亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        水生動物多次交配繁殖策略與多重父權(quán)研究進展*

        2016-11-17 09:57:32張秀梅張東雪

        張秀梅, 張東雪, 王 亮

        (中國海洋大學海水養(yǎng)殖教育部重點實驗室,山東 青島 266003)

        ?

        綜 述

        水生動物多次交配繁殖策略與多重父權(quán)研究進展*

        張秀梅, 張東雪, 王 亮

        (中國海洋大學海水養(yǎng)殖教育部重點實驗室,山東 青島 266003)

        多雄交配是水生動物界普遍存在的一種繁殖行為。本文闡述了多重父權(quán)和精子競爭的概念,綜述了近年來有關(guān)水生動物雌性多次交配繁殖策略和多重父權(quán)研究概況。重點介紹了部分水生動物的性選擇特征,分析了雌性多次交配的進化機制及其利弊;探討了精子取代、“隱秘的雌性選擇”、精子競爭模型和交配護衛(wèi)行為等精子競爭機制;比較分析了包括魚類、腹足類、頭足類、甲殼類等物種的多雄交配比例和子代多重父權(quán)特征。闡述了有關(guān)水生動物性選擇機制和父權(quán)貢獻研究中存在的問題,提出通過“行為學實驗、生化學檢測和遺傳學分析”的同步進行和多重驗證,進一步揭示水生動物多次交配行為的進化機制,為水生動物遺傳多樣性保護、人工繁育和資源增殖等提供科學依據(jù)。

        水生動物; 繁殖策略; 多次交配; 多重父權(quán); 性選擇; 精子競爭

        許多水生動物具有復雜的繁殖行為,明晰交配繁殖策略和遺傳多樣性研究現(xiàn)狀,揭示不同婚配模式下親本對子代的繁殖貢獻率及遺傳多樣性影響,可為其人工繁育及種質(zhì)資源保護提供理論基礎(chǔ)與參考。本文就水生動物的繁殖策略、多雄交配的生物學意義、性選擇特征和精子競爭等研究背景和研究概況作簡要綜述。以揭示水生動物多次交配行為的進化機制,提高繁殖過程中的交配效率,對有效開展資源修復具有重要的指導作用。

        多重父權(quán)(Multiple paternity)是指具同一母本的同一批子代群體擁有兩個或兩個以上父本的現(xiàn)象[1-3]。自然界中許多雌性物種經(jīng)常與多個雄性發(fā)生多次交配,這可能是多重父權(quán)出現(xiàn)的主要原因[4]。

        1 性選擇與雌性的多次交配

        1.1 性選擇

        性選擇是動物交配體制的重要組成部分。1871年,達爾文在《人類的由來及性選擇》一書中闡述了性選擇(Sexual selection)學說[5]。性選擇主要是指在自然條件下,某一性別個體在尋找配偶的過程中相比于其他同性個體所表現(xiàn)出的具有競爭力的特征[6]。性選擇主要包括同性間和異性間選擇兩個過程[7]。關(guān)于金烏賊(Sepiaesculenta)繁殖行為研究發(fā)現(xiàn),雌性對配偶具有選擇性,且經(jīng)常會拒絕大部分雄性的交配請求[8]。傳統(tǒng)觀念認為,雄性的性選擇壓力高于雌性,雄性在交配中的角色主要是尋找并保護交配對象,而雌性的作用則是對雄性進行選擇[9]。并且當群體密度增加時,雌性會有更多的選擇機會, 使之子代的多重父權(quán)率亦增加[10]。而越來越多的研究表明,精子生成需耗費一定的能量和時間[11-12],會導致雄性個體體重下降[13],甚至壽命減短[14],且雄性交配時的連續(xù)射精行為將導致射精量迅速減少[15],同時獲取配偶的過程中,如搜尋、求偶、爭斗、交配等需耗費大量精力和時間[11],因此雄性也會對配偶加以選擇。

        影響性選擇的主要因素包括行為差異、形態(tài)差異、獲取利益價值和優(yōu)質(zhì)基因。

        在自然條件下,雄性通常利用求偶舞來吸引雌性[16],雄性褐菖鲉(Sebastiscusmarmoratus)在積極拜訪雌魚向其求愛的同時還與其他的雄性進行爭斗,而雌性則保持沉默,極少理會求愛活動,并且雌性個體不會輕易與第一個相遇的雄性交配[17]。因此,雄性繁殖努力對交配成功率的貢獻可直接反映受精率的高低[18-19]。

        雌性個體交配的內(nèi)在動力主要是在交配時選擇具有優(yōu)質(zhì)基因的雄性,獲得可靠的配后保護,進而補充和取代前期貯藏的精子,補充繁殖期間所缺的營養(yǎng)[20]。而這些正是力量強大的大個體雄性所具備的特質(zhì)。Shinomiya and Ezaki[21]發(fā)現(xiàn)大個體雄性比小個體更易于求偶,如泥灘招潮蟹(Ucarapax)和羅洛斯繡斑螯蝦(Orconectesrusticus)[22-23]。同時,絕大多數(shù)雌性個體的繁殖力與其大小呈正相關(guān),因此,雄性也傾向于選擇與較大個體的雌性交配,如福壽螺(Pomaceacanaliculata)[24]、蚤狀鉤蝦(Gammaruspulex)[25]。此外,在求偶過程中,當雄性為雌性提供的食物較少時,雌性間為爭奪雄性配偶而展開競爭,雄性則對配偶進行選擇,以獲取更優(yōu)質(zhì)的基因,提高子代的遺傳多樣性[26]。

