彭 浩, 李 黔, 尹 虎, 唐志強
(西南石油大學石油與天然氣工程學院,四川成都 610500)
?
Lietard天然裂縫寬度預測模型求解新方法
彭 浩, 李 黔, 尹 虎, 唐志強
(西南石油大學石油與天然氣工程學院,四川成都 610500)
采用圖版法求解Lietard天然裂縫寬度預測模型時速度慢、易產(chǎn)生人為誤差,為迅速準確地預測井漏時的天然裂縫寬度,給堵漏作業(yè)和屏蔽暫堵作業(yè)提供決策依據(jù),開展了數(shù)值解法研究。研究Lietard模型發(fā)現(xiàn),用Lietard模型計算得到的理論漏失特征曲線存在近似直線段,可作線性化處理,因此,基于井漏時實測得到的漏失數(shù)據(jù),采用最小二乘法建立實鉆漏失特征曲線近似直線段線性參數(shù)的計算模型,并運用自適應搜索法找出與實鉆漏失特征曲線唯一對應的理論漏失特征曲線,根據(jù)該曲線的無因次有限侵入值反演出天然裂縫寬度。經(jīng)過試驗研究,建立了實鉆漏失特征曲線近似直線段線性參數(shù)的計算模型,實現(xiàn)了無盲區(qū)自動匹配,將匹配誤差控制在0.001%以內(nèi),克服了人為誤差,并能快速完成Lietard模型求解。研究結果表明,Lietard模型的求解精度與實鉆漏失特征曲線近似直線段的線性相關度呈正比關系,在同一相關度下,新方法比圖版法求解速度更快、精度更高。
裂縫性漏失;裂縫寬度;預測模型;誤差;自動匹配
堵漏材料與天然裂縫寬度的匹配對于裂縫性地層堵漏作業(yè)及裂縫性儲層屏蔽暫堵作業(yè)有著重要的作用[1-3],采用成像測井、聲波測井和核磁共振等方法雖然能識別井下天然裂縫寬度[4-5],但在井漏時進行測井作業(yè)存在風險。若能利用實鉆井漏錄井數(shù)據(jù)對天然裂縫寬度進行預測,不僅可以快速為裂縫性地層堵漏和裂縫性儲層屏蔽暫堵提供決策依據(jù),而且能避免因測井等附加作業(yè)帶來的風險。眾多學者對鉆井液漏失進行了理論計算和方法研究[6-13],然而國內(nèi)利用實鉆井漏數(shù)據(jù)預測天然裂縫寬度的研究開展得很少[14-16]。國外O.Lietard等人[17]利用實鉆井漏數(shù)據(jù)建立了預測天然裂縫寬度的模型(以下簡稱為Lietard模型),并在北海中部2口井中進行了應用,取得了較好的效果;F.Verga等人[18]運用Lietard模型預測了3口井的天然裂縫寬度,預測結果與成像測井解釋結果有較好的一致性。Lietard模型采用圖版法求解,需要進行漏失曲線圖版繪制、實鉆井漏數(shù)據(jù)描點、理論漏失特征曲線和實鉆漏失特征曲線人工匹配等一系列求解過程,存在求解過程繁瑣、使用不便和易產(chǎn)生人為誤差等問題。為此,筆者在Lietard模型的基礎上,運用數(shù)值解法,并結合自適應收索法提出一種新解法。該解法可以實現(xiàn)無盲區(qū)自動匹配,提高Lietard模型的求解速度與精度,便于現(xiàn)場應用。
O.Lietard等人[17]運用賓漢流體模型描述了發(fā)生井漏時鉆井液在天然裂縫中的流動,其流動壓力梯度為[19]:
(1)
式中:p為壓力,Pa;r為鉆井液侵入半徑,m;μp為鉆井液塑性黏度,Pa·s;τy為動切力,Pa;v為鉆井液漏失速度,m3/s;w為裂縫寬度,m。
漏失速度的表達式為:
(2)
式中:Q(t)為鉆井液漏失速率,m3/s;V為鉆井液漏失量,m3。
將式(2)代入式(1),結合幾何關系對式(1)積分,可得:
(3)
式中:Δp為井底壓差,Pa;rw為井眼半徑,m。
為使式(3)便于求解,引入無因次時間及無因次半徑:
(4)
(5)
(6)
式中:tD為無因次時間;rD為無因次半徑;t為時間,s;β為時間利用系數(shù),s-1。
將式(4)、式(5)代入式(3),可得:
(7)
(8)
式中:α為無因次有限侵入值。
式(7)的數(shù)值解為:
(9)
式(7)的初始條件為:rD=1,tD=0。
圖1 理論漏失特征曲線及實鉆漏失特征曲線平移示意Fig.1 Shift sketch of theoretical and actual leakage characteristics curves
在鉆井過程中,鉆井液漏失體積計算公式為:
(10)
令縱、橫坐標lgy,lgx分別為:
(11)
(12)
圖版法求解Lietard模型的步驟為:
