóng)作物的產(chǎn)量和質(zhì)量[11]。小飛蓬為菊科白酒草屬(Conyza)一年生草本植物,原產(chǎn)北美,1862年首次在煙臺(tái)被發(fā)現(xiàn)[12-13]。目前已在我國(guó)大部廣泛分布,并被列為中國(guó)最具破壞性和入侵范圍最廣的入侵物種之一。
作為2種已造成較嚴(yán)重生態(tài)危害的入侵植物,加拿大一枝黃花和小飛蓬常共同入侵至同一農(nóng)田生態(tài)系統(tǒng)。同時(shí),加拿大一枝黃花和小飛蓬成功入侵的主因之一就是可對(duì)本地植物產(chǎn)生化感作用[4-7]。因此,在兩者共同入侵的背景下,兩者對(duì)其他植物產(chǎn)生的復(fù)合化感作用可能發(fā)生改變甚至是增強(qiáng)。而目前對(duì)于加拿大一枝黃花和小飛蓬的復(fù)合化感作用研究尚未見報(bào)道?;诖?,本文以常見作物大豆為受試材料,進(jìn)而探究加拿大一枝黃花和小飛蓬葉浸提液對(duì)大豆幼苗生長(zhǎng)的復(fù)合化感作用。本文擬提出以下假設(shè)進(jìn)行驗(yàn)證:(1)加拿大一枝黃花和小飛蓬葉浸提液均抑制大豆幼苗生長(zhǎng);(2)加拿大一枝黃花和小飛蓬葉浸提液對(duì)大豆幼苗生長(zhǎng)的復(fù)合化感作用大于加拿大一枝黃花和小飛蓬的單一化感作用。
1.1 材料
所用受試植物為大豆(黃豆),其種子購(gòu)于本地菜市場(chǎng)。盆栽基質(zhì)選用購(gòu)買的營(yíng)養(yǎng)土。
1.2 加拿大一枝黃花和小飛蓬葉浸提液制備
2015年6月在江蘇大學(xué)主校區(qū)(32°20'N,119°51'E)采集生長(zhǎng)旺盛期的加拿大一枝黃花和小飛蓬的成熟葉片,60 ℃烘干至恒重后粉碎。分別稱取80 g加拿大一枝黃花和小飛蓬葉片加蒸餾水至2 L,浸泡48 h,雙層紗布過濾2次后獲加拿大一枝黃花和小飛蓬的葉浸提液(濃度均為40 g·L-1) (根據(jù)先前的研究結(jié)果,該濃度范圍的加拿大一枝黃花[14-15]和小飛蓬[16-17]化感浸提液對(duì)受試植物均具有明顯的化感效應(yīng))。分別取等體積500 mL的加拿大一枝黃花和小飛蓬的葉浸提液,充分震蕩混勻,得到其復(fù)合葉浸提液(濃度為40 g·L-1)。置于4 ℃保存?zhèn)溆谩?/p>
1.3 幼苗生長(zhǎng)實(shí)驗(yàn)
選取籽粒飽滿、大小均一的大豆種子,1%次氯酸鈉溶液消毒10 min后清洗數(shù)次,每次3 min。選用口徑12 cm塑料花盆,營(yíng)養(yǎng)土深度約8 cm,每盆播種4粒大豆種子,每處理5個(gè)重復(fù),置于光照培養(yǎng)箱中培養(yǎng)7 d,培養(yǎng)期間加入適量蒸餾水以保持濕潤(rùn)。7 d后待大豆幼苗長(zhǎng)出2片真葉時(shí),每盆保留一株大豆幼苗,保證所選幼苗生長(zhǎng)情況一致。以蒸餾水為對(duì)照,用40 g·L-1加拿大一枝黃花的葉浸提液、小飛蓬的葉浸提液以及加拿大一枝黃花和小飛蓬復(fù)合葉浸提液分別進(jìn)行處理。每2 d添加30 mL蒸餾水(對(duì)照處理)和不同類型入侵植物葉浸提液,置于光照培養(yǎng)箱中26 ℃、光照12 h條件下培養(yǎng)。30 d后采集大豆幼苗并測(cè)定相關(guān)指標(biāo)。
圖1 不同處理對(duì)大豆幼苗各指標(biāo)的影響注:不同字母表示差異顯著(P < 0.05)。“ns”表示無顯著性差異(P > 0.05)。SC,加拿大一枝黃花;CC,小飛蓬;SC & CC,加拿大一枝黃花和小飛蓬。Fig. 1 Effects of different treatments on the indices of G. max seedlingsNote: different letters indicate a significant difference (P < 0.05). “ns” means not significant difference (P > 0.05). SC, S. canadensis; CC, C. canadensis; SC & CC, S. canadensis and C. canadensis. Error bars indicate standard error of the means.
