陳小梅,李富強(qiáng),嚴(yán) 速,吳小翠,唐翠蘭△
(1. 浙江中醫(yī)藥大學(xué)附屬第二醫(yī)院肝病科, 杭州 310005; 2. 溫州醫(yī)科大學(xué)附屬第一醫(yī)院腔鏡外科, 浙江溫州 325000)
?
·論著·
尼古丁減輕高脂高果糖誘導(dǎo)的非酒精性脂肪性肝炎小鼠的肝臟炎癥
陳小梅1,李富強(qiáng)1,嚴(yán) 速2,吳小翠1,唐翠蘭1△
(1. 浙江中醫(yī)藥大學(xué)附屬第二醫(yī)院肝病科, 杭州 310005; 2. 溫州醫(yī)科大學(xué)附屬第一醫(yī)院腔鏡外科, 浙江溫州 325000)
目的:探討活化膽堿能抗炎通路對(duì)非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)模型小鼠肝臟炎癥的抑制作用及其分子機(jī)制。方法:60只雄性6周齡的無(wú)特定病原體(specific pathogen free,SPF)級(jí)C57BL/6J小鼠被隨機(jī)分為4組:正常飲食小鼠生理鹽水注射組、正常飲食小鼠尼古丁注射組、NASH模型小鼠生理鹽水注射組和NASH模型小鼠尼古丁注射組,分別給予普通飲食及高脂飲食加高果糖飲水,喂養(yǎng)17周后建立NASH小鼠模型,然后予各組小鼠生理鹽水或尼古丁腹腔注射,每天1次,注射量為400 μg/kg,注射3周。3周后處死動(dòng)物進(jìn)行肝組織病理檢查,取小鼠血清行酶聯(lián)免疫吸附測(cè)定(enzyme linked immunosorbent assay,ELISA)檢測(cè)炎癥因子白細(xì)胞介素-6(interleukin-6,IL-6)和腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α),同時(shí)原代分離培養(yǎng)肝巨噬細(xì)胞,使用Western blot和熒光共聚焦顯微鏡檢測(cè)α7尼古丁型乙酰膽堿能受體(alpha 7 nicotinic acetylcholine receptors,α7nAChR)、Toll樣受體-4(Toll-like receptors-4,TLR-4)和磷酸化核轉(zhuǎn)錄因子-κB(nuclear factor κB of phosphorylation,p-NF-κB)的蛋白水平。結(jié)果:成功建立了NASH小鼠模型。給予小鼠尼古丁治療后,小鼠肝組織病理結(jié)果顯示,小鼠肝臟炎癥和脂肪變性明顯減輕;ELISA結(jié)果顯示,小鼠血清中炎癥因子IL-6、TNF-α水平下降;Western blot和熒光共聚焦顯微鏡結(jié)果顯示,尼古丁治療組小鼠α7nAChR蛋白水平上調(diào),p-NF-κB水平下調(diào)。結(jié)論:活化膽堿能抗炎通路可以通過(guò)抑制NF-κB通路減輕NASH小鼠的肝臟炎癥。
尼古??;非酒精性脂肪性肝病;受體,膽堿能;炎癥介導(dǎo)素類;小鼠
慢性炎癥反應(yīng)在非酒精性脂肪性肝炎(non-alcoholic steatohepatitis,NASH)的發(fā)生、發(fā)展中起重要作用。NASH的炎癥反應(yīng)由多種細(xì)胞因子參與,如果能找到一種同時(shí)抑制多種炎癥介質(zhì)的治療靶位,有效抑制炎癥反應(yīng)的發(fā)生、發(fā)展,將會(huì)在治療NASH中發(fā)揮重要作用,有著巨大的潛在臨床應(yīng)用價(jià)值。膽堿能抗炎通路可以同時(shí)抑制多種炎癥介質(zhì)的產(chǎn)生,前期研究已經(jīng)發(fā)現(xiàn),體內(nèi)外活化膽堿能抗炎通路可以減輕肥胖誘導(dǎo)的炎癥和胰島素抵抗[1],如果能證實(shí)活化膽堿能抗炎通路能抑制NASH的肝臟炎癥,將有重要的臨床意義。因此,本研究通過(guò)模擬NASH患者高脂肪、高果糖的飲食習(xí)慣建立小鼠NASH模型[2],進(jìn)一步行尼古丁腹腔注射,系統(tǒng)地研究活化膽堿能抗炎通路對(duì)NASH小鼠肝臟炎癥的抑制作用及其分子機(jī)制。
