亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        機(jī)體細(xì)胞鎘攝入離子轉(zhuǎn)運(yùn)通道研究進(jìn)展

        2016-12-02 05:44:21于振朱毅羅云波
        生態(tài)毒理學(xué)報 2016年4期
        關(guān)鍵詞:鈣通道離子通道小腸

        于振,朱毅,羅云波

        中國農(nóng)業(yè)大學(xué)食品科學(xué)與營養(yǎng)工程學(xué)院,北京 100083

        ?

        機(jī)體細(xì)胞鎘攝入離子轉(zhuǎn)運(yùn)通道研究進(jìn)展

        于振,朱毅*,羅云波

        中國農(nóng)業(yè)大學(xué)食品科學(xué)與營養(yǎng)工程學(xué)院,北京 100083

        鎘是人體非必需金屬離子,長期鎘暴露易引發(fā)鎘中毒。機(jī)體內(nèi)沒有負(fù)責(zé)鎘轉(zhuǎn)運(yùn)的特定載體,鎘可通過必需金屬離子轉(zhuǎn)運(yùn)載體進(jìn)入機(jī)體細(xì)胞。機(jī)體內(nèi)能夠轉(zhuǎn)運(yùn)鎘的載體有多種,主要包括鐵的轉(zhuǎn)運(yùn)載體二價金屬離子轉(zhuǎn)運(yùn)蛋白1(DMT1)、鈣離子通道(電壓門控鈣通道(VGCC)、瞬時感受器電位(TRP)和鈣庫調(diào)控的鈣通道(SOC))以及鋅鐵調(diào)控蛋白ZIP家族中的ZIP8和ZIP14等,且不同的機(jī)體細(xì)胞鎘吸收所需轉(zhuǎn)運(yùn)載體不同。轉(zhuǎn)運(yùn)載體對鎘離子的轉(zhuǎn)運(yùn)符合米氏方程,不同載體調(diào)節(jié)鎘吸收的米氏常數(shù)Km值不同。機(jī)體細(xì)胞鎘的吸收是個復(fù)雜的過程,通常存在著多種轉(zhuǎn)運(yùn)載體的交互作用,機(jī)體細(xì)胞可根據(jù)環(huán)境變化而選擇鎘的轉(zhuǎn)運(yùn)載體。對鎘的生理毒性,以及細(xì)胞鎘吸收常用的轉(zhuǎn)運(yùn)載體類型加以闡述,并分析了不同機(jī)體細(xì)胞鎘吸收的可能轉(zhuǎn)運(yùn)載體,以期為后續(xù)探究機(jī)體細(xì)胞鎘吸收具體分子機(jī)制提供理論指導(dǎo)。

        鎘;攝入機(jī)制;載體蛋白;離子轉(zhuǎn)運(yùn)通道;交互作用

        鎘是人體非必需金屬元素,在生活中應(yīng)用非常廣泛,主要用于金屬的電鍍以及制作鋅-鎘電池,鎘的化合物還大量用于生產(chǎn)熒光粉和顏料。環(huán)境中的鎘可通過呼吸道、消化道等途徑進(jìn)入人體。由于鎘的生物半衰期長達(dá)10~30 y,進(jìn)入機(jī)體的鎘很難被機(jī)體降解和排泄,易在機(jī)體蓄積而引發(fā)肝腎損傷[1-2]、骨骼損傷[3-4]、致癌[5-6]、生殖毒性[7]、心血管疾病[8]等多種疾病。在美國毒性物質(zhì)與疾病管理委員會(ATSDR)排序的各種毒性物質(zhì)中,鎘位列第7位[9],國際抗癌癥聯(lián)盟(IARC)于1993年將鎘定為AI級致癌物,即為確定性的人類致癌毒物,世界衛(wèi)生組織(WHO)則將其作為優(yōu)先研究的食品污染物。減少機(jī)體鎘的攝入是預(yù)防鎘中毒的根本途徑,但鎘進(jìn)入機(jī)體細(xì)胞的機(jī)制至今尚未清楚。因鎘是機(jī)體非必需金屬元素,機(jī)體內(nèi)沒有負(fù)責(zé)鎘吸收轉(zhuǎn)運(yùn)的特定通道及載體,鎘只能競爭通過必需金屬離子的轉(zhuǎn)運(yùn)載體進(jìn)入機(jī)體細(xì)胞。國內(nèi)外的研究表明,可轉(zhuǎn)運(yùn)鎘金屬離子的載體蛋白包括鐵的轉(zhuǎn)運(yùn)載體DMT1,鈣離子通道中的VGCC、TRP和SOC,以及鋅鐵調(diào)控蛋白ZIP家族中的ZIP8和ZIP14等等。本文闡述了鎘的生理毒性最新研究,并對以上鎘進(jìn)入機(jī)體細(xì)胞常見的通道及載體進(jìn)行了詳細(xì)說明,分析了不同機(jī)體細(xì)胞鎘攝入可能的轉(zhuǎn)運(yùn)載體,以期為后續(xù)探究機(jī)體細(xì)胞鎘攝入的分子機(jī)制提供理論指導(dǎo)。

        1 DMT1 (Divalent metal transporter 1)

        DMT1是一種與具天然抗性的巨噬細(xì)胞蛋白1(Nramp1)有極高同源性(達(dá)78%)和相似二級結(jié)構(gòu)的蛋白質(zhì),又被稱為具天然抗性的巨噬細(xì)胞蛋白2(Nramp2)[10]。該蛋白是哺乳類動物中被發(fā)現(xiàn)的第一個跨膜鐵轉(zhuǎn)運(yùn)蛋白,且同時具有轉(zhuǎn)運(yùn)其他二價金屬陽離子的功能[11]。DMT1mRNA存在“+IRE”和“-IRE”型2種形式。2種形式的區(qū)別在于,“+IRE”型的3′非翻譯區(qū)含有與運(yùn)鐵蛋白受體(TfR) mRNA 3′非翻譯區(qū)相似的鐵調(diào)節(jié)元件(IRE)。一般認(rèn)為,對二價金屬陽離子起轉(zhuǎn)運(yùn)作用的是“+IRE”型。DMT1在人體組織分布十分廣泛。在近端小腸表達(dá)最高,其次是在腎、胸腺和腦,而在睪丸、肝部、結(jié)腸、心臟、肺等部位的表達(dá)相對較低。在小腸,DMT1僅表達(dá)于小腸絨毛的腸上皮細(xì)胞[11]。