1.4 測(cè)定指標(biāo)和方法
大豆幼苗株高(cm)、葉長(zhǎng)(cm)、葉寬(cm)用直尺直接測(cè)量[18-19]。葉厚(mm)用游標(biāo)卡尺測(cè)量[18-19]。葉形指數(shù)是以葉片長(zhǎng)度比相應(yīng)的葉片寬度計(jì)算[18-20]。葉葉綠素含量(SPAD)和葉氮含量(mg·g-1)用手持式植物營(yíng)養(yǎng)儀(TYS-3N,中國(guó))測(cè)定[21]。地上生物量(g)、葉鮮重(g)用電子天平稱重測(cè)定[18-19]。比葉面積(cm2·g-1)用葉面積與干重之比計(jì)算[18-19]。葉干重是將葉片60 ℃烘干至恒重后稱重測(cè)定[18-19]。
1.5 數(shù)據(jù)處理
實(shí)驗(yàn)數(shù)據(jù)用Excel處理后,用IBM SPSS 22.0進(jìn)行統(tǒng)計(jì)分析。
結(jié)果顯示不同處理對(duì)大豆幼苗生長(zhǎng)有一定的影響(圖1)。在不同處理下,大豆幼苗地上生物量存在顯著差異(P=0.022) (圖1)。其中加拿大一枝黃花葉浸提液顯著抑制大豆幼苗地上生物量(P<0.05),而小飛蓬葉浸提液也明顯抑制大豆幼苗地上生物量,但未達(dá)到顯著水平(P>0.05) (圖1)。加拿大一枝黃花和小飛蓬復(fù)合葉浸提液處理與對(duì)照處理相比,大豆幼苗地上生物量無顯著差異(P>0.05) (圖1)。此外,加拿大一枝黃花和小飛蓬復(fù)合葉浸提液處理下大豆幼苗地上生物量顯著大于加拿大一枝黃花葉浸提液?jiǎn)我惶幚?P<0.05),同時(shí)也大于小飛蓬葉浸提液?jiǎn)我惶幚?,但未達(dá)到顯著水平(P>0.05) (圖1)。
此外,加拿大一枝黃花葉浸提液?jiǎn)我惶幚砗托★w蓬葉浸提液?jiǎn)我惶幚砭黠@降低了大豆幼苗株高,但未達(dá)到顯著水平(P>0.05) (圖1)。加拿大一枝黃花和小飛蓬復(fù)合葉浸提液處理與對(duì)照處理相比,大豆幼苗株高無顯著差異(P>0.05) (圖1)。同時(shí),加拿大一枝黃花和小飛蓬復(fù)合葉浸提液處理下大豆幼苗株高均明顯大于加拿大一枝黃花葉浸提液?jiǎn)我惶幚砗托★w蓬葉浸提液?jiǎn)我惶幚?,但未達(dá)到顯著水平(P>0.05) (圖1)。
而大豆幼苗其他指標(biāo)(即葉長(zhǎng)、葉寬、葉形指數(shù)、葉葉綠素含量、葉氮含量、葉厚、單葉鮮重、單葉干重和比葉面積)在不同處理間均無顯著差異(P>0.05) (圖1)。
結(jié)果顯示,加拿大一枝黃花和小飛蓬葉浸提液對(duì)大豆幼苗的生長(zhǎng)均具有一定的抑制效應(yīng),特別是加拿大一枝黃花和小飛蓬葉浸提液處理對(duì)大豆幼苗地上生物量和株高有一定程度的抑制作用。這與本文假設(shè)(1)基本一致。相關(guān)研究結(jié)果也顯示加拿大一枝黃花和小飛蓬對(duì)本地植物的生長(zhǎng)均有一定的抑制作用[14-17, 22-23]。這表明加拿大一枝黃花[24-25]和小飛蓬[6,26]可能在其入侵過程通過釋放一定的化感物質(zhì),進(jìn)而對(duì)本地植物的生長(zhǎng)產(chǎn)生一定的抑制作用。
同時(shí),同為菊科惡性入侵植物,加拿大一枝黃花葉浸提液對(duì)大豆幼苗產(chǎn)生的化感作用(尤其是地上生物量)明顯大于小飛蓬。這可能是因?yàn)閮烧呋形镔|(zhì)的濃度和(或)種類存在一定的差異。該結(jié)果也表明與小飛蓬相比,單一的化感作用可能在加拿大一枝黃花入侵進(jìn)程中起著更為重要的作用。
此外,加拿大一枝黃花和小飛蓬的復(fù)合化感作用低于加拿大一枝黃花和小飛蓬的單一化感作用,尤其是是加拿大一枝黃花和小飛蓬對(duì)大豆幼苗地上生物量的復(fù)合化感作用顯著低于加拿大一枝黃花的單一化感作用。這表明,與加拿大一枝黃花和小飛蓬的單一化感作用相比,加拿大一枝黃花和小飛蓬的復(fù)合化感作用對(duì)大豆幼苗的生長(zhǎng)(特別是地上生物量和株高)具有一定的促進(jìn)作用。這與本文的假設(shè)(2)不一致??梢姡诩幽么笠恢S花和小飛蓬兩者復(fù)合化感作用下,加拿大一枝黃花和小飛蓬葉浸提液對(duì)大豆幼苗地上生物量的抑制作用似乎被抵消。這可能是因?yàn)榧幽么笠恢S花和小飛蓬的葉浸提液混合之后其化感溶液的成分及(或)其含量和(或)濃度可能發(fā)生了一些程度的改變。因此,加拿大一枝黃花和小飛蓬的復(fù)合化感作用并非兩者化感作用簡(jiǎn)單的疊加作用。另一方面,加拿大一枝黃花和小飛蓬的化感物質(zhì)成分存在差異,而不同的化感物質(zhì)對(duì)植物的最低作用濃度也可能存在差異。同時(shí),有時(shí)化感物質(zhì)對(duì)于某些植物而言可能被感知為一種脅迫信號(hào)[27],進(jìn)而在一定程度上激發(fā)其自身的生理活性等應(yīng)激反應(yīng),從而在一定程度上促進(jìn)受試植物種子的萌發(fā)和幼苗的生長(zhǎng)[28-29]。
由于2種甚至是2種以上入侵植物可能共同入侵至同一生態(tài)系統(tǒng)中[30-31],因此,入侵植物可通過凋落物混合的途徑對(duì)本地植物種子的萌發(fā)和幼苗的生長(zhǎng)產(chǎn)生復(fù)合化感效應(yīng)。但是,根據(jù)本研究結(jié)果,化感效應(yīng)可能在加拿大一枝黃花和小飛蓬的共同入侵(意即兩者的復(fù)合作用)進(jìn)程中所起的貢獻(xiàn)要低于在兩者的單一入侵進(jìn)程中所起的作用。這可能暗示著在2種及以上入侵植物共同入侵進(jìn)程中,其他因素起著重要作用,比如資源競(jìng)爭(zhēng)等。
