卓 茹,胡勁松
(西華大學(xué)理學(xué)院,四川 成都 610039)
?
·基礎(chǔ)學(xué)科·
Rosenau-Kawahara方程的一種空間加權(quán)線性守恒差分算法
卓 茹,胡勁松*
(西華大學(xué)理學(xué)院,四川 成都 610039)
對(duì)Rosenau-Kawahara方程的初邊值問(wèn)題進(jìn)行數(shù)值研究,利用LAX加權(quán)差分格式的構(gòu)造思想,在保持二階理論精度的前提下,對(duì)空間層引入加權(quán)系數(shù)θ,提出了一個(gè)空間加權(quán)線性差分格式。格式合理地模擬了問(wèn)題的2個(gè)守恒性質(zhì),證明了差分解的存在唯一性,并利用能量方法分析了格式的二階收斂性與無(wú)條件穩(wěn)定性。數(shù)值實(shí)驗(yàn)表明,通過(guò)適當(dāng)?shù)卣{(diào)整選擇加權(quán)系數(shù)θ,可將計(jì)算精度顯著提高。
Rosenau-Kawahara方程;LAX加權(quán);守恒;收斂性;穩(wěn)定性
本文考慮如下一類Rosenau-Kawahara方程的初邊值問(wèn)題:
ut+uxxxxt+ux+uxxx-uxxxxx+uux=0,x∈(xL,xR),t∈(0,T]
(1)
u(x,0)=u0(x),x∈[xL,xR],
(2)
u(xL,t)=u(xR,t)=0,ux(xL,t)=ux(xR,t)=0,uxx(xL,t)=uxx(xR,t)=0,t∈[0,T]。
(3)
其中,u0(x)是已知光滑函數(shù)。在描述緊離散系統(tǒng)的動(dòng)力學(xué)行為時(shí),Rosenau-Kawahara方程(1)可以看作是Rosenau方程[1-3]、KdV方程[4-6]和Kawahara方程[7-8]的推廣形式。在對(duì)非線性波的研究中,文獻(xiàn)[9]首先討論了其孤波解和周期解,文獻(xiàn)[10-12]又進(jìn)一步給出了帶通常的冪指數(shù)非線性項(xiàng)的廣義Rosenau-Kawahara方程的孤波解以及2個(gè)守恒量:
(4)
(5)
(6)
(7)
(8)
Qn-1=…=Q0,
(9)
En-1=…=E0。
(10)
證明 將式(6)兩端乘以h然后對(duì)j從1到J-1求和,根據(jù)邊界條件(8)和分部求和公式[15],經(jīng)計(jì)算得
(11)
根據(jù)Qn的定義,由式(11)遞推可得式(9)。
(12)
其中,
由邊界條件(8)和分部求和公式[15]得:
(13)
(14)
(15)
將式(13)—(15)代入式(12)有
(16)
由En的定義,對(duì)式(16)遞推可得式(10)。
證明 應(yīng)用數(shù)學(xué)歸納法。顯然U0由初值條件(7)確定,先用具有二階精度的C-N格式[13]計(jì)算出U1,即U0和U1是唯一確定的。假設(shè)U0,U1,…,Un(n≤N-1)是唯一可解的,現(xiàn)考慮方程(6)中的Un+1:
(17)
將式(17)與Un+1做內(nèi)積,得到
(18)
類似式(13)有
(19)
又
(20)
(21)
將式(19)—(21)代入(18)得到
(22)
又直接利用Cauchy-Schwarz不等式得到
(23)
將式(23)代入式(22)得
令差分格式(6)—(8)的截?cái)嗾`差為
(24)
‖u‖L2≤C, ‖ux‖L2≤C, ‖uxx‖L2≤C, ‖u‖≤C, ‖ux‖≤C。
證明 由離散守恒律式(10)可知,En=E0≤C,再利用Cauchy-Schwarz不等式,有
整理得
由Cauchy-Schwarz不等式
(25)
注:定理3表明,差分格式(6)—(8)的解Un以‖·‖無(wú)條件穩(wěn)定。
(26)
(27)
類似于式(13)、(14),有:
(28)
(29)
再由引理1和定理3,以及Cauchy-Schwarz不等式,有
(30)
又
(31)
將式(28)—(31)代入式(27),并注意到式(25),整理得
(32)
(33)
其中
(34)
由B0≤Ο(h2+τ2)2,再將式(33)和式(34)整理得
類似式(25),得
最后根據(jù)離散的Sobolve不等式[15],得到
‖eN‖≤O(τ2+h2)。
在數(shù)值實(shí)驗(yàn)中,為了便于和文獻(xiàn)[13]中的線性格式做比較,故選取文獻(xiàn)[13]中的數(shù)值算例進(jìn)行數(shù)值模擬實(shí)驗(yàn),即
圖1 τ=h=0.1,參數(shù)θ變化時(shí),最大模誤差變化曲線
圖2 τ=h=0.05,參數(shù)θ變化時(shí),最大模誤差變化曲線
圖3 τ=h=0.025,參數(shù)θ變化時(shí),最大模誤差變化曲線
tQnEnθ=0.5θ=0.75θ=1θ=1.25θ=0.5θ=0.75θ=1θ=1.2504.120893184.120893214.120893244.120899500.836167110.836184100.836201090.83620118204.120893094.120893064.120893034.120899170.836167110.836184100.836201090.83620120404.120895614.120894314.120892994.120898980.836167110.836184100.836201090.83620121
表2 對(duì)不同θ,在幾個(gè)不同時(shí)刻的En和Qn(τ=h=0.05)
表3 對(duì)不同θ,在幾個(gè)不同時(shí)刻的En和Qn(τ=h=0.025)
[1]Rosenau P . A Quasi-continuous Description of a Nonlinear Transmission Line[J]. Physical Scripta, 1986,34:827.