1.1 材料與試劑
果糖購(gòu)于美國(guó)Amerisco公司,尼古丁和Ⅳ型膠原酶購(gòu)于美國(guó)Sigma公司,Percoll液購(gòu)于上海季美生物公司,異硫氰酸熒光素標(biāo)記的α-銀環(huán)蛇毒(fluorescein isothiocyanate α-bungarotoxin,F(xiàn)ITC-αBGT)購(gòu)于美國(guó)Sigma公司,小鼠腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、白細(xì)胞介素-6(interleukin-6,IL-6)酶聯(lián)免疫吸附測(cè)定(enzyme linked immunosorbent assay,ELISA)試劑盒購(gòu)于深圳達(dá)科為公司。Toll樣受體-4(Toll-like receptors-4,TLR-4)抗體購(gòu)于美國(guó)Bioworld公司,α7尼古丁型乙酰膽堿能受體(alpha 7 nicotinic acetylcholine receptors,α7n-AChR)抗體購(gòu)于美國(guó)Proentech公司,甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)抗體和磷酸化核轉(zhuǎn)錄因子-κB(nuclear factor κB of phosphorylation,p-NF-κB)抗體購(gòu)自美國(guó)Cell Signal公司。
1.2 動(dòng)物模型制備
無(wú)特定病原體(specific pathogen free,SPF)級(jí)雄性4周齡C57BL/6J小鼠共60只(購(gòu)于上海西普爾-必凱實(shí)驗(yàn)動(dòng)物有限公司),SPF級(jí)空調(diào)室內(nèi)飼養(yǎng),室溫22~25 ℃,自由攝水和食物,適應(yīng)飼養(yǎng)2周后,隨機(jī)分為4組(隨機(jī)數(shù)字表法):正常飲食小鼠生理鹽水注射組(n=15)、正常飲食小鼠尼古丁注射組(n=15)、NASH模型小鼠生理鹽水注射組(n=15)和NASH模型小鼠尼古丁注射組(n=15),分別予以普通飼料飲食加普通純凈水飲水和高脂飲食(高脂飼料:膽固醇1.5%、膽酸鈉0.5%、奶粉5%、豬油10%、蛋黃粉5%、普通飼料78%)加高果糖飲水(30%果糖)。造模開(kāi)始后每周測(cè)體重,觀察動(dòng)物的食欲、行為習(xí)慣、毛色等的改變,于7、11、17周分別在正常組和高脂組中取9只小鼠,剪尾采血檢測(cè)谷草轉(zhuǎn)氨酶(aspertate aminotransferase,AST)、谷丙轉(zhuǎn)氨酶(alanine aminotranferease,ALT), 同時(shí)于7和11周每組取2只小鼠、17周每組取6只小鼠處死,取肝組織做病理染色,評(píng)價(jià)造模情況。第17周小鼠造模成功后,分別予各組小鼠行生理鹽水或尼古丁腹腔注射,尼古丁注射量為400 μg/kg,生理鹽水注射量為對(duì)應(yīng)尼古丁注射量的體積,每天1次,注射3周后,每組小鼠眼睛取血檢測(cè)IL-6、TNF-α水平,然后全部處死(正常小鼠生理鹽水注射組9只、正常小鼠尼古丁注射組8只、NASH小鼠生理鹽水注射組9只和NASH小鼠尼古丁注射組10只),稱取肝臟濕重,統(tǒng)一取肝左葉做肝組織病理檢測(cè)和免疫熒光,余肝組織裂解后提取蛋白做Western blot檢測(cè)α7nAChR、TLR-4和p-NF-κB的蛋白水平。