        除此之外,雌雄在交配時還需參考其他特征,例如沙蝦虎魚(Pomatoschistusminutus)的發(fā)聲行為[27]、小熱帶魚的雄性求偶率[28]、三刺魚(Gasterosteusaculeatus)和紅身藍首魚(Tropheusmoorii)的體色[29-30]等。藍鰓太陽魚(Lepomismacrochirus)可以依據(jù)交配對象的大小、形態(tài)、年齡以及性成熟等指標進行配偶選擇[31]。雄性孔雀魚(Poeciliareticulata)可依靠嗅覺來區(qū)分雌魚的婚配狀態(tài),且更傾向于選擇未婚配雌魚[32]??耸显椢r(Procambarusclarkii)在選擇配偶時無論雌雄都傾向于選擇較大的配偶,雄蝦可通過識別雌蝦受精囊中某種化學成分的有無來區(qū)分雌蝦是否有過交配經(jīng)歷,且雄性傾向于與未婚配的雌性交配,而雌性對雄性的婚配狀態(tài)未表現(xiàn)出明顯的選擇差異;對于已婚配的雄性來說,它們更傾向于選擇原配“妻子”進行交配[33-34],此現(xiàn)象亦存在于金烏賊的繁殖過程中。但雄性金烏賊與克氏原螯蝦不同,它會優(yōu)先選擇較自身規(guī)格小的雌性作為配偶[35]。

        1.2 雌性多次交配的進化機制及其生物學意義

        1.2.1 多次交配 從理論角度分析,物種一次交配所傳輸?shù)木恿孔阋詽M足雌性所產(chǎn)出的卵子受精。但由于各種原因,精子無法大量儲存于體內(nèi),只有通過多次交配來補充體內(nèi)精子數(shù)量以保證有較高的產(chǎn)卵量和孵化率[36-37]。因此,針對這一現(xiàn)象,許多學者開展了大量研究,發(fā)現(xiàn)自然界中的許多動物都可進行多次交配,如魚類(許氏平鲉(Sebastesschlegelii)、雜色劍尾魚(Xiphophorusvariatus)、短吻檸檬鯊(Negaprionbrevirostris)等)[38-40]、腹足類(脈紅螺(Rapanavenosa)等)[41]、頭足類(水蛸(Enteroctopusdofleini)、槍烏賊(Loligovulgarisreyaudii)等)[42-43]、甲殼類(美洲海螯蝦(Homarusamericanus)等)[44]、兩棲類(斑點鈍口螈(Ambystomamaculatum))[45]、昆蟲(直翅目、雙翅目、長翅目等)[26,46-47]、哺乳類(東北虎(Pantheratigrisaltaica)等)[48]等。劉曉明等[49]針對雌性動物多次交配的行為機制提出了適應(yīng)性和非適應(yīng)性假說。適應(yīng)性假說主要包括直接收益和間接收益。直接收益是指雄性為雌性提供的求偶喂食,生殖刺激,受精保證,護衛(wèi)交配權(quán)以及親代撫育。間接收益是指雌性與雄性交配可獲得優(yōu)質(zhì)基因,增強子代的遺傳多樣性和親本的遺傳互補。非適應(yīng)性假說主要包括遺傳相關(guān)假說以及順從雄性行為假說。

        1.2.2 雌性多次交配的利與弊 當雌性物種在多次交配時所獲得的直接利益高于交配成本時,將導致自然界中多次交配行為的進化[50]。從經(jīng)濟學角度分析,雌性動物通過多次交配可提高精子的獲得量以及繁殖子代的遺傳收益,符合繁殖策略的經(jīng)濟選擇[51]。而且,多次交配模式對于動物進化和適應(yīng)環(huán)境壓力、增強子代基因多樣性以及在保證其數(shù)量和多樣性水平方面起到重要作用[8,48],可降低繁殖失敗的風險[52-54]。多雄交配可使雄性對父權(quán)模糊,是很重要的一種保全子代[55-56]的繁殖模式。

        雖然多次交配會給親本及子代帶來諸多利益,但與此同時亦會付出相應(yīng)的代價[57],尤其當強迫交配發(fā)生時[58]。多雄交配將增加雌性的能量消耗、被捕食風險和壽命損失,交配后,雌性可能因精液中有毒物質(zhì)的影響而感染病菌[57,59],甚至影響親體的壽命[60]。Ng等[19]通過水槽實驗發(fā)現(xiàn),在繁殖期內(nèi),當一個雌性與多個雄性交配時,雄性之間爭斗次數(shù)增加,交配次數(shù)減少,因此推測在自然水體中,繁殖群體的密度和性比率會對交配成功率產(chǎn)生影響,其中性比率的影響尚待進一步研究。

        2 精子競爭

        性選擇理論指出雄性將交配努力用于交配活動中,使得雄性之間發(fā)生激烈的競爭[61-64],這正是所謂的交配后性選擇,即精子競爭(Sperm competition)。精子競爭是指2個或多個雄性為給卵子受精而發(fā)生的競爭[65]。伴隨多次交配,精子競爭不可避免[66]。例如,平鲉屬魚類雌性比雄性性成熟晚,雌性經(jīng)常在產(chǎn)卵前很長時間與多個雄性進行交配[67-70],如此,精子在卵巢中以某種方式儲存,且至少可以儲存6個月之久[70-71],隨著卵巢發(fā)育,待卵子成熟后與精子受精,體內(nèi)孵化的仔魚排出體外。這期間,除了雄性之間為獲得交配權(quán)而發(fā)生競爭外,在雌性儲精器官內(nèi),不同雄性的精子為受精卵子也進行著激烈的競爭。