        DMT1也可轉(zhuǎn)運(yùn)包括Cd2+在內(nèi)的其他二價金屬陽離子,且小腸上皮細(xì)胞對Cd2+的吸收需要DMT1和細(xì)胞基底膜的鐵轉(zhuǎn)運(yùn)載體MTP1的協(xié)同作用。Illing等[12]研究表明,在爪蟾卵母細(xì)胞中,DMT1除了轉(zhuǎn)運(yùn)Fe2+外,還可轉(zhuǎn)運(yùn)Cd2+等離子。通過RNA干擾影響DMT1表達(dá),可以防止鎘暴露造成的機(jī)體損傷。但降低DMT1編碼基因表達(dá)量,勢必也會降低機(jī)體對必需金屬的吸收,最新研究表明,通過基因工程手段可篩選出對Cd2+敏感性降低但同時對Fe2+等必需金屬元素仍具有轉(zhuǎn)運(yùn)能力的DMT1載體[13]。此外,DMT1編碼基因位點(diǎn)突變也影響著細(xì)胞鎘的吸收,DMT1基因的IVS4+44 C/A位點(diǎn)存在CC、CA、AA三種突變基因型,基因組學(xué)實(shí)驗(yàn)表明,純合突變基因型CC人群血鎘含量顯著高于CA和AA突變基因型[14]。

        DMT1的表達(dá)受到多種因素的調(diào)控,從而可影響機(jī)體鎘的吸收。機(jī)體鐵水平與DMT1的表達(dá)之間存在負(fù)調(diào)節(jié)關(guān)系[15-17],長期鎘暴露的缺鐵性貧血患者具有鎘中毒的風(fēng)險。這可能與DMT1“+IRE”型mRNA中含有與TfR相似的IRE結(jié)構(gòu)有關(guān),說明DMT1的表達(dá)調(diào)控可能與TfR的表達(dá)調(diào)控方式類同。DMT1分子結(jié)構(gòu)中的5個金屬反應(yīng)元件可被多種金屬離子如鋅、錳等激活,所以多種金屬離子也可影響DMT1的表達(dá)。Kwong和Niyogi[18]在研究淡水硬骨類彩虹鱒魚小腸中鐵和其他二價金屬離子的關(guān)系時發(fā)現(xiàn),Ni2+、Pb2+、Cd2+、Cu2+和Zn2+都可影響小腸對鐵的吸收,并指出這種抑制關(guān)系可能主要是通過影響小腸內(nèi)DMT1表達(dá)水平引起的。鈣離子并不是DMT1的轉(zhuǎn)運(yùn)底物,但對DMT1表達(dá)有較弱的抑制作用[19],鉛[20]和銅[21]可分別促進(jìn)DMT1的表達(dá)。γ-干擾素也可促進(jìn)細(xì)胞的DMT1的表達(dá)[22],這可能與DMT1 mRNA 5′調(diào)控區(qū)域具有的類似γ-干擾素調(diào)節(jié)元件有關(guān)。此外,DMT1對二價金屬離子的轉(zhuǎn)運(yùn)還受其轉(zhuǎn)運(yùn)活性的影響,Montalbetti等[23]在進(jìn)行藥理學(xué)分析時,發(fā)現(xiàn)了一種對人體DMT1轉(zhuǎn)運(yùn)活性具有可逆非線性抑制作用的小分子組分,命名為嘧啶酮8。并指出,嘧啶酮8并不影響DMT1的細(xì)胞膜表達(dá)水平,且不受pH影響。

        但是,DMT1并不是機(jī)體吸收鎘的唯一通道。Min等[24]研究了機(jī)體多種必需金屬營養(yǎng)素(Ca、Cu、Mg、Zn和Fe)水平與小鼠體內(nèi)鎘聚集的關(guān)系,研究發(fā)現(xiàn),上述任何一種必需金屬元素缺乏,小鼠體內(nèi)鎘含量都會增加,而僅有鐵缺乏組中出現(xiàn)腸道DMT1 mRNA表達(dá)增加的情況,從而推測DMT1并不是鎘吸收轉(zhuǎn)運(yùn)的唯一的途徑。本文后面敘述的有關(guān)鈣離子通道(見2)和鋅鐵調(diào)控蛋白ZIP(見3)同樣具有轉(zhuǎn)運(yùn)鎘離子的研究也證明了上述推測。

        2 鈣離子通道(Calcium channels)

        鈣離子通道是一種跨膜結(jié)構(gòu),化學(xué)本質(zhì)是蛋白質(zhì),稱為載體,鈣離子與載體結(jié)合被轉(zhuǎn)運(yùn)。它嚴(yán)格調(diào)節(jié)鈣離子進(jìn)出細(xì)胞的過程。鈣離子通透性通道主要包括VGCC、配體門控鈣通道(LGCC)、TRP、SOC和花生四烯酸調(diào)控的鈣通道(ARC)等[25]。其中VGCC是由α1、β、α2δ及γ四個亞基構(gòu)成的膜蛋白復(fù)合體,α1亞基共有10種不同類型,是構(gòu)成鈣通道孔道的主要單位。根據(jù)構(gòu)成鈣通道α1亞基的基因序列的同源性,將VGCC可分為Cav1、Cav2、Cav3。根據(jù)鈣離子通道的藥理學(xué)特點(diǎn)以及電生理性質(zhì),又可將VGCC分為高電壓門控鈣通道(L型、N型、P/Q型、R型)和低電壓門控鈣通道(T型,即Cav3.1-3通道)[26]。VGCC主要分布于可興奮細(xì)胞,一般在去極化時激活。TRP包括TRPM和TRPV兩大亞家族,TRPV中的TRPV5和TRPV6,又叫做鈣轉(zhuǎn)運(yùn)蛋白CaT1,被稱為“上皮鈣通道”,它們主要調(diào)節(jié)上皮細(xì)胞中Ca2+平衡。TRPM亞族TRPM7是一種具有陽離子通道和蛋白激酶雙重結(jié)構(gòu)的膜蛋白。

