稅奇軍,唐炳華,董賽鷹
(四川文理學(xué)院物理與機(jī)電工程學(xué)院,達(dá)州635000)
·微機(jī)網(wǎng)絡(luò)與通信·
基于電吸收調(diào)制器的ROF系統(tǒng)信號(hào)傳輸特性研究?
稅奇軍,唐炳華,董賽鷹
(四川文理學(xué)院物理與機(jī)電工程學(xué)院,達(dá)州635000)
隨著通信系統(tǒng)傳輸容量和傳輸帶寬的增加,光載毫米波系統(tǒng)結(jié)合光纖通信和無線通信的各自優(yōu)點(diǎn)能夠滿足未來通信系統(tǒng)的需求。傳統(tǒng)的利用光學(xué)方法產(chǎn)生毫米波信號(hào)包括直接調(diào)制、光外差以及外部調(diào)制,但是這些方法使信號(hào)在光纖中所受色散效應(yīng)較大,需要精準(zhǔn)的電光調(diào)制器偏置電壓和復(fù)雜的激光器,增大了系統(tǒng)成本。搭建了一個(gè)由兩個(gè)激光器、一個(gè)馬赫增德爾調(diào)制器、一個(gè)電吸收調(diào)制器以及兩個(gè)光電探測器組成的無線光纖通信系統(tǒng),在接收端產(chǎn)生了40GHz的毫米波信號(hào)。在光纖長度為50km時(shí),通信系統(tǒng)的誤碼率小于10-9,而功率代價(jià)約為2dBm。
光載毫米波;馬赫曾德爾調(diào)制器;電吸收調(diào)制器;光電探測器;毫米波;誤碼率
隨著通信系統(tǒng)傳輸容量和傳輸帶寬的增加,光載毫米波系統(tǒng)結(jié)合光纖通信和無線通信的各自優(yōu)點(diǎn)能夠滿足未來通信系統(tǒng)的需求[1-3]。傳統(tǒng)的利用光學(xué)產(chǎn)生毫米波信號(hào)的方法包括直接調(diào)制、光外差以及外部調(diào)制,但是光外部調(diào)制方法的光外差信號(hào)在光纖中所受色散效應(yīng)較大,導(dǎo)致信號(hào)衰減較快;光外差方法雖然能夠避免光色散效應(yīng),但光外差技術(shù)需要精準(zhǔn)的電光調(diào)制器偏置電壓和復(fù)雜的激光器,增大了系統(tǒng)成本。利用一個(gè)電吸收調(diào)制器實(shí)現(xiàn)光纖無線通信系統(tǒng)中的頻率轉(zhuǎn)換,大大降低了系統(tǒng)成本[4-7]。
實(shí)驗(yàn)?zāi)P陀蓛蓚€(gè)激光器、一個(gè)馬赫增德爾調(diào)制器、一個(gè)電吸收調(diào)制器以及兩個(gè)光電探測器組成,其工作原理如圖1所示。
激光器1和激光器2產(chǎn)生的光信號(hào)分別經(jīng)過分光器之后分成四路光信號(hào),激光器1產(chǎn)生的其中一路光信號(hào)和激光器2產(chǎn)生的其中一路光信號(hào)在光電探測器1上經(jīng)過直接拍頻之后得到的電信號(hào)表達(dá)式為[8]:
圖1 實(shí)驗(yàn)?zāi)P?/p>
(1)式中f1、φ1(t)和f2、φ2(t)分別是激光器1和激光器2產(chǎn)生的光信號(hào)的頻率和相位。經(jīng)過拍頻的光信號(hào)和本振信號(hào)混頻之后的電信號(hào)為:
(2)式中fm是本振信號(hào)的頻率。分離出混頻之后的下變頻電信號(hào)對激光器2的另外一路光信號(hào)調(diào)制之后的輸出光場表達(dá)式為:
激光器1的一束光和馬赫增德爾調(diào)制器輸出的光合成之后的光場表達(dá)式為:
(4)式中m1是馬赫增德爾調(diào)制器的調(diào)制深度,合成之后的光信號(hào)經(jīng)過電吸收調(diào)制器調(diào)制之后的光場表達(dá)式滿足如下關(guān)系:
(5)式中m2是電吸收調(diào)制器的調(diào)制深度,fIF是中頻信號(hào)頻率,φ(t)是基帶信號(hào),調(diào)制之后的光信號(hào)經(jīng)過光纖傳輸之后在接收端利用光電探測器轉(zhuǎn)換成所需要的毫米波信號(hào),同時(shí)恢復(fù)出基帶信號(hào)。
實(shí)驗(yàn)系統(tǒng)中兩激光器產(chǎn)生的光波頻率分別為193.1THz和193.06THz,兩束光在光電探測器1上拍頻之后的頻譜如圖2所示,兩激光束拍頻之后產(chǎn)生頻率為40GHz的毫米波信號(hào)。馬赫曾德爾調(diào)制器的消光比為26dB,并且其插入損耗為5dB,輸出的光場光譜如圖3所示。經(jīng)過光纖長度為50km傳輸之后,在接收端采用光電探測器2探測,經(jīng)過帶通濾波器之后同時(shí)產(chǎn)生的毫米波信號(hào)頻譜如圖4所示,背靠背和光纖長度為50km的系統(tǒng)誤碼率如圖5所示。
圖2 拍頻之后的毫米波信號(hào)頻譜
圖3 馬赫增德爾調(diào)制器輸出的光譜
圖4 接收端的毫米波信號(hào)頻譜
圖5 系統(tǒng)誤碼率曲線
由圖4、圖5可以發(fā)現(xiàn),在接收端產(chǎn)生了40GHz的毫米波信號(hào),并且實(shí)驗(yàn)系統(tǒng)在背靠背和光纖長度為50km時(shí)的誤碼率都小于10-9,滿足通信系統(tǒng)要求。
搭建了一個(gè)主要由電吸收調(diào)制器所構(gòu)成的無線光纖通信系統(tǒng),在接收端產(chǎn)生了40GHz的毫米波信號(hào)。在光纖長度為50km時(shí),通信系統(tǒng)的誤碼率小于10-9,而功率代價(jià)約為2dBm。該通信系統(tǒng)既節(jié)約了成本又能滿足實(shí)際通信的需求,為進(jìn)一步研究無線光纖通信系統(tǒng)提供了理論和實(shí)驗(yàn)參考。
[1]Lethien C,Loyez C,Vilcot J P.Potentials of radio over multimode fiber systems for the in-buildings coverage of mobile and wireless LAN applications[J].IEEE Photonics Technology Letters.2005,17(12):2793-2795.