        由于生物學領(lǐng)域的精子競爭屬于一個宏觀概念,因此有學者通過數(shù)學建模對精子競爭進行了數(shù)據(jù)化分析,以幫助了解和預測精子競爭的進化機制。Parker等[72-74]針對精子競爭的產(chǎn)生與影響,提出了一系列模擬多次交配過程中精子競爭的數(shù)學模型,論述了在抽彩原則中雄性的父權(quán)可能性、精子大小與數(shù)量對精子競爭的影響,評估了精子競爭的風險,驗證了繁殖行為所遵循的規(guī)律。

        2.1 精子取代與“隱秘的雌性選擇”

        2.1.1 精子取代 精子取代是精子競爭的主要環(huán)節(jié),包括層化取代和機械性移除取代。前者被認為當一個雌性與多個雄性依次交配后,不同雄性的精子在雌性儲精器官內(nèi)由于相互覆蓋而成層分布,后交配雄性的精子會覆蓋之前已存在的精子,卵子受精時最先利用最外層的精子(即后交配雄性的精子),因此子代中后交配雄性精子更具優(yōu)勢[41,75],但目前關(guān)于精子層化的機制等尚缺乏有力的解釋和證據(jù)。

        機械性移除取代則被認為在交配前,雄性會機械性移除之前儲存在雌性體內(nèi)的精子[76]。例如,雄性金烏賊在射精前用第三對腕刮出雌性口頰膜處的精莢,但移除不完全,移除率僅為20%,且金烏賊移除的精莢包括競爭者及其自身的精莢[8,77]。在真蛸(Octopusvulgaris)和白螯龍蝦(Austropotamobiusitalicus)中也發(fā)現(xiàn)了類似的精子移除現(xiàn)象[78-79]。也有研究指出,一個種類選擇是否完全或部分移除精子取決于雌性儲精器官的形態(tài)和交配的時間間隔[80]。

        2.1.2 “隱秘的雌性選擇” 在雌雄交配時,除雄性會對精子進行選擇性移除外,雌性在納精囊中也會對雄性的精子進行選擇,進而使雄性對子代的貢獻率發(fā)生變化,即 “隱秘的雌性選擇”。基于精子競爭的公平抽彩過程顯示,子代數(shù)量應(yīng)當與父本數(shù)量呈正相關(guān)關(guān)系,但往往不同父本的子代比例不同,且子代數(shù)量與父本數(shù)量未表現(xiàn)出該相關(guān)性,由此表明精子競爭或者“隱秘的雌性選擇”的存在[40,81]。

        2.2 精子競爭產(chǎn)生的條件和模型

        精子競爭的發(fā)生至少需滿足3個條件:(1)雌性在繁殖期會與多個雄性進行交配;(2)雌性的儲精器官能夠長期儲存不同雄性的精子;(3)雌性體內(nèi)的儲精器官可保持精子活性[82]。精子競爭模型主要有最后雄性精子優(yōu)勢、最先雄性精子優(yōu)勢、無雄性精子優(yōu)勢3種[83]。Wada等[77]研究指出由于金烏賊的精子取代行為,最后一個與雌性交配的雄性精子可能與更多的卵子受精。此外,花鳉科魚類(如斑點劍尾魚(Xiphophorusmaculatus))雌性對不同雄性精子有偏向性,在雌性多次交配中,最先開始受精的精子會被卵巢壁上的吞噬細胞所消化,并且被新的精子所取代,因此最后進入的精子可能處于主導地位[3]。最后雄性精子優(yōu)勢在加州海兔(Aplysiacalifornica)[4]、克氏原螯蝦[84]中也有報道。于紅[85]和Yeates[86]研究發(fā)現(xiàn),脈紅螺和大西洋鮭(Salmosalar)在交配時表現(xiàn)出最先雄性精子優(yōu)勢;而劍尾魚(Xiphophorushelleri)在交配前后并未表現(xiàn)出明顯的性選擇特征[87]。

        2.3 交配護衛(wèi)行為

        為了防止精子取代的發(fā)生,保障雄性父權(quán),許多物種演化形成了交配護衛(wèi)行為。護衛(wèi)行為是多次交配的重要環(huán)節(jié),是保證受精率和孵化率的重要繁殖策略[88]。日本無針烏賊(Sepiellajaponica)的護衛(wèi)時間要比其交配時間長得多,以此來提高受精率,防止被后來交配的雄性移除精莢[89]。雄性美洲海螯蝦也可以在短暫交配前后保衛(wèi)雌性[90]。但虎斑烏賊(Sepiapharaonis)在護衛(wèi)伴游過程中如果有更大體型的雄性出現(xiàn),它會被迫離開,進而后來的入侵者與雌性進行交配[91]。也有研究表明單配偶制和護衛(wèi)行為并不能影響一妻多夫制的繁殖策略[92],微衛(wèi)星分子親權(quán)鑒定證明,本屬于一夫一妻制的穆氏雜色麗鯛 (Variabilichromismoorii),當一個雌性巢穴周圍有多個雄性圍繞時,雌性受到雄性的侵擾也會發(fā)生多雄交配。

        3 多重父權(quán)的研究現(xiàn)狀

        多重父權(quán)(Multiple paternity)是兩頭下注的繁殖策略,這在提高不可預測環(huán)境中的繁殖成功率起到了重要作用[16]。而雌性多次交配是導致子代群體多重父權(quán)的主要原因[42]。

        多重父權(quán)的檢測方法主要有DNA指紋圖譜、微衛(wèi)星標記技術(shù)等。DNA指紋圖譜是在個體與群體之間建立遺傳聯(lián)系的非常重要的分子技術(shù)[19]。微衛(wèi)星標記技術(shù)具有高度的個體特異性,可很好地用于個體識別,在魚類遺傳和選育領(lǐng)域具有重要作用[93]。