1.3 組織學(xué)和血清學(xué)檢測(cè)
分別于第7、11、17、20周予禁食16 h后處死小鼠,統(tǒng)一取肝左葉,采用冰凍切片進(jìn)行油紅O染色,觀察肝細(xì)胞脂肪變性采用石蠟切片進(jìn)行HE染色,觀察肝組織炎癥活動(dòng)度。請(qǐng)兩位以上不了解本研究的病理學(xué)專家參照NASH臨床研究網(wǎng)絡(luò)(NASH clinical research network,NASH-CRN)病理委員會(huì)提供的NASH活性評(píng)分系統(tǒng)(NAS)進(jìn)行評(píng)分,包括脂肪變性(0~3)、小葉炎癥(0~2)、肝細(xì)胞氣球樣變(0~2),NAS評(píng)分總和(0~8)。同時(shí)于第7、11、17周每組取9只小鼠,剪尾采血于離心管中,室溫靜置30 min后離心取上清,使用日立7180生化分析儀檢測(cè)小鼠血清AST、ALT。第20周所有小鼠完成腹腔注射后眼球取血,室溫靜置30 min后離心取上清,使用ELISA試劑盒檢測(cè)各組小鼠血清中IL-6、TNF-α水平。
1.4 Western blot
將小鼠肝組織用磷酸鹽緩沖液(phosphate buf-fer saline,PBS)洗凈,置于離心管中,用干凈的剪刀將組織塊盡量剪碎,每100 mg肝組織加入500 μL含苯甲基磺酰氟化物(phenylmethyl sulfonylfluoride,PMSF)的放射免疫沉淀測(cè)定(radio immunoprecipitation assay,RIPA)蛋白裂解液,于手動(dòng)勻漿器上進(jìn)行勻漿,1 min后置于冰上,3 min后再次勻漿并置于冰上,如此重復(fù),裂解30 min后,在4 ℃下12 000×g離心15 min,取得的上清即為蛋白,將組織中提取的蛋白用二喹啉甲酸(bicinchoninic acid,BCA)法測(cè)定細(xì)胞蛋白濃度后,加上樣緩沖液后沸水煮8 min,迅速水浴冷卻,取等量蛋白樣品以10%(質(zhì)量分?jǐn)?shù))SDS聚丙烯胺凝膠電泳分離,余下蛋白分裝保存于-80 ℃冰箱待用。分離后的蛋白用電轉(zhuǎn)移法轉(zhuǎn)移到聚偏氟乙稀(polyvinylidene fluoride,PVDF)膜上,轉(zhuǎn)膜完成后用5%(質(zhì)量分?jǐn)?shù))脫脂牛奶室溫孵育封閉1 h,加入一抗于4 ℃孵育過(guò)夜,TBST緩沖液清洗3遍后加入二抗,室溫孵育1 h,TBST清洗3遍,將PVDF膜平鋪于暗盒中,取適量化學(xué)發(fā)光試劑(electrochemiluminescence,ECL)均勻滴于PVDF膜上,迅速蓋上暗盒,在暗室內(nèi)壓片曝光顯影,壓片結(jié)果拍照分析保存。每份蛋白樣品單獨(dú)分析,每份蛋白樣品重復(fù)3次試驗(yàn)。
1.5 熒光共聚焦顯微鏡檢測(cè)小鼠肝組織中α7nAChR和p-NF-κB的表達(dá)
統(tǒng)一取小鼠肝右葉組織固定在甲醛溶液中24 h,脫水、透明、包埋、切片、貼片,制作石蠟切片,然后恒溫箱中60 ℃烤片2 h,二甲苯、酒精脫蠟、水化,0.3%(體積分?jǐn)?shù))過(guò)氧化氫封閉內(nèi)源性過(guò)氧化物酶,檸檬酸鈉(0.01 mol/L,pH 6.0)隔水煮沸10 min修復(fù)抗原,3%(體積分?jǐn)?shù))牛血清白蛋白(bovine serum albumin,BSA)室溫孵育封閉15 min,然后加入不帶熒光的p-NF-κB抗體(1 ∶100)和帶熒光的FITC-αBGT抗體(1 ∶100)4 ℃孵育過(guò)夜(α-BGT對(duì)α7nAChR具有高親和力,能與α7nAChR形成專一性的、飽和的和不可逆性的結(jié)合,因此本實(shí)驗(yàn)通過(guò)FITC-αBGT檢測(cè)α7nAChR,F(xiàn)ITC-αBGT需避光孵育)。PBS緩沖液洗3次,孵育p-NF-κB抗體的切片需再加帶熒光的二抗(1 ∶100)室溫孵育1 h,PBS緩沖液洗3次,然后將所有切片加7-氨基放線菌素D(7-amino-actinomycin D,7-AAD,1 ∶100)染核45 min,PBS緩沖液洗3次,抗熒光猝滅劑封片,盡快在熒光共聚焦顯微鏡下觀察。