2) 采用垂直、水平平移方法尋找與實鉆漏失特征曲線匹配的理論漏失特征曲線,得到與之對應的理論漏失特征曲線的無因次有限侵入值α,并反演出天然裂縫寬度。
在漏失曲線圖版的繪制過程中,只能按照一定的步長進行,使2條相鄰的理論漏失特征曲線間產(chǎn)生曲線盲區(qū),在實鉆漏失特征曲線匹配理論漏失特征曲線過程中,可能使找到的理論漏失特征曲線位于曲線盲區(qū)。從圖1可以看出,若實鉆漏失特征曲線與α為0.06理論漏失特征曲線匹配,但該圖版未能繪制α為0.06理論漏失特征曲線,則平移后實鉆漏失特征曲線將位于α為0.1和0.01的2條理論漏失特征曲線之間,需人工估計相應的理論漏失特征曲線,這可能會產(chǎn)生人為誤差。為避免或減小人為誤差,可縮小α步長,加密漏失曲線圖版的理論漏失特征曲線。但這不能從根本上消除人為誤差,因為漏失曲線圖版不能無限加密,總會存在實鉆漏失特征曲線不能找到與之對應的理論漏失特征曲線而產(chǎn)生人為誤差的可能性。
為解決Lietard模型求解速度慢且易產(chǎn)生人為誤差的問題,分析可知,不同α值對應的理論漏失特征曲線均有一段近似直線段,為分析近似直線段的線性相關度[20-21],分別計算了1,0.1,0.001和0.000 1等代表不同數(shù)量級α值的線性相關系數(shù),均達到0.999,可對近似直線段進行線性處理,近似直線段斜率分別為2.165 26,1.633 76,1.382 06,1.168 45和1.116 96(見圖1)。通過自適應搜索法自動設置α步長,求取不同α值所對應的理論漏失特征曲線直線段斜率。然后,取得實鉆漏失特征曲線直線段數(shù)據(jù),運用最小二乘法計算其斜率,比對二者斜率,直至其相對誤差在合理范圍內(nèi),確定對應斜率的理論漏失特征曲線,取其α值,反演出天然裂縫寬度。具體計算步驟為:
1) 輸入基本參數(shù)Δp,rw,μp,τy和允許匹配相對誤差δ;
3) 建立方程組
6) 計算相關系數(shù)
7) 設定步長α,αmax及αmin;
8) 計算不同α值對應理論漏失特征曲線近似直線段斜率k1;
10) 若δr≤δ,記錄α值,反演出裂縫寬度;否則,重復步驟(7)—(9),直至δr≤δ。
圖2 A井井漏數(shù)據(jù)Fig.2 The leakage data of Well A
圖3 A井實鉆漏失特征曲線匹配結果Fig.3 The matching results of actual leakage characteristics curve of Well A
B井在鉆至垂深4 302.00 m時發(fā)生井漏,漏失速度為10.8 m3/h。井眼直徑為311.1 mm,井底壓差Δp為7.32 MPa,鉆井液動切力τy為15 Pa,塑性黏度μp為38 mPa·s。在相對誤差δ=0.001%情況下,用新求解方法計算得α=0.004 9,反演出裂縫寬度為195 μm。將實鉆漏失特征曲線平移至α=0.1和α=0.004 9理論漏失特征曲線處進行匹配(見圖4),實鉆漏失特征曲線與α=0.004 9的理論漏失特征曲線匹配度高。
從圖3、圖4可以看出,針對大、小不同級別井漏,Lietard模型的求解精度與實鉆漏失特征曲線近似直線段的線性相關度呈正比關系;在同一相關度下,新方法因?qū)崿F(xiàn)了無盲區(qū)自動匹配,匹配誤差控制在0.001%,比圖版求解法更準確地求得實鉆漏失特征曲線所對應理論漏失特征曲線的無因次有限侵入值,從而提高了天然裂縫寬度的預測精度。
圖4 B井實鉆漏失特征曲線匹配結果Fig.4 The matching results of actual leakage characteristics curve of Well B
1) 分析Lietard模型漏失特征曲線可知,實鉆漏失特征曲線及理論漏失特征曲線均有一段線性相關度為0.999的近似直線段,可作線性化處理,便于模型求解。
2) Lietard模型裂縫寬度求解新方法實現(xiàn)了計算機無盲區(qū)自動匹配理論漏失特征曲線,消除了圖版法可能產(chǎn)生的人為誤差,將匹配誤差控制在0.001%內(nèi),提高了求解精度。
3) Lietard模型裂縫寬度求解新方法簡化了求解過程,可以在數(shù)秒內(nèi)完成模型求解,提高了求解速度。
[1] 李大奇,康毅力,曾義金,等.縫洞型儲層縫寬動態(tài)變化及其對鉆井液漏失的影響[J].中國石油大學學報(自然科學版),2011,35(5):76-81.