        由于Ca2+和Cd2+含有相似的離子半徑,Cd2+也能夠通過鈣離子通道,而鎘致細(xì)胞損傷的主要原因就是破壞胞內(nèi)的鈣穩(wěn)態(tài)平衡[27-28]。Leslie[29]在探究無金屬硫蛋白[MT(-/-)]參與調(diào)節(jié)的細(xì)胞保護(hù)機(jī)制時,經(jīng)免疫印跡和RT-PCR分析發(fā)現(xiàn),MT(-/-)細(xì)胞中鎘的吸收會受到T-型電壓門控鈣通道阻滯劑咪拉地爾及Mn2+、Zn2+的抑制,而不受Fe2+和L-型電壓門控鈣通道阻塞劑的影響。而且編碼CaV3.1蛋白通道的基因Cacnα1G表達(dá)下調(diào)時,會導(dǎo)致T-型鈣離子通道表達(dá)減少,同時細(xì)胞鎘的攝入也在減少,從而說明Cd2+能夠通過CaV3.1T-型鈣離子通道轉(zhuǎn)運(yùn)進(jìn)入細(xì)胞。T-型鈣離子通道在激活和失活曲線重疊的膜電位下,可產(chǎn)生“窗電流”,即總有一小股鈣離子流通過小部分未完全失活的通道持續(xù)流入胞內(nèi),Cd2+能夠通過CaV3.1T-型鈣離子通道進(jìn)入細(xì)胞和其產(chǎn)生的窗電流有很大關(guān)系[30]。

        電生理研究分析表明:電流通過活動性的TRPV5及TRPV6通道具有高度Ca2+選擇性,但在鈣缺乏的小鼠小腸細(xì)胞中,當(dāng)其他鎘轉(zhuǎn)運(yùn)載體如DMT1 mRNA表達(dá)減少的情況下,TRPV5及TRPV6 mRNA仍存在高度表達(dá),而同時小腸鎘的吸收增加,說明TRPV5及TRPV6存在轉(zhuǎn)運(yùn)Cd2+的可能[31]。這一可能性被Kovacs等[32-33]在HEK293細(xì)胞中通過活細(xì)胞成像實(shí)驗(yàn)和膜片鉗技術(shù)實(shí)驗(yàn)加以證實(shí)。此外,Giusti等[34]發(fā)現(xiàn)了有關(guān)甲狀旁腺中TRPV5及TRPV6通道與腺體的癌變存在潛在的聯(lián)系,這個發(fā)現(xiàn)引發(fā)了有關(guān)鎘可能是通過TRPV5及TRPV6通道進(jìn)入某些細(xì)胞而引發(fā)對應(yīng)細(xì)胞癌變的猜測,但這需要進(jìn)一步探究。TRPM7通道是一種非選擇性陽離子通道,不僅對Ca2+有通透性,對Cd2+也具有通透性。Lévesque等[35]指出,人成骨肉瘤MG-63細(xì)胞鎘攝入不是通過VGCC鈣離子通道,而可能是通過TRPM7通道。在此基礎(chǔ)上,Martineau等[36]探究了MC3T3-E1成骨細(xì)胞鎘的吸收分子機(jī)制,發(fā)現(xiàn)VGCC和SOC鈣離子通道都不參與MC3T3-E1細(xì)胞中鎘的吸收,而TRPM7阻滯劑2-APB和香芹酚對細(xì)胞鎘的攝入也有抑制作用,細(xì)胞鎘的攝入和TRPM7通道活性一樣均受pH影響。此外,利用siRNA對TRPM7通道沉默處理,發(fā)現(xiàn)MC3T3-E1細(xì)胞鎘的攝入量大幅度減少,從而證實(shí)MC3T3-E1成骨細(xì)胞中鎘的吸收一部分是通過鈣離子通道TRPM7進(jìn)行的。

        3 鋅鐵調(diào)控蛋白(Zinc and iron regulated transporters)

        鋅轉(zhuǎn)運(yùn)體主要包括3個亞系,分別是鋅調(diào)節(jié)轉(zhuǎn)運(yùn)體亞系(ZRT)、鋅/鐵調(diào)節(jié)轉(zhuǎn)運(yùn)體亞系(ZIP)及鋅轉(zhuǎn)運(yùn)體亞系(ZNT)。純化的ZIP家族蛋白共有9個成員,分別是ZIP1~8,ZIP14,且大多含有8個跨膜區(qū)及相似的膜拓?fù)浣Y(jié)構(gòu),C-、N-末端位于膜外。ZIP蛋白長度為309~476個氨基酸,氨基酸數(shù)目不同主要是因?yàn)榈鞍椎牡贗II、IV跨膜區(qū)間的“可變區(qū)”長度不同所致。通常認(rèn)為,可變區(qū)位于胞內(nèi),并富含組氨酸殘基,而且可能與金屬離子的結(jié)合轉(zhuǎn)運(yùn)有關(guān)[37]。ZIP是非特異性鋅轉(zhuǎn)運(yùn)體,除吸收轉(zhuǎn)運(yùn)Zn外,也吸收轉(zhuǎn)運(yùn)Mn、Cd等金屬離子。ZIP家族中的ZIP8(編碼基因Slc39a8)和ZIP14(編碼基因Slc39a14)在人體細(xì)胞Cd的吸收轉(zhuǎn)運(yùn)中扮演著重要角色,基因組學(xué)表明,Slc39a8和Slc39a14基因的多態(tài)性影響著機(jī)體血鎘的吸收[38]。