[2]Rosenau P. Dynamics of Dense Discrete Systems[J].Progress of Theoretical Physics, 1988,79: 1028.
[3]Park M A . On the Rosenau Equation[J]. Applied Mathematics and Computation,1990,9(2):145.
[4]Cui yanfen, Mao De-kang. Numerical Method Satisfying the First Two Conservation Laws for the Korteweg-de Vries Equation [J].Journal of Computational Physics,2007,227(1): 376.
[5]Zhu Shaohong, Zhao Jennifer. The Alternating Segment Explicit-Implicit Scheme for the Dispersive Equation[J]. Applied Mathematics Letters, 2001,14(6):657.
[6]?zer S, Kutluay S. An Analytical-numerical Method for Solving the Korteweg-de Vries Equation [J]. Applied Mathematics and Computation,2005, 164 (3): 789.
[7]陶雙平,崔尚斌. 非線性Kawahara方程解的存在唯一性[J]. 數(shù)學(xué)年刊A輯,2002,23(2):221.
[8]孫小春. Kawahara方程初值問(wèn)題解的整體存在性[D]. 蘭州:西北師范大學(xué),2007.
[9]Zuo Jinming. Solitons and Periodic Solutions for the Rosenau-KdV and Rosenau-Kawahara Equations[J]. Applied Mathematics and Computation,2009,215(2):835.
[10]Biswas L M. Application of He’s Principles to Rosenau-Kawahara Equation[J]. Mathematics in Engineering,Science and Aerospace MESA,2009,2(2):183.
[11]Biswas A, Triki H, Labidi M. Bright and Dark Solitons of the Rosenau-Kawahara Equation with Power Law Nonlinearity[J].Physics of Wave Phenomena,2011,19(1):24.
[12]胡勁松,王玉蘭,王正華.廣義Rosenau-Kawahar方程的孤波解及其守恒律[J].西華大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,32(3):26.
[13]Hu J, Xu Y,Hu B,et al. Two Conservative Difference Schemes for Rosenau-Kawahara Equation[J]. Advances in Mathematical Physics,2014(2014),Article ID 217393,11 pages.
[14]陳濤,胡勁松.求解廣義 Rosenau‐Kawahara 方程的一個(gè)守恒差分格式[J]. 西北師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,51(5):18.
[15]Zhou Yulin. Application of Discrete Functional Analysis to the Finite Difference Methods[M]. Beijing :International Academic Publishers, 1991.
(編校:葉超)
A Weighted Linear Conservative Finite Difference Scheme forRosenau-Kawahara Equation
ZHUO Ru, HU Jinsong*
(School of Science, Xihua University, Chengdu 610039 China)
In this paper, a linear conservation finite difference scheme with one weighted coefficient is designed by LAX scheme. The scheme has the advantages that it preserves some invariant properties of the original differential equation. It simulated the conservation properties of the problem well. The prior estimate, existence and uniqueness of the finite difference solution were also obtained. It was proved that the finite difference scheme is convergent with second-order and unconditionally stable by energy method. Numerical experiment result shows that appropriate adjustments to the weighted parameters would significantly improve the computational accuracy.
Rosenau-Kawahara equation; LAX weighted; conservation; convergence;stability
2015-11-28
四川省基礎(chǔ)應(yīng)用研究項(xiàng)目(2013JY0096);西華大學(xué)重點(diǎn)基金項(xiàng)目(Z1513324)。
O241.82
A
1673-159X(2016)05-0084-8
10.3969/j.issn.1673-159X.2016.05.016
*通信作者:胡勁松(1973—),男,教授,博士,主要研究方向?yàn)槲⒎址匠虜?shù)值解。E-mail:hjs888hjs@163.com.