本文研究是室內(nèi)培養(yǎng),僅從一個(gè)側(cè)面模擬了受體和供體之間的化感關(guān)系。今后在研究中仍尚需通過野外試驗(yàn)進(jìn)一步探究入侵植物不同濃度的復(fù)合葉浸提液對(duì)本地植物產(chǎn)生的化感效應(yīng),進(jìn)而以更好的闡明2種入侵植物共同入侵對(duì)本地植物幼苗生長(zhǎng)的影響及其內(nèi)在機(jī)理。
[1] Gurevitch J, Fox G A, Wardle G M, et al. Emergent insights from the synthesis of conceptual frameworks for biological invasions [J]. Ecology Letters, 2011, 14(4): 407-418
[2] Huntly N, Bangert R, Hanser S E. Native and exotic plants of fragments of sagebrush steppe produced by geomorphic processes versus land use [J]. Plant Ecology, 2011, 212(9): 1549-1561
[3] Callaway R M, Ridenour W M. Novel weapons: Invasive success and the evolution increased competitive ability [J]. Frontiers in Ecology and Evolution, 2004, 2(8): 436-443
[4] Abhilasha D, Quintana N, Vivanco J, et al. Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora? [J]. Journal of Ecology, 2008, 96(5): 993-1001
[5] Yuan Y G, Wang B, Zhang S S, et al. Enhanced allelopathy and competitive ability of invasive plant Solidago canadensis in its introduced range [J]. Journal of Plant Ecology, 2013, 6(3): 253-263
[7] Hu G, Zhang Z H. Aqueous tissue extracts of Conyza canadensis inhibit the germination and shoot growth of three native herbs with no autotoxic effects [J]. Planta Daninha, 2013, 31(31): 805-811
[8] 李振宇, 解焱. 中國(guó)外來入侵種[M]. 北京: 中國(guó)林業(yè)出版, 2002: 170
Li Z Y, Xie Y. Alien Invasive Species in China [M]. Beijing: China Forestry Publishing House, 2002: 170 (in Chinese)
[9] 方芳, 郭水良, 黃林兵. 入侵雜草加拿大一枝黃花的化感作用[J]. 生態(tài)科學(xué), 2004, 23(4): 331-334
Fang F, Guo S L, Huang L B. Allelopathic effects of the invasive plant Solidago canadensis [J]. Ecologic Science, 2004, 23(4): 331-334 (in Chinese)
[10] Lu J Z, Weng E S, Wu X W, et al. Potential distribution of Solidago canadensis in China [J]. Acta Phytotaxonomica Sinica, 2007, 45(5): 670-674
[11] 印麗萍, 譚永彬, 沈國(guó)輝, 等. 加拿大一枝黃花(Solidago canadensis L.)的研究進(jìn)展[J]. 雜草科學(xué), 2004, 4: 8-11
Yin L P, Tan Y B, Shen G H, et al. Research progress of the invader:Solidago canadensis L. [J]. Weed Science, 2004, 4: 8-11 (in Chinese)
[12] Xie Y, Li Z Y, Gregg W P, et al. Invasive species in China—An overview [J]. Biodiversity and Conservation, 2001, 10(8): 1317-1341
[13] Hao J, Sheng Q, Chrobock T, et al. A test of Baker’s law: Breeding systems of invasive species of Asteraceae in China [J]. Biological Invasions, 2011, 13(3): 571-580
[14] 張冬雨, 金燕, 呂波, 等. 加拿大一枝黃花(Solidago canadensis L.)水浸提液對(duì)小麥的化感作用及機(jī)制[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2014, 37(5): 87-92