        基因芯片和RT-PCR分析表明,在金屬硫蛋白缺乏的抗鎘小鼠細(xì)胞中,經(jīng)具有沉默ZIP8表達(dá)的短發(fā)夾結(jié)構(gòu)RNA(shRNA)浸染的細(xì)胞,鎘的吸收量減少了近35%,而沉默DMT1表達(dá)對細(xì)胞鎘吸收無影響[39]。此外,小鼠嗜堿性白血病細(xì)胞RBL-2H3中,siRNA沉默ZIP8表達(dá),導(dǎo)致細(xì)胞鎘攝入顯著降低,而沉默ZIP14表達(dá)卻無上述影響[40]。對RBL-2H3進(jìn)行持續(xù)鎘暴露使其具有抗鎘特性,發(fā)現(xiàn)細(xì)胞所有與鎘吸收有關(guān)的載體中僅有ZIP8的表達(dá)顯著降低[41],從而表明了ZIP8具有轉(zhuǎn)運(yùn)吸收鎘的作用。ZIP8在腎臟、睪丸、肺和肝臟等部位高度表達(dá),表達(dá)受到多種因素調(diào)控。Aiba等[42]指出細(xì)胞內(nèi)谷胱甘肽含量增加會導(dǎo)致ZIP8轉(zhuǎn)錄因子Sp1表達(dá)減少,從而會導(dǎo)致ZIP8表達(dá)下調(diào)。Besecker等[43]將人體肺上皮細(xì)胞進(jìn)行TNF-α(腫瘤壞死因子-α)暴露,發(fā)現(xiàn)細(xì)胞內(nèi)Slc39a8基因表達(dá)增強(qiáng),ZIP8水平增加。加入去甲基化藥物5-氮-2-脫氧胞苷的抗鎘MT缺乏細(xì)胞(A7細(xì)胞),Slc39a8基因啟動子區(qū)CpG島去甲基化,可增加ZIP8 mRNA表達(dá)水平[44]。

        ZIP14由Slc39a14基因編碼,編碼表達(dá)ZIP14A和ZIP14B兩個選擇性剪接變異體。Girijashanker等[45]研究指出,C57BL/6J大鼠中,ZIP14A在肝臟、十二指腸、腎臟和睪丸高度表達(dá),ZIP14B在肝臟、十二指腸、腦部和睪丸高度表達(dá),二者(尤其是ZIP14B)對Cd2+均具有較高的親和力,可以吸收轉(zhuǎn)運(yùn)Cd2+,但易受到Zn2+、Cu2+和Mn2+的抑制。ZIP8和ZIP14的氨基酸序列高度一致,由此推測,ZIP8和ZIP14作為載體轉(zhuǎn)運(yùn)Zn2+、Mn2+和Cd2+的功能可能相關(guān),但ZIP14主要作用于小腸細(xì)胞Cd2+的吸收,而ZIP8主要作用于腎近端小管上皮細(xì)胞對Cd2+的吸收[46]。

        表1 文獻(xiàn)研究的機(jī)體細(xì)胞鎘攝入主要轉(zhuǎn)運(yùn)載體

        4 不同機(jī)體細(xì)胞的鎘攝入機(jī)制(Absorption mechanisms of cadmium entry into different cells)

        鎘主要是通過腸道吸收進(jìn)入機(jī)體,并主要是在肝、腎和腦部等組織器官蓄積并引發(fā)相關(guān)疾病,下面介紹小腸細(xì)胞以及肝、腎和生殖細(xì)胞對鎘的吸收。

        4.1 小腸細(xì)胞對鎘的吸收(Absorption of cadmium in small intestine cells)

        機(jī)體攝入鎘途徑主要是通過含鎘食物,吸收部位主要是在小腸,而DMT1在近端小腸表達(dá)最高。腸道對鎘的吸收主要是集中在十二指腸處,而且主要是通過二價金屬離子轉(zhuǎn)運(yùn)蛋白DMT1轉(zhuǎn)運(yùn)進(jìn)入小腸上皮細(xì)胞。一般分為3個連續(xù)的過程:DMT1介導(dǎo)的黏膜吸收過程;胞漿蛋白參與的胞內(nèi)運(yùn)輸過程;基底膜側(cè)的跨膜轉(zhuǎn)運(yùn)進(jìn)入血液循環(huán)過程。由于DMT1 mRNA的表達(dá)受到機(jī)體鐵水平、其他金屬離子、γ-干擾素等多種因素的調(diào)控,所以,DMT1介導(dǎo)的小腸對鎘的吸收同樣也受到上述多種因素的影響。DMT1是小腸細(xì)胞鎘吸收的主要途徑,但并不是唯一途徑。Suzuki等[54]研究發(fā)現(xiàn)DMT1功能障礙小鼠在鐵缺乏時的腸鎘含量與鐵充足時并不一致,而是要遠(yuǎn)大于后者,從而推測在鐵缺乏而體內(nèi)DMT1功能抑制時,腸道內(nèi)可能存在其他鎘的吸收轉(zhuǎn)運(yùn)途徑。Nebert等[46]的研究證實(shí)了上述猜測,研究發(fā)現(xiàn)ZIP14在十二指腸部位高度表達(dá),也可作用于小腸鎘的吸收。?hrvik等[55]為了研究新生兒小腸細(xì)胞對鎘的吸收,采用未成熟的人體上皮細(xì)胞Caco-2作為細(xì)胞模型,前期鎘暴露后發(fā)現(xiàn)Caco-2細(xì)胞鎘的吸收增加與多藥耐藥相關(guān)蛋白1(MRP1)編碼基因表達(dá)上調(diào)有關(guān),而DMT1 mRNA表達(dá)卻無變化。

        4.2 肝、腎細(xì)胞對鎘的吸收(Absorption of cadmium in liver and kidney cells)

        通過小腸細(xì)胞吸收進(jìn)人機(jī)體的鎘首先與肝臟中合成的金屬硫蛋白(MT)結(jié)合成鎘金屬硫蛋白復(fù)合物(CdMT),對鎘毒性起到一定的緩沖作用,但機(jī)體這種自我保護(hù)作用有限。當(dāng)鎘劑量較大肝臟受損時,CdMT將被大量釋放入血液,由于CdMT分子量較小,易經(jīng)腎小球?yàn)V過而在近曲小管被重吸收并降解,釋放出鎘離子而產(chǎn)生毒性。肝細(xì)胞對鎘的吸收可通過鈣離子通道、ZIP14轉(zhuǎn)運(yùn)。Souza等[56]在1997年就證明了鈣離子通道阻滯劑可以抑制人體肝細(xì)胞鎘吸收。松節(jié)油或己烷誘發(fā)炎癥的小鼠中,在排除其他鎘離子轉(zhuǎn)運(yùn)載體干擾的情況下,肝對鎘的吸收隨肝中ZIP14 mRNA表達(dá)的增加而增加,說明肝鎘也可通過ZIP14吸收[52]。