        伴隨分子檢測技術(shù)的發(fā)展,人們針對水生動物的多重父權(quán)進行了大量研究。大部分卵胎生魚類具多重父權(quán),如茉莉花鳉(Poecilialatipinna)[94]、鲉科魚類[95-96]等。Ng等[19]發(fā)現(xiàn)平鲉屬的褐菖鲉子代具多重父權(quán)。Hyde等[16]對17種平鲉屬魚類進行了父權(quán)研究,結(jié)果顯示,其中10種具多重父權(quán),另外7種由于實驗環(huán)境的限制并未檢測出多重父權(quán)。同時,Yoshida[97]和Sogard[98]利用微衛(wèi)星標記技術(shù)分別檢測許氏平鲉的6個基因位點和墨綠平鲉(S.atrovirens)的7個基因位點,以此來證明其子代具多重父權(quán)。Gonzalez[99]利用4個基因位點檢測無備平鲉(S.inermis),在被檢測的5尾雌性親本及其子代中,僅1尾雌性的子代有不止一個父本。除此之外,雌性斑點劍尾魚、穆氏雜色麗鯛、孔雀魚、短吻檸檬鯊[3,39,92,100]通常與不止一尾雄魚交配,其子代父本數(shù)均大于2個,并且孔雀魚能夠運用表型匹配和熟悉性來區(qū)分群體中稚魚的親緣與非親緣關(guān)系[101]。

        除魚類外,越來越多的水生動物被證明具有多重父權(quán)。Paterson[102]利用微衛(wèi)星技術(shù)對北黃玉黍螺(Littorinaobtusata)進行父權(quán)鑒定,證明至少有4~6個雄性是子代群體的父本。Buresch等[103]對長鰭槍烏賊(Loligopealeii)的子代進行微衛(wèi)星分子親權(quán)分析,確定了其一雌多雄的交配模式,進一步驗證了雌性多次交配導致子代多重父權(quán)的發(fā)生。Toonen[104]利用2個變異度高的基因位點檢測10個巖瓷蟹(Petrolisthescinctipes)雌性的各12個子代,發(fā)現(xiàn)子代父本數(shù)為1~3個。Gosselin[44]利用4個基因位點檢測美洲螯龍蝦母本的子代,發(fā)現(xiàn)108個被檢測的雌性個體中,有13%的雌性其子代父本數(shù)為2~3個。

        研究表明,具多父性子代的群體較單父性子代群體在個體形態(tài)及環(huán)境適應(yīng)性方面更具優(yōu)勢。例如,大西洋鮭的多重父權(quán)增加了其群體的有效種群大小[105]。茉莉花鳉群體中,懷有多重父權(quán)子代的雌性比懷有單父性子代的雌性平均長9 mm,且多父性子代比單父性子代個體大50%[94]。在不可預測的環(huán)境中,多次交配的雌性食蚊魚(Gambusiaaffinis)比單次交配的食蚊魚更具選擇性的優(yōu)勢[106]。Evans等[107]在對孔雀魚研究時發(fā)現(xiàn),與單次交配的雌魚相比,多次交配的雌魚妊娠時間短,產(chǎn)卵量大,子代的環(huán)境適應(yīng)能力和逃避反應(yīng)均較強。多次交配可提高產(chǎn)卵量的原因主要是交配刺激或性腺刺激所致,也有可能是由于精液的營養(yǎng)作用[108-109]。從遺傳角度分析,擁有兩個不同尾斑等位基因(雜合子)的斑點劍尾魚雌魚可與多個雄魚交配,比純合子雌魚能產(chǎn)出更多的子代[3]。

        自1970年代至今,隨著檢測技術(shù)的不斷進步,多重父權(quán)的檢測方法從色譜分析過渡到具有高度個體特異性的微衛(wèi)星標記技術(shù),微衛(wèi)星標記的廣泛使用促進了性狀分析、連鎖圖譜制備等遺傳學研究的巨大進步。表1中總結(jié)了1970年代以來水生動物多重父權(quán)的相關(guān)研究成果與檢測方法。以小型觀賞魚類和平鲉屬魚類的研究報道最多,近十余年來,腹足類和頭足類的多重父權(quán)研究也受到關(guān)注。

        表1 近年來水生動物多重父權(quán)的相關(guān)研究成果與檢測方法

        續(xù)表1

        種類Species多重父權(quán)的比例Theproportionofmultiplepaternity檢測方法Methodofdetection文獻Reference 茉莉花鳉Poecilialatipinna9%~85%雌性多次交配等位酶[113] 霍氏食蚊魚Gambusiaholbrooki90%雌性多次交配,與2.2個雄交配微衛(wèi)星[114] 孔雀魚Poeciliareticulata24%~64%雌性多次交配微衛(wèi)星[115] 孔雀魚Poeciliareticulata0~100%雌性多次交配微衛(wèi)星[10,100] 褐菖鲉Sebastiscusmarmoratus7批卵中的1批檢測出多重父權(quán)DNA指紋圖譜[19] 美麗異小鳉Heterandriaformosa7個子代群體中3個多重父權(quán),父權(quán)率50%~100%微衛(wèi)星[10] 穆氏雜色麗鯛Variabilichromismoorii子代父本數(shù)至少2個微衛(wèi)星[92] 革平鲉Sebastesalutus父本數(shù)為1.92±0.76個微衛(wèi)星[116] 墨綠平鲉Sebastesatrovirens父本數(shù)平均2.142個微衛(wèi)星[98] 無備平鲉Sebastesinermis雌性可與3個雄交配微衛(wèi)星[99] 背平鲉Sebastesmaliger32%雌性多次交配,子代父本數(shù)2~3個微衛(wèi)星[117] 許氏平鲉Sebastesschlegelii子代父本數(shù)2~6個,平均2.78個微衛(wèi)星[40] 黃金愛麗魚Cyprichromiscoloratus父本數(shù)平均1.33個微衛(wèi)星[118] 細體愛麗魚Cyprichromisleptosoma父本數(shù)平均2.86個微衛(wèi)星[118] 短吻檸檬鯊Negaprionbrevirostris子代父本數(shù)至少3個微衛(wèi)星[39] 星鯊Mustelusmustelus父本數(shù)平均1.6個微衛(wèi)星[119] 灰色真鯊Carcharhinusobscurus父本數(shù)平均1.4個微衛(wèi)星[119] 路氏雙髻鯊Sphyrnalewini父本數(shù)平均2.0個微衛(wèi)星[119]其他 斑點鈍口螈Ambystomamaculatum具多父性現(xiàn)象微衛(wèi)星[45] 棱皮龜Dermochelyscoriacea22.2%雌性多次交配,配偶數(shù)為2~3個微衛(wèi)星[120]