Zhang D Y, Jin Y, Lü B, et al. Allelopathic effect and mechanism of extract solution from Solidago canadensis L. on wheat (Triticum aestivum) [J]. Journal of Nanjing Agricultural University, 2014, 37(5): 87-92 (in Chinese)
[15] 田麗麗, 馬淼. 引種新疆的加拿大一枝黃花對(duì)番茄的化感影響[J]. 西北農(nóng)業(yè)學(xué)報(bào), 2013, 22(11): 125-129
Tian L L, Ma M. Allelopathy to Lycoperisum esculetum of Solidago canadensis after being introduced in Xinjiang [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(11): 125-129 (in Chinese)
[16] 高興祥, 李美, 高宗軍, 等. 外來物種小飛蓬的化感作用初步研究[J]. 草業(yè)學(xué)報(bào), 2009, 18(5): 46-51
Gao X X, Li M, Gao Z J, et al. Research on allelopathic effects of Conyza canadensis—An invasive species [J]. Acta Prataculturae Sinica, 2009, 18(5): 46-51 (in Chinese)
[17] 楊莉, 韓梅, 肖春萍, 等. 入侵種加拿大蓬對(duì)玉米的化感潛力及機(jī)制研究[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2011, 32(4): 1-5
Yang L, Han M, Xiao C P, et al. Allelopathic potential and mechanism of Erigeron canadensis on maize [J]. Journal of South China Agricultural University, 2011, 32(4): 1-5 (in Chinese)
[18] Xiao H G, Wang C Y, Liu J, et al. Insights into the differences in leaf functional traits of heterophyllous Syringa oblata under different light intensities [J]. Journal of Forestry Research, 2015, 26(3): 613-621
[19] Wang C Y, Liu J, Xiao H G, et al. Response of leaf functional traits of Cerasus yedoensis (Mats.) Yü li to serious insect attack [J]. Polish Journal of Environmental Studies, 2016, 25(1): 333-339
[20] Jeong N, Moon J K, Kim H S, et al. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean [J]. Theoretical and Applied Genetics, 2011, 122(5): 865-874
[21] Wang C Y, Xiao H G, Liu J, et al. Insights into the effects of simulated nitrogen deposition on leaf functional traits of Rhus typhina [J]. Polish Journal of Environmental Studies, 2016, 25(3): 1279-1284
[22] 郭水良, 方芳. 入侵植物加拿大一枝黃花對(duì)環(huán)境的生理適應(yīng)性研究[J]. 植物生態(tài)學(xué)報(bào), 2003, 27(1): 47-52
Guo S L, Feng F. Physiological adaptation of the invasive plant Solidago canadensis to environments [J]. Acta Phytoecologica Sinica, 2003, 27(1): 47-52 (in Chinese)
[23] Callaway P M, Aschehong E T. Invasive plants versus their new and on neighbors: A mechanism for exotic invasion [J]. Science, 2000, 290(5491): 521-523
[24] 王磊, 張菲, 王從彥, 等. Cu、Cd污染背景下加拿大一枝黃花葉水提液對(duì)萵苣種子萌發(fā)和生長(zhǎng)的生態(tài)毒理效應(yīng)[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(4): 203-209