LI Daqi,KANG Yili,ZENG Yijin,et al.Dynamic variation of fracture width and its effects on drilling fluid lost circulation in fractured vuggy reservoirs[J].Journal of China University of Petroleum(Edition of Natural Science),2011,35(5):76-81.
[2] 王業(yè)眾,康毅力,游利軍,等.裂縫性儲層漏失機理及控制技術進展[J].鉆井液與完井液,2007,24(4):74-77.
WANG Yezhong,KANG Yili,YOU Lijun,et al.Progresses in mechanism study and control:mud losses to fractured reservoirs[J].Drilling Fluid & Completion Fluid,2007,24(4):74-77.
[3] 蔣海軍,鄢捷年.架橋粒子粒徑與裂縫有效流動寬度匹配關系的試驗研究[J].鉆井液與完井液,2000,17(4):1-3,7.
JIANG Haijun,YAN Jienian.Laboratory study on the compatibility between the diameter of bridging particles and the effective fracture width[J].Drilling Fluid & Completion Fluid,2000,17(4):1-3,7.
[4] LUTHI S M,SOUHAITE P.Fracture apertures from electrical borehole scans[J].Geophysics,1990,55(7):821-833.
[5] HORNBY B E,JOHNSON D L,WINKLER K W,et al.Fracture evaluation using reflected Stoneley-wave arrivals[J].Geophysics,1989,54(10):1274-1288.
[6] LAVROV A.Flow of truncated power-law fluid between parallel walls for hydraulic fracturing applications[J].Journal of Non-Newtonian Fluid Mechanics,2015,223:141-146.
[7] OMOSEBI A O,ADENUGA K A.Pressure drop versus flow rate profiles for power-law and Herschel-Bulkley fluids[R].SPE 162999,2012.
[8] MAJIDI R,MISKA S,ZHANG Jianguo.Fingerprint of mud losses into natural and induced fractures[R].SPE 143854,2011.
[9] LAVROV A,TRONVOLL J.Numerical analysis of radial flow in a natural fracture:applications in drilling performance and reservoir characterization[R].SPE 103564,2006.
[10] LIETARD O,SPIVEY J.Revisiting pressure transient testing of hydraulically fractured wells: a single,simple and exact analytical solution covering bilinear,linear,and transition in between flow regimes[R].SPE 139508,2011.
[11] 金業(yè)權,胡滿,吳謙,等.Macondo深水井漏油事故防噴器系統(tǒng)失效原因分析[J].石油鉆探技術,2014,42(4):53-58.JIN Yequan,HU Man,WU Qian,et al.Analysis of deepwater BOP failure in the Macondo Well accident[J].Petroleum Drilling Techniques,2014,42(4):53-58.
[12] 臧艷彬,王瑞和,張銳.川東北地區(qū)鉆井漏失及堵漏措施現(xiàn)狀分析[J].石油鉆探技術,2011,39(2):60-64.
ZANG Yanbin,WANG Ruihe,ZHANG Rui.Current situation analysis of circulation lost and measures in Northeast Sichuan Basin[J].Petroleum Drilling Techniques,2011,39(2):60-64.
[13] 林英松,蔣金寶,秦濤.井漏處理技術的研究及發(fā)展[J].斷塊油氣田,2005,12(2):4-7.
LIN Yingsong,JIANG Jinbao,QIN Tao.The development of well loss processing technology[J].Fault-Block Oil & Gas Field,2005,12(2):4-7.