        4 展望

        為了在有限的交配中獲得最大的生殖利益,在復雜的自然環(huán)境中爭取最大的生存機會,保證種族延續(xù),各種水生動物經(jīng)過長期進化,形成了獨特而適宜的擇偶機制和交配策略。相比于單次交配,雌性的多次交配行為不僅可以提高親本的生殖成功率,同時更增強了子代的遺傳多樣性,而多次交配必然導致多重父權(quán)的產(chǎn)生。微衛(wèi)星標記技術(shù)也為印證交配方式、執(zhí)行父權(quán)分析提供了重要的檢測手段。

        然而,受水域環(huán)境的多變性和水生動物繁殖行為的不可控性等影響,有關(guān)水生動物性選擇機制和父權(quán)貢獻的研究仍留有許多不足與空白。如水生動物性選擇機制的研究多數(shù)處于行為觀測階段,而從感官(如嗅覺、聽覺等)和內(nèi)分泌(如激素等)角度的性選擇機理研究相對較少;對子代父權(quán)分析大多是通過取樣后分子檢測的方式來鑒定子代群體,缺少在自然條件下繁殖行為的現(xiàn)場觀測;自然狀態(tài)下群體密度和性比率對父權(quán)貢獻的影響仍有待進一步探討;對于某些物種父權(quán)貢獻率的偏倚性機制尚未有明確的解釋等等。因此,只有通過“行為學實驗、生化學檢測和遺傳學分析”的同步進行和多重驗證,才能進一步解釋“精子競爭”或“隱秘的雌性選擇”在父權(quán)偏倚中的作用,揭示水生動物多次交配行為的進化機制。上述研究將有助于更全面、系統(tǒng)地了解水生動物的種群補充機制或種群遺傳結(jié)構(gòu)變異等一系列遺傳與進化的理論問題,為提高水生動物的人工繁殖效率,有效開展資源增殖與保護提供科學依據(jù)。

        [1] Haskins C P, Haskins E F, McLaughlin J J A, et al. Polymorphism and population structure inLebistesreticulatus, an ecological study [J]. Vertebrate Speciation, 1961: 320-395.

        [2] Leslie J F, Vrijenhoek R C. Genetic analysis of natural populations ofPoeciliopsismonacha: Allozyme inheritance and pattern of mating [J]. The Journal of Heredity, 1976, 68(5): 301-306.

        [3] Borowsky R, Kallman K D. Patterns of mating in natural populations ofXiphophorus(Pisces: Poeciliidae). I:X.maculatusfrom Belize and Mexico [J]. Evolution, 1976: 693-706.

        [4] Angeloni L, Bradbury J W, Burton R S. Multiple mating, paternity, and body size in a simultaneous hermaphrodite,Aplysiacalifornica[J]. Behavioral Ecology, 2003, 14(4): 554-560.

        [5] 張頌華. 關(guān)于達爾文的性選擇學說[J]. 生物學通報, 1958, 4: 37-41.

        Zhang S H. Sexual selection theory of Darwin [J]. Bulletin of Biology, 1958, 4: 37-41.

        [6] Darwin C. The descent of man and selection in relation to sex [M]. London: Murray, 1871: 207-273.

        [7] Huxley J S. Darwin's theory of sexual selection and the data subsumed by it, in the light of recent research [J]. The American Naturalist, 1938, 72(742): 416-433.

        [8] 韓松. 金烏賊 (Sepiaesculenta) 繁殖行為及交配模式的分子鑒定[D]. 青島: 中國海洋大學, 2010.

        Han S. The studies on reproductive behavior and molecular identification of mating pattern inSepiaesculenta(Mollusca: Cephalopoda) [D]. Qingdao: Ocean University of China, 2010.

        [9] 胡陽, 楊洪, 李志宇, 等. 昆蟲多次交配的策略和利益[J]. 昆蟲知識, 2010 (1): 16-23.

        Hu Y, Yang H, Li ZY, et al. Mating strategies and benefits of multiple mated insects[J]. Chinese Bulletin of Entomology, 2010 (1): 16-23.

        [10] Soucy S, Travis J. Multiple paternity and population genetic structure in natural populations of the poeciliid fish,Heterandriaformosa[J]. Journal of Evolutionary Biology, 2003, 16(6): 1328-1336.

        [11] Wedell N, Gage M J G, Parker G A. Sperm competition, male prudence and sperm-limited females [J]. Trends in Ecology and Evolution, 2002, 17(7): 313-320.

        [12] Dewsbury D A. Ejaculate cost and male choice [J]. American Naturalist, 1982: 601-610.