        腎臟對鎘的吸收主要是在近曲小管上皮細(xì)胞,可通過DMT1、ZIP8和ZIP14等轉(zhuǎn)運(yùn)。DMT1 mRNA在腎近曲小管上皮細(xì)胞的表達(dá)并不是在細(xì)胞膜上,而是在晚期內(nèi)吞體和溶酶體中[57]。Abouhamed等[50]采用RNAi沉默DMT1 mRNA表達(dá)后發(fā)現(xiàn),CdMT致小鼠死亡的速率減小,表明腎細(xì)胞DMT1對鎘的吸收轉(zhuǎn)運(yùn)可能不是以游離Cd2+而可能是CdMT的形式。ZIP8和ZIP14 mRNA在腎近曲小管S3段表達(dá),經(jīng)siRNA沉默后可顯著減少腎鎘的吸收[53]。Jorge-Nebert等[58]將鎘暴露處理小鼠的ZIP14編碼基因敲除后發(fā)現(xiàn),肝鎘和預(yù)想的一樣含量下降,而腎鎘和肺鎘卻顯著升高。比較近端小腸與鎘吸收有關(guān)轉(zhuǎn)運(yùn)載體的表達(dá)情況,結(jié)果發(fā)現(xiàn)小腸和腎中鎘轉(zhuǎn)運(yùn)載體在轉(zhuǎn)運(yùn)鎘的過程中存在著復(fù)雜的交互作用。

        4.3 生殖細(xì)胞對鎘的吸收(Absorption of cadmium in germ cells)

        鎘能誘導(dǎo)睪丸、附睪等雄性生殖器官發(fā)生結(jié)構(gòu)和功能上的退行性變化,引起生精障礙、精子運(yùn)動能力改變,甚至不育。ZIP8在睪丸有高度表達(dá),小鼠睪丸血管內(nèi)皮細(xì)胞中ZIP8的缺失,可以降低鎘致睪丸毒性[59]。而轉(zhuǎn)Slc39a8基因小鼠中睪丸血管內(nèi)皮細(xì)胞ZIP8高度表達(dá),細(xì)胞鎘的吸收也隨之增加。說明睪丸細(xì)胞可以通過ZIP8轉(zhuǎn)運(yùn)吸收鎘[60]。此外,在卵母細(xì)胞對鎘的吸收方面,早在1999年,Hoenderop等[61]在非洲爪蟾卵母細(xì)胞中就發(fā)現(xiàn)有鈣離子通道蛋白TRPV5的存在。Marchetti[62]對中國倉鼠卵母細(xì)胞進(jìn)行鎘暴露處理,發(fā)現(xiàn)鎘的攝入受到VGCC鈣離子通道調(diào)節(jié)劑的調(diào)控,當(dāng)有通道阻滯劑存在時,鎘吸收受到抑制;而當(dāng)通道促進(jìn)劑存在時,鎘吸收增加。說明鎘離子可以通過VGCC鈣離子通道進(jìn)入卵巢細(xì)胞,但這可能并不是唯一,也不是最重要的途徑。

        5 結(jié)論與展望(Conclusion and prospect)

        鎘是人體非必需金屬離子,機(jī)體內(nèi)沒有負(fù)責(zé)鎘離子轉(zhuǎn)運(yùn)的特定載體,鎘可通過必需金屬離子轉(zhuǎn)運(yùn)載體進(jìn)入機(jī)體細(xì)胞,且轉(zhuǎn)運(yùn)符合米氏方程[46]。但機(jī)體鎘的吸收是一個復(fù)雜的過程,一方面是因?yàn)榻M織細(xì)胞中鎘的吸收并不僅是單一的轉(zhuǎn)運(yùn)載體起作用,而是存在著多種轉(zhuǎn)運(yùn)載體間的交互作用;另一方面是因?yàn)闄C(jī)體組織細(xì)胞鎘攝入伴隨有復(fù)雜的調(diào)節(jié)過程,機(jī)體細(xì)胞可能會根據(jù)周圍環(huán)境的變化而選擇鎘吸收路徑。如魚鰓對鎘攝入的傳統(tǒng)路徑是通過鈣離子通道和ZIP8轉(zhuǎn)運(yùn),但在銅離子存在時,魚鰓細(xì)胞可改變鎘吸收的傳統(tǒng)路徑而選擇通過DMT1轉(zhuǎn)運(yùn)吸收[63]。通過添加阻斷劑或基因沉默的方式可以確定某些環(huán)境條件、特定組織細(xì)胞中與鎘轉(zhuǎn)運(yùn)有關(guān)的載體種類,但環(huán)境條件改變時,不同組織細(xì)胞中鎘吸收路徑的改變及具體機(jī)制等都尚不明確。

        總之,除了掌握細(xì)胞鎘攝入的相關(guān)載體種類及轉(zhuǎn)運(yùn)機(jī)制外,還需掌握周圍環(huán)境條件改變時,不同組織細(xì)胞中鎘吸收路徑的改變及具體機(jī)制,才能在流行病學(xué)研究中準(zhǔn)確分析不同鎘暴露地區(qū)的人群身體狀況的差異,才能真正有效的預(yù)防不同生活環(huán)境下鎘暴露所致的鎘中毒問題。

        [1] Wallin M, Sallsten G, Lundh T, et al. Low-level cadmium exposure and effects on kidney function [J]. Occupational and Environmental Medicine, 2014, 71(12): 848-854

        [2] Baiomy A A, Mansour A A. Genetic and histopathological responses to cadmium toxicity in rabbit's kidney and liver: Protection by ginger (Zingiber officinale) [J]. Biological Trace Element Research, 2016, 170(2): 320-329