[14] 鄒德永,趙建,郭玉龍,等.滲透性砂巖地層漏失壓力預測模型[J].石油鉆探技術,2014,42(1):33-36.
ZOU Deyong,ZHAO Jian,GUO Yulong,et al.A model for predicting leak-off pressure in permeable-sandstone formations[J].Petroleum Drilling Techniques,2014,42(1):33-36.
[15] 劉加杰,鐘穎,張浩.利用鉆井液漏失資料預測裂縫寬度[J].中國井礦鹽,2014,45(3):20-22.
LIU Jiajie,ZHONG Ying,ZHANG Hao.Forecast crack width with drilling fluid leakage data[J].China Well and Rock Salt,2014,45(3):20-22.
[16] 李大奇,康毅力,劉修善,等.裂縫性地層鉆井液漏失動力學模型研究進展[J].石油鉆探技術,2013,41(4):42-47.
LI Daqi,KANG Yili,LIU Xiushan,et al.Progress in drilling fluid loss dynamics model for fractured formations[J].Petroleum Drilling Techniques,2013,41(4):42-47.
[17] LIETARD O,UNWIN T,GUILLOT D,et al.Fracture width LWD and drilling mud/LCM selection guidelines[R].SPE 36832,1996.
[18] VERGA F,CARUGO C,CHELINI V,et al.Detection and characterization of fractures in naturally fractured reservoirs[R].SPE 63266,2000.
[19] GUILLOT D.A digest of rheological equations[J].Developments in Petroleum Science,1990,28:A1-A8.
[20] 李秀敏,江衛(wèi)華.相關系數(shù)與相關性度量[J].數(shù)學的實踐與認識,2006,36(12):188-192.LI Xiuming,JIANG Weihua.Research on linear correlation and dependence measure[J].Mathematics in Practice and Theory,2006,36(12):188-192.[21] 嚴麗坤.相關系數(shù)與偏相關系數(shù)在相關分析中的應用[J].云南財貿(mào)學院學報,2003,19(3):78-80.
YAN Likun.Application of correlation coefficient and based correlation coefficient in related analysis[J].Journal of Yunnan University of Finance and Economics,2003,19(3):78-80.
[編輯 滕春鳴]
A New Solution Method for the Lietard Natural Fracture Width Prediction Model
PENG Hao, LI Qian, YIN Hu, TANG Zhiqiang
(Petroleum and Natural Gas Engineering Institute of Southwest Petroleum University, Chengdu, Sichuan, 610500, China)
When the Lietard natural fracture width prediction model is solved by means of the chart method, the solving velocity is low and human errors tend to occur. In order to quickly and accurately predict the natural width with lost circulation and provide a decision-making basis for plugging operations and shield temporary plugging operations, the numerical solution method for Lietard model was studied in this paper. It was shown from the analysis on Lietard model that there was an approximate straight line section in the theoretical leakage characteristics curve obtained from Lietard model and it could be linearized. Based on the measured leakage data during the lost circulation, the calculation model for the linear parameters of approximate straight line section in the actual drilling leakage characteristics curve was established by means of the least square method. After the theoretical leakage characteristics curve which was the only one corresponding to the actual drilling leakage characteristics curve was identified by using the adaptive search method, natural fracture width could be inversed on the basis of the dimensionless finite invasion factor. Based on experimental studies, the calculation model for the linear parameters of approximate straight line section in the actual drilling leakage characteristics curve was built up and automatic matching without blind area was realized with matching error less than 0.001%. And furthermore, human errors were avoided and the Lietard mode could be solved quickly. It was shown that the solution accuracy of Lietard model was proportional to the linear correlation of approximate straight line section in the actual drilling leakage characteristics curve. And for the same correlation, new method was faster and more accurate than the chart method.
fractured leakage; fracture width; prediction model; errors; automatic matching
2015-07-29;改回日期:2016-03-04。
彭浩(1988—),男,四川達州人,2011年畢業(yè)于西南石油大學石油工程專業(yè),在讀碩士研究生,主要從事井漏分析及鉆井工程設計研究工作。E-mail:penghao323@qq.com。
國家科技重大專項課題“鉆井工程設計和工藝軟件”(編號:2011ZX05021-006)資助。
?鉆井完井?
10.11911/syztjs.201603013
TE258
A
1001-0890(2016)03-0072-05