1.6 統(tǒng)計(jì)學(xué)分析
2.1 高脂高果糖飲食成功制備NASH小鼠模型
隨著喂養(yǎng)時(shí)間的增加,普通飲食小鼠和高脂高果糖飲食小鼠體重均有增加,但高脂高果糖組小鼠體重增加趨勢(shì)較普通飲食組小鼠明顯(圖1A),于造模第17周,高脂高果糖組小鼠與正常組小鼠體重差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。臨床生物化學(xué)分析顯示,高脂高果糖飲食的小鼠血清ALT水平在第7、11周時(shí)升高不明顯,但在第17周時(shí)明顯升高且與普通飲食小鼠差異有統(tǒng)計(jì)學(xué)意義(P<0.01,圖1B);高脂高果糖飲食小鼠血清AST水平與普通飲食小鼠在第7、11、17周時(shí)差異均有統(tǒng)計(jì)學(xué)意義(P<0.01,圖1C)。肉眼觀察小鼠肝組織發(fā)現(xiàn),高脂高果糖飲食小鼠肝臟膨脹,肝臟濕重明顯高于普通飲食小鼠;HE染色和油紅O染色顯示,高脂高果糖飲食小鼠在第7周開(kāi)始出現(xiàn)輕微炎癥和脂肪變性,脂肪變性以小泡脂滴為主,到11、17周,炎癥和脂肪變性逐漸加重,脂肪變性以中、大脂滴為主(圖2)。NASH-CRN顯示,高脂高果糖飲食小鼠得分隨著喂養(yǎng)時(shí)間逐漸增高。
2.2 尼古丁治療減輕NASH小鼠肝臟炎癥
正常小鼠和NASH小鼠行3周腹腔注射后發(fā)現(xiàn),生理鹽水注射后的小鼠肝臟濕重沒(méi)有明顯變化,而尼古丁注射后的小鼠肝臟濕重與注射前相比明顯減輕(圖3A)。ELISA結(jié)果顯示,與生理鹽水注射相比,尼古丁注射能明顯降低小鼠血清中IL-6和TNF-α水平(圖3B、3C)。肝組織病理染色顯示,尼古丁注射組肝臟炎癥和脂肪變性與生理鹽水注射組相比明顯減輕(圖4)。
2.3 尼古丁治療減輕NASH小鼠肝臟炎癥的分子機(jī)制
Western blot結(jié)果顯示,尼古丁注射組較生理鹽水注射組肝組織中α7nAChR蛋白表達(dá)水平上調(diào),p-NF-κB蛋白表達(dá)水平下調(diào),TLR-4表達(dá)水平無(wú)明顯變化(圖5)。另外,免疫熒光結(jié)果顯示,加入FITC-αBGT抗體后,尼古丁注射組的熒光強(qiáng)度和密度高于生理鹽水注射組,加入p-NF-κB抗體后,尼古丁注射組的熒光強(qiáng)度和密度低于生理鹽水注射組(圖6)。
ALT, amino transferase; AST, aspartic amino transferase; SC, standard chow; HFHF, high-fat and high-fructose. Data are expressed as ±s. *P<0.01, vs. SC.圖1 高脂高果糖飲食對(duì)小鼠體重(A,n=30)、血清ALT(B,n=9)及AST(C,n=9)水平的影響Figure 1 Effects on body weight (A, n=30), serum levels of ALT (B, n=9) and AST (C, n=9) in mice with high-fat and high-fructose diet
SC, standard chow; HFHF, high-fat and high-fructose.