        [3] Nawrot T, Geusens P, Nulens T S, et al. Occupational cadmium exposure and calcium excretion, bone density, and osteoporosis in men [J]. Journal of Bone and Mineral Research, 2010, 25(6): 1441-1445[4] Thomas L D, Michaelsson K, Julin B, et al. Dietary cadmium exposure and fracture incidence among men: A population-based prospective cohort study [J]. Journal of Bone and Mineral Research, 2011, 26(7): 1601-1608[5] Garcia-Esquinas E, Pollan M, Tellez-Plaza M, et al. Cadmium exposure and cancer mortality in a prospective cohort: The strong heart study [J]. Environmental Health Perspectives, 2014, 122(4): 363-370

        [6] Julin B, Wolk A, Bergkvist L, et al. Dietary cadmium exposure and risk of postmenopausal breast cancer: A population-based prospective cohort study [J]. Cancer Research, 2012, 72(6): 1459-1466

        [7] Lacorte L M, Rinaldi J C, Jr. Justulin L A, et al. Cadmium exposure inhibits MMP2 and MMP9 activities in the prostate and testis [J]. Biochemical and Biophysical Research Communications, 2015, 457(4): 538-541

        [8] Tellez-Plaza M, Navas-Acien A, Menke A, et al. Cadmium exposure and all-cause and cardiovascular mortality in the U.S. general population [J]. Environmental Health Perspectives, 2012, 120(7): 1017-1022

        [9] Fowler B A, Mahaffey K R. Interactions among lead, cadmium, and arsenic in relation to porphyrin excretion patterns [J]. Environmental Health Perspectives, 1978, 25: 87-90

        [10] Gruenheid S, Cellie M, Vidal S, et al. Identification and characterization of a second mouse Nramp gene [J]. Genomics, 1995, 25(2): 514-525

        [11] Gunshin H, Mackenzie B, Berger U V, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter [J]. Nature, 1997, 388(6641): 482-488

        [12] Illing A C, Shawki A, Cunningham C L, et al. Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1 [J]. Journal of Biological Chemistry, 2012, 287(36): 30485-30496

        [13] Pottier M, Oomen R, Picco C, et al. Identification of mutations allowing natural resistance associated macrophage proteins (NRAMP) to discriminate against cadmium [J]. The Plant Journal, 2015, 83(4): 625-637

        [14] Kayaalti Z, Akyuzlu D K, Soylemezoglu T. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels [J]. Environmental Research, 2015, 137: 8-13

        [15] Giorgi G, Roque M E. Iron overload induces changes of pancreatic and duodenal divalent metal transporter 1 and prohepcidin expression in mice [J]. Acta Histochemica, 2014, 116(2): 354-362

        [16] 徐小磊, 王朝旭, 姜珊. 維生素A缺乏對大鼠十二指腸DMT1, FPN1 mRNA表達(dá)的影響[J]. 營養(yǎng)學(xué)報, 2011(5): 480-483

        Xu X L, Wang C X, Jang S. Effect of vitamin A defficiency on DMT1, FPN1 mRNA expression in the duodenum in rats [J]. Acta Nutrimenta Sinica, 2011(5): 480-483 (in Chinese)

        [17] Urrutia P, Aguirre P, Esparza A, et al. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells [J]. Journal of Neurochemistry, 2013, 126(4): 541-549

        [18] Kwong R W M, Niyogi S. The interactions of iron with other divalent metals in the intestinal tract of a freshwater teleost, rainbow trout (Oncorhynchus mykiss) [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2009, 150(4): 442-449

        [19] Shawki A, Mackenzie B. Interaction of calcium with the human divalent metal-ion transporter-1 [J]. Biochemical and Biophysical Research Communications, 2010, 393(3): 471-475

        [20] 胡貴平, 周繁坤, 胡麗華, 等. 鉛暴露對PC12細(xì)胞活力及DMT1表達(dá)影響[J]. 中國公共衛(wèi)生, 2015(6): 760-763

        Hu G P, Zhou F K, Hu L H, et al. Effect of lead exposure on cell viability and expression of DMT1 in PC12 cells [J]. Chinese Journal of Public Health, 2015(6): 760-763 (in Chinese)

        [21] Arredondo M, Mendiburo M J, Flores S, et al. Mouse divalent metal transporter 1 is a copper transporter in HEK293 cells [J]. BioMetals, 2014, 27(1): 115-123

        [22] Wang X. TNF, IFN-, and endotoxin increase expression of DMT1 in bronchial epithelial cells [J]. AJP: Lung Cellular and Molecular Physiology, 2005, 289(1): L24-L33

        [23] Montalbetti N, Simonin A, Simonin C, et al. Discovery and characterization of a novel non-competitive inhibitor of the divalent metal transporter DMT1/SLC11A2 [J]. Biochemical Pharmacology, 2015, 96(3): 216-224

        [24] Min K S, Ueda H, Kihara T, et al. Increased hepatic accumulation of ingested Cd is associated with upregulation of several intestinal transporters in mice fed diets deficient in essential metals [J]. Toxicological Sciences, 2008, 106(1): 284-289

        [25] 何建林, 鄭仕中, 陸茵, 等. 癌細(xì)胞中鈣離子通道的研究進(jìn)展[J]. 中國藥理學(xué)通報, 2012(7): 1027-1029

        He J L, Zheng S Z, Lu Y, et al. Calcium channels in cancers [J]. Chinese Pharmacological Bulletin, 2012(7): 1027-1029 (in Chinese)

        [26] Guy H R, Conti F. Pursuing the structure and function of voltage-gated channels [J]. Trends in Neurosciences, 1990, 13(6): 201-206

        [27] Zhou X, Hao W, Shi H, et al. Calcium homeostasis disruption - A bridge connecting cadmium-induced apoptosis, autophagy and tumorigenesis [J]. Oncology Research and Treatment, 2015, 38(6): 311-315

        [28] Zou H, Liu X, Han T, et al. Alpha-lipoic acid protects against cadmium-induced hepatotoxicity via calcium signalling and gap junctional intercellular communication in rat hepatocytes [J]. Journal of Toxicological Sciences, 2015, 40(4): 469-477

        [29] Leslie E M. Acquired cadmium resistance in metallothionein-I/II(-/-) knockout cells: Role of the T-type calcium channel Cacnalpha1G in cadmium uptake [J]. Molecular Pharmacology, 2005, 69(2): 629-639