[2]Wah M Y,Chia Y,Ming L Y.Wireless ultra-wideband communications using radio over fiber.Ultra-Wideband Systems and Technologies[J].IEEE Conference on.2003,11:265-269.
[3]Chowdhury A,Chuang K,Hunk Chang Chien,et al.Field demonstration of bi-directional millimeter wave RoF systems inter-operable with 60GHz multi-gigabit CMOS transceivers for in-building HD video and data delivery[C].Optical Fiber Communication Conference,2011:1-3.
[4]G Heliotis,LP.Chochliouros,G Agapiou.Fibre optic networks:the case of the FUTON programme[J].The Journal of The Institute of Telecommunications Professionals,2008,2(3):113-118.
[5]Simonis G J,Purchase K G.Optical generation distribution and control of microwaves using laser heterodyne[J].IEEE Transaction on microwave Theory and Techniques,1990,38(5):667-669.
[6]Ayazi A,Hsu R C.J,Houshmand B,et al.All-dielectric photonic-assisted wireless receiver[J].Optics Express,2008,16(3):1742-1747.
[7]Nguyen L V T,Hunter D B.A photonic technique for microwave frequency measurement[J].IEEE Photonics Technology Letters,2006,18(10):1188-1190.
[8]周炳琨,高以智,陳倜嶸,等.激光原理[M].北京:國防工業(yè)出版社,2004:57-61.ZHOU Bing-kun,GAO Yi-zhi,CHEN Ti-rong,et al.Laser principle[M].BeiJing:National Defence Industry Press,2004:57-61.
Research of ROF System Transmission Characteristics Based on the Electro-absorption Modulator
Shui Qijun,Tang Binghua,Dong Saiying
(School of Physics and Mech-tronic Engineering,Sichuan University of Arts and Science,Dazhou 635000,China)
With the increasing of transmission capacity and bandwidth of the communication system,optical millimeter wave system,combining with the advantages of optical fiber communication and wireless communication,meets the requirements of the future communication systems.The traditional optical application method is used for generating millimeter-wave signal includes optical heterodyne,direct modulation and external modulation,but these methods enhance the optical fiber dispersion effect of the signals,and increase the system cost by providing the precise electro-optic modulator bias voltage and complex laser.The 40GHz millimeter wave signal at the receiving end is produced by the wireless optical communication system set up by two lasers,a Mach-Zehnder Modulator,an electro-absorption modulator and two photoelectric detectors.When the fiber length is 50km,the bit error rate of the communication system is less than 10-9and the power is about 2dBm.
Optical millimeter wave;Mach-Zehnder Modulator;Electro-absorption modulator;Electro-optic detectors;Millimeter wave;Bit error rate
10.3969/j.issn.1002-2279.2016.01.006
TN929.11
A
1002-2279(2016)01-0022-02
?四川文理學(xué)院2013年度面上項(xiàng)目(2013Z002Z);四川省教育廳自然科學(xué)基金(15ZB0320);四川文理學(xué)院一般教改項(xiàng)目(2013JY47)
稅奇軍(1976-),男,四川省遂寧市人,講師,碩士研究生,主研方向:光通信及微波光電子學(xué)。
2015-03-13