Wang L, Zhang F, Wang C Y, et al. Insights into the ecotoxicological effects of leaf aqueous extract of Solidago canadensis on seed germination and growth of Lactuca sativa under Cu and Cd pollution [J]. Asian Journal of Ecotoxicology, 2015, 10(4): 203-209 (in Chinese)
[25] Wang C Y, Xiao H G, Zhao L L, et al. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition [J]. Ecotoxicology, 2016, 25(3): 555-562
[26] Hu G, Zhang Z H. Aqueous tissue extracts of Conyza canadensis inhibit the germination and shoot growth of three native herbs with no autotoxic effects [J]. Planta Daninha, 2013, 31: 805-811
[27] 葉小齊, 吳明, 邵學(xué)新, 等. 加拿大一枝黃花水提液對(duì)玉米幼苗生長(zhǎng)的化感作用及其機(jī)理[J]. 草業(yè)學(xué)報(bào), 2014, 23(6): 217-224
Ye X Q, Wu M, Shao X X, et al. Allelopathic effect of Solidago canadensis extracts on seedling growth of Zea mays [J]. Acta Prataculturae Sinica, 2014, 23(6): 217-224 (in Chinese)
[28] 韓志軍, 陳靜, 鄭寒, 等. 花椒葉浸提液對(duì)大豆種子萌發(fā)和幼苗生長(zhǎng)的化感作用[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2011, 17(4): 585-588
Han Z J, Chen J, Zheng H, et al. Allelopathic effect of Zanthoxylum bungeanum extracts on seed germination and seedling growth of soybean [J]. Chinese Journal of Applied and Environmental Biology, 2011, 17(4): 585-588 (in Chinese)
[29] Hossain M K, Anwar S, Nandi R. Allelopathic effects of Mikania cordata on forest and agricultural crops in Bangladesh [J]. Journal of Forestry Research, 2016, 27(1): 155-159
[30] Kuebbing S E, Classen A T, Simberloff D. Two co-occurring invasive woody shrubs alter soil properties and promote subdominant invasive species [J]. Journal of Applied Ecology, 2014, 51: 124-133
[31] Kuebbing S E, Souza L, Sanders N J. Effects of co-occurring non-native invasive plant species on old-field succession [J]. Forest Ecology and Management, 2014, 324: 196-204
Synergistic Allelopathic Effects of Solidago canadensis and Conyza canadensis on Seedling Growth of Glycine max
Liu Jun, Zhou Jiawei, Xiao Hongguang, Wang Congyan*
Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
Received 26 December 2015 accepted 14 March 2016
The co-invasion of Solidago canadensis and Conyza canadensis may occur in the same agricultural ecosystem usually. This study aims to determine the synergistic allelopathic effects of the two species on seedling growth of Glycine max. Results showed that single leaf extracts of S. canadensis significantly reduced the aboveground biomass of G. max seedling. Single leaf extracts of C. canadensis also reduced the aboveground biomass of G. max