        [30] Lopin K V, Thevenod F, Page J C, et al. Cd2+block and permeation of CaV3.1 (α1G) T-type calcium channels: Candidate mechanism for Cd2+influx [J]. Molecular Pharmacology, 2012, 82(6): 1183-1193

        [31] Min K, Ueda H, Tanaka K. Involvement of intestinal calcium transporter 1 and metallothionein in cadmium accumulation in the liver and kidney of mice fed a low-calcium diet [J]. Toxicology Letters, 2008, 176(1): 85-92

        [32] Kovacs G, Danko T, Bergeron M J, et al. Heavy metal cations permeate the TRPV6 epithelial cation channel [J]. Cell Calcium, 2011, 49(1): 43-55

        [33] Kovacs G, Montalbetti N, Franz M, et al. Human TRPV5 and TRPV6: Key players in cadmium and zinc toxicity [J]. Cell Calcium, 2013, 54(4): 276-286

        [34] Giusti L, Cetani F, Da Valle Y, et al. First evidence of TRPV5 and TRPV6 channels in human parathyroid glands: Possible involvement in neoplastic transformation [J]. Journal of Cellular and Molecular Medicine, 2014, 18(10): 1944-1952

        [35] Lévesque M, Martineau C, Jumarie C, et al. Characterization of cadmium uptake and cytotoxicity in human osteoblast-like MG-63 cells [J]. Toxicology and Applied Pharmacology, 2008, 231(3): 308-317

        [36] Martineau C, Abed E, Médina G, et al. Involvement of transient receptor potential melastatin-related 7 (TRPM7) channels in cadmium uptake and cytotoxicity in MC3T3-E1 osteoblasts [J]. Toxicology Letters, 2010, 199(3): 357-363

        [37] Guerinot M L. The ZIP family of metal transporters [J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2000, 1465(1-2): 190-198

        [38] Rentschler G, Kippler M, Axmon A, et al. Cadmium concentrations in human blood and urine are associated with polymorphisms in zinc transporter genes [J]. Metallomics, 2014, 6(4): 885-891

        [39] Fujishiro H, Okugaki S, Kubota K, et al. The role of ZIP8 down-regulation in cadmium-resistant metallothionein-null cells [J]. Journal of Applied Toxicology, 2009, 29(5): 367-373

        [40] Fujishiro H, Doi M, Enomoto S, et al. High sensitivity of RBL-2H3 cells to cadmium and manganese: An implication of the role of ZIP8 [J]. Metallomics, 2011, 3(7): 710-718

        [41] Fujishiro H, Ohashi T, Takuma M, et al. Suppression of ZIP8 expression is a common feature of cadmium-resistant and manganese-resistant RBL-2H3 cells [J]. Metallomics, 2013, 5(5): 437

        [42] Aiba I, Hossain A, Kuo M T. Elevated GSH level increases cadmium resistance through down-regulation of Sp1-dependent expression of the cadmium transporter ZIP8 [J]. Molecular Pharmacology, 2008, 74(3): 823-833[43] Besecker B, Bao S, Bohacova B, et al. The human zinc transporter SLC39A8 (Zip8) is critical in zinc-mediated cytoprotection in lung epithelia [J]. AJP: Lung Cellular and Molecular Physiology, 2008, 294(6): L1127-L1136[44] Fujishiro H, Okugaki S, Yasumitsu S, et al. Involvement of DNA hypermethylation in down-regulation of the zinc transporter ZIP8 in cadmium-resistant metallothionein-null cells [J]. Toxicology and Applied Pharmacology, 2009, 241(2): 195-201

        [45] Girijashanker K, He L, Soleimani M, et al. Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: Similarities to the ZIP8 transporter [J]. Molecular Pharmacology, 2008, 73(5): 1413-1423

        [46] Nebert D W, Galvez-Peralta M, Hay E B, et al. ZIP14 and ZIP8 zinc/bicarbonate symporters in Xenopus oocytes: Characterization of metal uptake and inhibition [J]. Metallomics, 2012, 4(11): 1218-1225

        [48] Kippler M, Goessler W, Nermell B, et al. Factors influencing intestinal cadmium uptake in pregnant Bangladeshi women—A prospective cohort study [J]. Environmental Research, 2009, 109(7): 914-921

        [49] Gu C, Chen S, Xu X, et al. Lead and cadmium synergistically enhance the expression of divalent metal transporter 1 protein in central nervous system of developing rats [J]. Neurochemical Research, 2009, 34(6): 1150-1156

        [50] Abouhamed M, Wolff N A, Lee W K, et al. Knockdown of endosomal/lysosomal divalent metal transporter 1 by RNA interference prevents cadmium-metallothionein-1 cytotoxicity in renal proximal tubule cells [J]. American Journal of Physiology-renal Physiology, 2007, 293(3): F705-F712

        [51] Kim D, Kim K, Choi B, et al. Regulation of metal transporters by dietary iron, and the relationship between body iron levels and cadmium uptake [J]. Archives of Toxicology, 2007, 81(5): 327-334

        [52] Min K, Takano M, Amako K, et al. Involvement of the essential metal transporter Zip14 in hepatic Cd accumulation during inflammation [J]. Toxicology Letters, 2013, 218(1): 91-96

        [53] Fujishiro H, Yano Y, Takada Y, et al. Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells [J]. Metallomics, 2012, 4(7): 700-708

        [54] Suzuki T, Momoi K, Hosoyamada M, et al. Normal cadmium uptake in microcytic anemia mk/mk mice suggests that DMT1 is not the only cadmium transporter in vivo [J]. Toxicology and Applied Pharmacology, 2008, 227(3): 462-467

        [55] ?hrvik H, Tydén E, Artursson P, et al. Cadmium transport in a model of neonatal intestinal cells correlates to MRP1 and Not DMT1 or FPN1 [J]. ISRN Toxicology, 2013, 2013: 1-9