圖2 高脂高果糖飲食誘導(dǎo)的NASH模型小鼠的病理表現(xiàn)(×20)
Figure 2 Pathologic manifestation of mice model of NASH induced by high-fat and high-fructose diet (×20)
TNF-α, tumour necrosis factor-α; IL-6, interleukin-6; SC, standard chow; NASH, non-alcoholic steatohepatitis; NT, nicotine; NS, saline. Data are expressed as ±s; *P<0.01, vs. before injection.圖3 腹腔注射尼古丁3周后小鼠肝臟濕重(A)和血清中TNF-α(B)、IL-6(C)水平變化Figure 3 The change of liver weight (A), TNF-α (B) and IL-6(C) in mice after intraperitoneal injection for 3 weeks
圖4 NASH模型小鼠腹腔注射后肝組織病理變化(×20)
Figure 4 The change of liver histopathological conditions after intraperitoneal injection for 3 weeks in NASH mice (×20)
NT, nicotine; NS, saline; NASH, non-alcoholic steatohepatitis; α7nAChR, alpha 7 nicotinic acetylcholine receptors; TLR-4, Toll-like receptors-4; p-NF-κB, nuclear factor κB of phosphorylation. Data are expressed as ±s.*P<0.01, vs. NASH+NS.圖5 腹腔注射后NASH小鼠肝組織中α7nAChR、TLR-4和p-NF-κB的蛋白表達(dá)水平Figure 5 The expression of α7nAChR, TLR-4, p-NF-κB protein after intraperitoneal injection in NASH mice
Abbreviations as in Figure 5.
圖6 腹腔注射后NASH小鼠肝組織中α7nAChR、
p-NF-κB的免疫熒光圖片
Figure 6 Immunohistochemistry of α7nAChR, p-NF-κB protein after intraperitoneal injection for 3 weeks in NASH mice
近來(lái)研究發(fā)現(xiàn),在NASH的發(fā)病機(jī)制中存在肝的天然免疫功能紊亂,來(lái)源于肝巨噬細(xì)胞的炎癥因子對(duì)NASH的發(fā)生、發(fā)展起重要作用[3],巨噬細(xì)胞失活后可以阻斷NASH大鼠肝脂肪變性和炎癥的發(fā)展[4]。巨噬細(xì)胞的活化主要由腸道來(lái)源的內(nèi)毒素脂多糖(lipopolysaccharides,LPS)啟動(dòng)[5],LPS通過(guò)與巨噬細(xì)胞TLR-4結(jié)合,活化絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信號(hào)通路和NF-κB[6],導(dǎo)致細(xì)胞因子IL-6、TNF-α等產(chǎn)生[7]。IL-6、TNF-α在NASH發(fā)病機(jī)制中起重要作用,其中TNF-α不但可以引起肝細(xì)胞損傷,還可以導(dǎo)致胰島素抵抗[8]。同時(shí)巨噬細(xì)胞也是參與膽堿能抗炎通路的主要靶細(xì)胞[9],膽堿能抗炎通路主要通過(guò)活化巨噬細(xì)胞表面的α7nAChR發(fā)揮抗炎作用[10]。
本研究首先通過(guò)模擬NASH患者高脂肪、高果糖的飲食習(xí)慣建立小鼠NASH模型[2]。雖然目前還沒(méi)有明確定義的NASH小鼠模型,但我們通過(guò)在實(shí)驗(yàn)過(guò)程中定期監(jiān)測(cè)實(shí)驗(yàn)小鼠的體重,并對(duì)實(shí)驗(yàn)小鼠進(jìn)行血清生化分析和肝組織病理檢查,觀察到隨著高脂高果糖飲食喂養(yǎng)時(shí)間的延長(zhǎng),小鼠肝組織從單純脂肪變性逐漸發(fā)展到脂肪性肝炎,血清AST和ALT水平逐漸增高,較為完整的呈現(xiàn)了人類NASH疾病的發(fā)生、發(fā)展過(guò)程。因此,此模型對(duì)于進(jìn)一步研究NASH疾病發(fā)生、發(fā)展的分子機(jī)制研究具有重要意義。