        [13] Olsson M, Madsen T, Shine R. Is sperm really so cheap? Costs of reproduction in male adders,Viperaberus[J]. Proceedings of the Royal Society of London B: Biological Sciences, 1997, 264(1380): 455-459.

        [14] Van Voorhies W A. Production of sperm reduces nematode lifespan [J]. Nature, 1992: 456-458.

        [15] Rubolini D, Galeotti P, Pupin F, et al. Repeated matings and sperm depletion in the freshwater crayfishAustropotamobiusitalicus[J]. Freshwater Biology, 2007, 52(10): 1898-1906.

        [16] Hyde J R, Kimbrell C, Robertson L, et al. Multiple paternity and maintenance of genetic diversity in the live-bearing rockfishesSebastesspp [J]. Marine Ecology Progress Series, 2008, 357: 245-253.

        [17] Fujita H, Kohda M. Male mating effort in the viviparous scorpionfish,Sebastiscusmarmoratus[J]. Ichthyological Research, 1996, 43(3): 247-255.

        [18] Watson P J. Multiple paternity as genetic bet-hedging in female sierra dome spiders,Linyphialitigiosa(Linyphiidae) [J]. Animal Behavior, 1991, 41(2): 343-360.

        [19] Ng W C, Sadovy Y, Leung F C C. Mating system of the rockfish,Sebastiscusmarmoratusas revealed by DNA fingerprinting [J]. Ichthyological Research, 2003, 50(4): 339-348.

        [20] 長有德, 康樂. 昆蟲在多次交配與精子競爭格局中的雌雄對策[J]. 昆蟲學報, 2002, 45(6): 833-839.

        Chang Y D, Kang L. Strategies used by male and female insects in multiple mating behavior and sperm competition [J]. Acta Entomologica Sinica, 2002, 45(6): 833-839.

        [21] Shinomiya A, Ezaki O. Mating habits of the rockfishSebastesinermis[M]//Rockfishes of the genus Sebastes: Their reproduction and early life history. Netherlands: Springer, 1991: 15-22.

        [22] Greenspan B N. Male size and reproductive success in the communal courtship system of the fiddler crabUcarapax[J]. Animal Behavior, 1980, 28(2): 387-392.

        [23] Berrill M, Arsenault M. The breeding behavior of a northern temperate orconectid crayfish,Orconectesrusticus[J]. Animal Behavior, 1984, 32(2): 333-339.

        [24] 董朝莉. 福壽螺的生物生態(tài)學特性及在廣西的分布與危害現(xiàn)狀研究[D]. 桂林: 廣西師范大學, 2006.

        Dong C L. Studies on Bioecology of the Golden Apple Snail (Pomaceacanaliculata) and Its Status of Distribution and Damage in Guangxi [D]. Guilin: Guangxi Normal University, 2006.

        [25] Trivers R L. Parental investment and sexual selection. In ‘Sexual selection and the descent of man’. (Ed. B. Campbell.) [J]. Aldinc: Chicago, 1972: 136-179.

        [26] Gwynne D T. Sexual difference theory: Mormon crickets show role reversal in mate choice [J]. Science, 1981, 213(4509): 779-780.

        [27] Lindstr?m K, Lugli M. A quantitative analysis of the courtship acoustic behavior and sound patterning in male sand goby,Pomatoschistusminutus[J]. Environmental Biology of Fishes, 2000, 58(4): 411-424.

        [28] Petersen C W. Male mating success and female choice in permanently territorial damselfishes [J]. Bulletin of Marine Science, 1995, 57(3): 690-704.

        [29] Baube C L, Rowland W J, Fowler J B. The mechanisms of colour-based mate choice in female threespine sticklebacks: hue, contrast and configurational cues [J]. Behaviour, 1995, 132(13): 979-996.

        [30] Salzburger W, Niederst?tter H, Brandst?tter A, et al. Colour-assortative mating among populations ofTropheusmoorii, a cichlid fish from Lake Tanganyika, East Africa [J]. Proceedings of the Royal Society of London B: Biological Sciences, 2006, 273(1584): 257-266.

        [31] Gross M R. Sunfish, salmon, and the evolution of alternative reproductive strategies and tactics in fishes [J]. Fish Reproduction: Strategies and Tactics, 1984: 55-75.

        [32] Guevara-Fiore P, Skinner A, Watt PJ. Do male guppies distinguish virgin females from recently mated ones? [J]. Animal Behavior, 2009, 77(2): 425-431.

        [33] Aquiloni L, Gherardi F. Mutual mate choice in crayfish: large body size is selected by both sexes, virginity by males only [J]. Journal of Zoology, 2008, 274(2): 171-179.

        [34] 張麗, 謝春, 唐建清, 等. 婚配后雄性克氏原螯蝦的擇偶行為[J]. 南京大學學報(自然科學版), 2014, 50(6): 890-894.

        Zhang L, Xie C, Tang J Q, et al. The mating behaviors of mated male crayfishProcambarusclarkii[J]. Journal of Nanjing University (Natural Sciences), 2014, 50(6): 890-894.

        [35] 王亮. 金烏賊繁殖行為和繁殖策略研究[D]. 青島: 中國海洋大學, 2016.

        Wang L. Reproductive Behavior and Reproductive Strategy ofSepiaesculenta[D]. Qingdao: Ocean University of China, 2016.

        [36] 楊洪, 王進軍, 趙志模, 等. 多次交配對松褐天牛精子數(shù)量消耗, 產(chǎn)卵量和孵化率的影響[J]. 動物學研究, 2006, 27(3): 286-290.