        [56] Souza V, Bucio L, Gutierrez-Ruiz M C. Cadmium uptake by a human hepatic cell line (WRL-68 cells) [J]. Toxicology, 1997, 120(3): 215-220[57] Yang H, Shu Y. Cadmium transporters in the kidney and cadmium-induced nephrotoxicity [J]. International Journal of Molecular Sciences, 2015, 16(1): 1484-1494[58] Jorge-Nebert L F, Galvez-Peralta M, Landero Figueroa J, et al. Comparing gene expression during cadmium uptake and distribution: Untreated versus oral Cd-treated wild-type and ZIP14 knockout mice [J]. Toxicological Sciences, 2014, 143(1): 26-35

        [59] Dalton T P, He L, Wang B, et al. Identification of mouse SLC39A8 as the transporter responsible for cadmium-induced toxicity in the testis [J]. Proceedings of the National Academy of Sciences U S A, 2005, 102(9): 3401-3406

        [60] He L, Wang B, Hay E B, et al. Discovery of ZIP transporters that participate in cadmium damage to testis and kidney [J]. Toxicology and Applied Pharmacology, 2009, 238(3): 250-257

        [61] Hoenderop J G, van der Kemp A W, Hartog A, et al. The epithelial calcium channel, ECaC, is activated by hyperpolarization and regulated by cytosolic calcium [J]. Biochemical and Biophysical Research Communications, 1999, 261(2): 488-492

        [62] Marchetti C. Role of calcium channels in heavy metal toxicity [J]. ISRN Toxicology, 2013, 2013: 1-9

        [63] Komjarova I, Bury N R. Evidence of common cadmium and copper uptake routes in zebrafish Danio rerio [J]. Environmental Science & Technology, 2014, 48(21): 12946-12951

        Research Progress in Transport Channels of Cadmium Entry into Cells

        Yu Zhen, Zhu Yi*, Luo Yunbo

        College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

        Received 7 October 2015 accepted 17 May 2016

        Cadmium (Cd) is a nonessential divalent metal ion that can cause toxicity in multiple organs in human body through chronic cadmium exposure. There is no specific transport proteins for cell to absorb Cd, and Cd enter cells by utilizing transport pathways for essential metals. There are many transporters in human cells can transport Cd, including divalent metal transporter 1(DMT1), calcium channels (voltage-gated calcium channels, VGCC), transient receptor potential (TRP), store-operated calcium channels (SOC), and zinc transporters (ZIP8, ZIP14). Different tissue cells have different Cd transporters. Transportation of Cd is characterized by michaelis-menten equation, and there are differences among the michaelis constant Kmof transporters. Uptake of Cd is a complex interplay of many transporters, and tissue cells can select Cd transporters in accordance with circumtance changes. This paper preferred to discuss Cd toxicity and transporters involved in Cd uptake, and the possible transporters in Cd absorption of different tissue cells were also taken into account, providing theoretical guidance for studying molecular mechanisms of cadmium entry into human cells.

        cadmium; absorption mechanism; carrier protein; transport channel; interplay

        國家863計劃資助項(xiàng)目(2013AA065802)

        于振(1987-),男,博士生,研究方向?yàn)槭称飞锛夹g(shù),E-mail: zyu1987@163.com;

        *通訊作者(Corresponding author), E-mail: zhuyi@cau.edu.cn

        10.7524/AJE.1673-5897.20151007001

        2015-10-07 錄用日期:2016-05-17

        1673-5897(2016)4-010-08

        X171.5

        A

        簡介:朱毅(1973-),女,博士,副教授,研究方向?yàn)闋I養(yǎng)與食品安全。

        于振, 朱毅, 羅云波, 等. 機(jī)體細(xì)胞鎘攝入離子轉(zhuǎn)運(yùn)通道研究進(jìn)展[J]. 生態(tài)毒理學(xué)報,2016, 11(4): 10-17

        Yu Z, Zhu Y, Luo Y B, et al. Research progress in transport channels of cadmium entry into cells [J]. Asian Journal of Ecotoxicology, 2016, 11(4): 10-17 (in Chinese)

        猜你喜歡
        鈣通道離子通道小腸
        灌肉
        電壓門控離子通道參與紫杉醇所致周圍神經(jīng)病變的研究進(jìn)展
        用好小腸經(jīng),可整腸除濕熱
        蝎毒肽作為Kv1.3離子通道阻滯劑研究進(jìn)展
        一根小腸一頭豬
        故事會(2019年10期)2019-05-27 06:06:58
        抵抗素樣分子家族與鈣通道在低氧性肺動脈高壓中的研究進(jìn)展
        成人先天性小腸旋轉(zhuǎn)不良長期誤診1例
        T型鈣通道在心血管疾病領(lǐng)域的研究進(jìn)展
        疼痛和離子通道
        豚鼠心肌組織Cav1.2鈣通道蛋白的提取與純化
        女人被狂躁的高潮免费视频| 免费二级毛片在线播放| 无码高潮久久一级一级喷水| 白色橄榄树在线阅读免费| 国产交换精品一区二区三区| 久久99精品久久久久久清纯| 亚洲欧美综合区自拍另类| 精品国产a∨无码一区二区三区| 国产人禽杂交18禁网站| 国产一区二区三区在线影院| 亚洲精品成人无百码中文毛片| 久久只精品99品免费久23| 精品久久久久久中文字幕| 成人无码a级毛片免费| 亚洲香蕉久久一区二区| 国产av综合网站不卡| 日韩精品久久久久久免费| 精品成人乱色一区二区| 久久99精品波多结衣一区| 久久精品国产亚洲av夜夜| 久久精品一区午夜视频| 少妇被粗大的猛烈进出免费视频 | 青青草视频在线观看精品在线| 免费观看国产短视频的方法| 日本老熟妇乱| 亚洲制服无码一区二区三区| 亚洲第一女人天堂av| 中文字幕日韩有码在线| 天堂新版在线资源| 亚洲熟妇色xxxxx欧美老妇 | 久久精品国产91精品亚洲| 国产精品成人aaaaa网站| 精品推荐国产精品店| 亚洲愉拍自拍视频一区| 日本一级二级三级不卡| 高潮内射双龙视频| 国产成人综合久久精品免费| 人妻少妇精品一区二区三区| 午夜男女靠比视频免费| 国产欧美一区二区三区在线看| 亚洲综合一区无码精品|