其次,我們給予造模成功的C57BL NASH小鼠尼古丁腹腔注射3周后,發(fā)現(xiàn)NASH小鼠整體體重和肝臟濕重明顯減輕,顯微鏡下肝組織病理染色發(fā)現(xiàn)NASH小鼠肝臟炎癥程度下降,ELISA檢測(cè)血清中TNF-α和IL-6水平下降,與前期實(shí)驗(yàn)中尼古丁減輕BALB/cNASH小鼠肝組織炎癥程度,下調(diào)血清TNF-α水平,以及體外實(shí)驗(yàn)中尼古丁能抑制RAW264.7細(xì)胞產(chǎn)生TNF-α的結(jié)果一致[11],并進(jìn)一步觀察到尼古丁對(duì)炎癥因子IL-6水平的影響。
NF-κB是NASH中關(guān)鍵的前炎癥信號(hào)途徑,是免疫和炎癥的主要調(diào)節(jié)因子,前期發(fā)現(xiàn)體外給予RAW264.7細(xì)胞尼古丁處理對(duì)NF-κB通路有抑制作用[11]。本研究進(jìn)一步從體內(nèi)實(shí)驗(yàn)觀察到腹腔注射尼古丁能明顯抑制小鼠肝Kupffer細(xì)胞上NF-κB的磷酸化,抑制NF-κB的轉(zhuǎn)核,同時(shí)小鼠肝Kupffer細(xì)胞上的α7nAChR蛋白水平上調(diào),但對(duì)模式受體TLR-4的表達(dá)影響不明顯。另外,熒光共聚焦顯微鏡結(jié)果亦證實(shí)了尼古丁治療可以上調(diào)α7nAChR蛋白水平,抑制NF-κB的轉(zhuǎn)核。
本研究通過(guò)高脂飲食加高果糖飲水成功建立NASH小鼠模型,并通過(guò)體內(nèi)實(shí)驗(yàn)觀察到尼古丁通過(guò)上調(diào)α7nAChR激活膽堿能抗炎通路,抑制NF-κB通路的激活,減少炎癥因子IL-6、TNF-α的釋放,從而減輕小鼠的肝臟炎癥,說(shuō)明α7nAChR介導(dǎo)的抗炎信號(hào)傳導(dǎo)通路與TLR-4介導(dǎo)的致炎信號(hào)傳導(dǎo)通路均通過(guò)NF-κB信號(hào)通路調(diào)節(jié),TLR-4介導(dǎo)的巨噬細(xì)胞活化在NASH的炎癥反應(yīng)中起重要作用[12],而α7nAChR體內(nèi)活化膽堿能抗炎通路對(duì)NASH炎癥具有抗炎作用。
[1]Wang X, Yang Z, Xue B, et al. Activation of the cholinergic antiinflammatory pathway ameliorates obesity-induced inflammation and insulin resistance[J]. Endocrinology, 2011, 152(3): 836-846.
[2]Kohli R, Kirby M, Xanthakos SA, et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis[J]. Hepatology, 2010, 52(3): 934-944.
[3]Zhan YT, An W. Roles of liver innate immune cells in nonalcoholic fatty liver disease[J]. World J Gastroentero, 2010, 16(37): 4652-4660.
[4]Rivera CA, Adegboyega P, van Rooijen N, et al. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the patho-genesis of nonalcoholic steatohepatitis[J]. J Hepatol, 2007, 47(4): 571-579.
[5]Chung MY, Yeung SF, Park HJ, et al. Dietary α-and γ-toco-pherol supplementation attenuates lipopolysaccharide-induced oxidative stress and inflammatory-related responses in an obese mouse model of nonalcoholic steatohepatitis[J]. J Nutr Biochem, 2010, 21(12): 1200-1206.
[6]O’Neill LA, Bowie AG. The family of five: 11R-domain-con-taining adaptors in Toll-like receptor signaling[J]. Nat Rev lmmunol, 2007, 7(5): 353-364.