seedling obviously but did not reach the significant level. The mixed leaf extracts of the two species did not affect the aboveground biomass of G. max seedling significantly compared with the control. The aboveground biomass of G. max seedling under the mixed leaf extracts of the two species was significantly higher than that under single leaf extracts of S. canadensis but close to that under single leaf extracts of C. canadensis. Single leaf extracts of the two species all reduced the height of G. max seedling but the change was not significant. The mixed leaf extracts of the two species did not affect the height of G. max seedling significantly compared with the control. The height of G. max seedling under the mixed leaf extracts of the two species was higher than that under single leaf extracts of the two species although not at significant level. Thus, the leaf extracts of the two species exhibit allelopathic effects on seedling growth of Glycine max, and S. canadensis triggered more allelopathic effects on seedling growth of Glycine max than C. canadensis. Meanwhile, the allelopathic effect of the mixed leaf extracts of the two species was lower than that of single leaf extracts of the two species. Especially, the effect of the mixed leaf extracts of the two species on the aboveground biomass of G. max seedling was significantly lower than that of single leaf extracts of S. canadensis. Thus, the allelopathic effects of S. canadensis and C. canadensis on the growth of native seedling might play a more important role in their single invasion process than in their co-invasion process.
Solidago canadensis; Conyza canadensis; Glycine max; allelopathic effects; seedling growth
國(guó)家自然科學(xué)基金項(xiàng)目(31300343);江蘇省自然科學(xué)基金項(xiàng)目(BK20130500);江蘇省高校自然科學(xué)研究項(xiàng)目(13KJB610002);江蘇大學(xué)高級(jí)專業(yè)人才科研啟動(dòng)基金(12JDG086)
劉君(1991-),女,碩士研究生,研究方向?yàn)榄h(huán)境生態(tài)學(xué),E-mail: 578082448@qq.com;
*通訊作者(Corresponding author), E-mail: liuyuexue623@163.com
10.7524/AJE.1673-5897.20151226002
2015-12-26 錄用日期:2016-03-14
1673-5897(2016)4-239-06
X171.5
A
簡(jiǎn)介:王從彥(1982—),男,生物學(xué)博士,副教授,主要研究方向?yàn)榄h(huán)境生態(tài)學(xué)。
劉君, 周嘉偉, 肖鴻光, 等. 加拿大一枝黃花和小飛蓬葉浸提液對(duì)大豆幼苗生長(zhǎng)的復(fù)合化感效應(yīng)[J]. 生態(tài)毒理學(xué)報(bào),2016, 11(4): 239-244
Liu J, Zhou J W, Xiao H G, et al. Synergistic allelopathic effects of Solidago canadensis and Conyza canadensis on seedling growth of Glycine max [J]. Asian Journal of Ecotoxicology, 2016, 11(4): 239-244 (in Chinese)