        Yang H, Wang J J, Zhao Z M, et al. Effects of multiple mating on quantitative depletion of spermatozoa, fecundity and hatchability inMonochamusalternatus[J]. Zoological Research, 2006, 27(3): 286-290.

        [37] 楊洪, 申智慧, 張帆, 等. 異色瓢蟲雌蟲多次交配的利益[J]. 貴州科學, 2012, 30(2): 40-44.

        Yang H, Shen ZH, Zhang F, et al. Benefit of female ofHarmoniaaxyridis(Pallas) from multiple mating [J]. Guizhou Science, 2012, 30(2): 40-44.

        [38] Borowsky R, Khouri J. Patterns of mating in natural populations ofXiphophorusII. X.variatusfrom Tamaulipas, Mexico [J]. Copeia, 1976: 727-734.

        [39] Feldheim K A, Gruber S H, Ashley M V. Multiple paternity of a lemon shark litter (Chondrichthyes: Carcharhinidae) [J]. Copeia, 2001, 2001(3): 781-786.

        [40] 丁奎. 許氏平鲉遺傳多樣性及多重父權(quán)研究[D]. 青島: 中國海洋大學, 2015.

        Ding K. Genetic Diversity and Multiple Paternity of Black Rockfish (Sebastesschlegelii) [D]. Qingdao: Ocean University of China, 2015.

        [41] 薛東秀. 脈紅螺繁殖行為和群體遺傳特征研究[D]. 山東: 中國海洋科學院, 2014.

        Xue D X. Mating Behavior and Population Genetic Characteristics ofRapanavenosa[D]. Shandong: Chinese Academy of Sciences, 2014.

        [42] Shaw P W, Sauer W H H. Multiple paternity and complex fertilisation dynamics in the squidLoligovulgarisreynaudii[J]. Marine Ecology Progress Series, 2004, 270: 173-179.

        [43] Larson S, Ramsay C, Cosgrove J A. Multiple paternity and preliminary population genetics of giant pacific octopuses,Enteroctopusdofleini, in Oregon, Washington and the southeast coast of Vancouver Island, BC [J]. Diversity, 2015, 7(2): 195-205.

        [44] Gosselin T, Sainte-Marie B, Bernatchez L. Geographic variation of multiple paternity in the American lobster,Homarusamericanus[J]. Molecular Ecology, 2005, 14(5): 1517-1525.

        [45] Tennessen J A, Zamudio K R. Early male reproductive advantage, multiple paternity and sperm storage in an amphibian aggregate breeder [J]. Molecular Ecology, 2003, 12(6): 1567-1576.

        [46] Manier M K, Belote J M, Berben K S, et al. Resolving mechanisms of competitive fertilization success inDrosophilamelanogaster[J]. Science, 2010, 328(5976): 354-357.

        [47] Kock D. Sperm Competition and Female Remating Rate in the ScorpionflyPanorpagermanica, L.(Mecoptera, Panorpidae)[D]. Universit?ts-und Landesbibliothek Bonn, 2005:1-57.

        [48] 劉丹, 馬躍, 李慧一, 等. 虎 (Pantheratigrisaltaica) 多雄交配與多重父權(quán): 對貓科動物圈養(yǎng)種群遺傳多樣性保護的啟示[J]. 科學通報, 2013, 58(16): 1539-1545.

        Liu D, Ma Y, Li HY, et al. Simultaneous polyandry and heteropaternity in tiger (Pantheratigrisaltaica): Implications for conservation of genetic diversity in captive populations of felids [J]. Chinese Science Bulletin, 2013, 58(16): 1539-1545.

        [49] 劉曉明, 李明, 魏輔文. 雌性動物多次交配行為的機制及進化[J]. 獸類學報, 2002, 22(2): 136-143.

        Liu X M, Li M, Wei F W. Mechanisms and the evolution of female multiple mating behavior [J]. Acta Theriologica Sinica, 2002, 22(2): 136-143.

        [50] H?rdling R, Kaitala A. The evolution of repeated mating under sexual conflict [J]. Journal of Evolutionary Biology, 2005, 18(1): 106-115.

        [51] 張廷華. 雌性動物多次交配的經(jīng)濟學原因[J]. 西南科技大學學報(哲學社會科學版), 2006, 23(3): 33-38.

        Zhang T H. The economic reasons of female multiple mating behaviors [J]. Journal of Southwest University of Science and Technology, 2006, 23(3): 33-38.

        [52] Hunter F M, Petrie M, Otronen M, et al. Why do females copulate repeatedly with one male? [J]. Trends in Ecology & Evolution, 1993, 8(1): 21-26.

        [53] Arnqvist G, Nilsson T. The evolution of polyandry: Multiple mating and female fitness in insects [J]. Animal Behavior, 2000, 60(2): 145-164.

        [54] Stockley P. Female multiple mating behavior, early reproductive failure and litter size variation in mammals [J]. Proceedings of the Royal Society of London B: Biological Sciences, 2003, 270(1512): 271-278.

        [55] Wolff J O, Macdonald D W. Promiscuous females protect their offspring [J]. Trends in Ecology & Evolution, 2004, 19(3): 127-134.

        [56] 任天. 雌性動物為防雄性殺嬰迫使其展開精子競爭[J]. 科學大觀園, 2015(1): 26-27.

        Ren T. Sperm competition: To prevent infanticide of males [J]. Grand Garden of Science, 2015(1): 26-27.

        [57] 劉興平, 彭接輝, 何海敏, 等. 多次交配對昆蟲適應(yīng)性的影響[J]. 江西農(nóng)業(yè)大學學報, 2008, 30(4): 592-600.