[7]Baffy G. Kupffer cells in non-alcoholic fatty liver disease: the emerging view[J]. J Hepatol, 2009, 51(1): 212-223.
[8]Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis[J]. Hepatology, 2010, 52(5): 1836-1846.
[9]Pohanka M, Snopkova S, Havlickova K, et al. Macrophage-assisted inflammation and pharmacological regulation of the cholinergic anti-inflammatory pathway[J]. Curr Med Chem, 2011, 18(4): 539-551.
[10]Bencherif M, Lippiello PM, Lucas R, et al. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases[J]. Cell Mol Life Sci, 2011, 68(6): 931-949.
[11]周舟, 陳小梅, 李富強(qiáng), 等. 活化膽堿能抗炎通路對(duì)非酒精性脂肪性肝炎炎癥反應(yīng)的抑制作用及其機(jī)制[J]. 中華肝臟病雜志, 2015, 23(1): 64-68.
[12]Liu J, Zhuang ZJ, Bian DX, et al. Toll-like receptor-4 signaling in the progression of non-alcoholic fatty liver disease induced by high-fat and high-fructose diet in mice[J]. Clin Exp Pharmacol Physiol, 2014, 41(7): 482-488.
(2014-12-29收稿)
(本文編輯:趙 波)
Nicotine alleviates the liver inflammation of non-alcoholic steatohepatitis induced by high-fat and high-fructose in mice
CHEN Xiao-mei1, LI Fu-qiang1, YAN Su2, WU Xiao-cui1, TANG Cui-lan1△
(1. Department of Liver Disease, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310005, China; 2. Department of Endoscopic Surgery, The First Affiliated Hospital of Whenzhou Medical University, Wenzhou 325000, Zhejiang, China)
Objective:To investigate the anti-inflammation effects by activation of the cholinergic anti-inflammatory pathway and its mechanisms in non-alcoholic steatohepatitis (NASH) model mice. Me-thods: 6-week-old male C57BL/6J (B6) mice were randomly divided into four groups: the first group was normal mice, injected with saline; the second group was normal mice, injected with nicotine; the third group was NASH model mice, injected with saline; the fourth group was NASH model mice, injected with nicotine. The experimental mice were fed with either standard chow (SC) or high-fat and high-fructose (HFHF) for 17 weeks to generate an NASH model mice. The mice received injection once daily for 3 weeks [nicotine dose, 400 μg/kg]. Then, their pathological characteristics and function of the liver were assessed. The expressions of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in serum were analyzed by enzyme linked immunosorbent assay (ELISA). The expressions of alpha 7 nicotinic acetylcholine receptors (α7nAChR), Toll-like receptors-4 (TLR-4) and nuclear factor κB of phosphory-lation (p-NF-κB) in Kupffer cells were determined by Western blot and immunofluorescence assays. Results: We successfully generated NASH model mice by imitating the high-fat and high-fructose dietary style of NASH patients. The results of our investigation demonstrated that nicotine could reduce significantly the levels of IL-6, and TNF-α in serum (P<0.05). The expression of p-NF-κB protein in the group which was NASH model mice injected with nicotine declined significantly as compared with the group which was NASH model mice injected with saline (P<0.05). And the expression of α7nAChR protein elevated significantly conversely (P<0.05). Conclusion: Activation of the cholinergic anti-inflammatory pathway could inhibit the release of inflammatory factors as TNF-α and IL-6 in NASH model mice, and the mechanism for the inhibition of inflammatory was mediated by NF-κB pathway.
Nicotine; Non-alcoholic fatty liver disease; Receptors, cholinergic; Inflammation mediators; Mice
國(guó)家自然科學(xué)基金(81100279)和浙江省新苗人才計(jì)劃項(xiàng)目(2014R410058)資助Supported by the National Natural Science Foundation of China (81100279) and Xin-miao Talent Program of Zhejiang Province (2014R410058)
時(shí)間:2016-6-29 14:22:18
http://www.cnki.net/kcms/detail/11.4691.R.20160629.1422.024.html
R575.1
A
1671-167X(2016)05-0777-06
10.3969/j.issn.1671-167X.2016.05.005
△Corresponding author’s e-mail, 1747603542@qq.com