        Liu X P, Peng J H, He H M, et al. The effect of multiple mating on mitness in insects [J]. Acta Agriculturae Universitatis Jiangxiensis, 2008, 30(4): 592-600.

        [58] Constantz G D. Reproductive biology of poeciliid fishes [M]∥Snelson F F, Meffe G K(eds). Ecology and Evolution of Livebearing Fishes (Poeciliidae). New York: Prentice Hall, 1989: 33-50.

        [59] Eberhard W G. Female Control: Sexual Selection by Cryptic Female Choice [M]. Princeton: Princeton University Press, 1996:3-67.

        [60] 肖紅, 李金鋼. 多次交配對異色瓢蟲雌蟲壽命及適合度的影響[J]. 四川動物, 2010, 29(6): 960-962.

        Xiao H, Li J G. Effects of multiple matings on longevity and fitness of femaleHarmoniaaxyridis[J]. Sichuan Journal of Zoology, 2010, 29(6): 960-962.

        [61] Trivers R. Parental investment and sexual selection [J]. Biological Laboratories, Harvard University, 1972:136-179.

        [62] Emlen S T, Oring L W. Ecology, sexual selection, and the evolution of mating systems [J]. Science, 1977, 197(4300): 215-223.

        [63] Davies N B. Mating Systems [M]. Behavioral Ecology: An Evolutionary Approach, 1991, 3(4): 263-294.

        [64] Andersson M B. Sexual Selection [M]. Princeton: Princeton University Press, 1994:3-31.

        [65] Parker G A. Sperm competition and its evolutionary consequences in the insects [J]. Biological Reviews, 1970, 45(4): 525-567.

        [66] Smith R L. Sperm Competition and the Evolution of Animal Mating Systems [M]. Orlando: Aeademie Press,1984:2-55

        [67] Tateishi S, Mizue K, Inao T. Histological study about the ovaries of several kinds of ovoviviparous teleost [J]. Bull Fac Fish Nagasaki Univ, 1958, 7: 47-52.

        [68] Tsukahara H. Studies on habits of coastal fishes in the Amakusa Islands. 2. Early life history of the rockfish,Sebastiscusmarmoratus(Cuvier et Valenciennes) [J]. Rec Oceanogr Wks Jap Spec Publ, 1962, 6: 49-55.

        [69] Eldridge M B, Whipple J A, Bowers M J, et al. Reproductive performance of yellowtail rockfish,Sebastesflavidus[M]//Rockfishes of the GenusSebastes: Their Reproduction and Early Life History. Netherlands: Springer, 1991: 91-102.

        [70] Takahashi H, Takano K, Takemura A. Reproductive cycles ofSebastestaczanowskii, compared with those of other rockfishes of the genusSebastes[M]//Rockfishes of the GenusSebastes: Their Reproduction and Early Life History. Netherlands: Springer, 1991: 23-30.

        [71] Moser H G. Reproduction and development ofSebastodespaucispinisand comparison with other rockfishes off southern California [J]. Copeia, 1967(4): 773-797.

        [72] Parker G A, Simmons L W, Kirk H. Analysing sperm competition data: simple models for predicting mechanisms [J]. Behavioral Ecology and Sociobiology, 1990, 27(1): 55-65.

        [73] Parker G A. Sperm competition games: Sperm size and sperm number under adult control [J]. Proceedings of the Royal Society of London B: Biological Sciences, 1993, 253(1338): 245-254.

        [74] Parker G A, Ball M A, Stockley P, et al. Sperm competition games: A prospective analysis of risk assessment [J]. Proceedings of the Royal Society of London B: Biological Sciences, 1997, 264(1389): 1793-1802.

        [75] 滕兆乾, 張青文. 昆蟲精子競爭及其避免機制[J]. 中國農(nóng)業(yè)大學學報, 2006, 11(6): 7-12.

        Teng Z Q, Zhang Q W. Sperm competition and its avoidance mechanisms in insects [J]. Journal of China Agricultural University, 2006, 11(6): 7-12.

        [76] Birkhead T R, Hunter F M. Mechanisms of sperm competition[J]. Trends in Ecology & Evolution, 1990, 5(2): 48-52.

        [77] Wada T, Takegaki T, Mori T, et al. Sperm displacement behavior of the cuttlefishSepiaesculenta(Cephalopoda: Sepiidae) [J]. Journal of Ethology, 2005, 23(2): 85-92.

        [78] Wodinsky J. Reversal and transfer of spermatophores byOctopusvulgarisandO.hummelincki[J]. Marine Biology, 2008, 155(1): 91-103.

        [79] Galeotti P, Rubolini D, Pupin F, et al. Sperm removal and ejaculate size correlate with chelae asymmetry in a freshwater crayfish species [J]. Behavioral Ecology and Sociobiology, 2008, 62(11): 1739-1745.

        [80] Simmons L W, Siva-Jothy M T. Sperm Competition in Insects: Mechanisms and the Potential for Selection. In: Birkhead T R, M?ller AP (eds) Sperm Competition and Sexual Selection [M]. London: Academic Press,1998,341-434.

        [81] 孫曉琪. 脈紅螺交配模式和性選擇的研究[D].青島: 中國海洋大學, 2013.

        Sun X Q. Studies on the Mating Mode and Sexual Selection ofRapanavenosa[D]. Qingdao: Ocean University of China, 2013.

        [82] Witalinski W. Sperm competition in the Acari [J]. Experimental and Applied Acarology, 1999, 23(6): 455-465.

        [83] 朱道弘. 小翅稻蝗的精子競爭及交配行為的適應(yīng)意義[J]. 生態(tài)學報, 2004, 24(1): 84-88.

        Zhu D H. Sperm competition and adaptive significance of prolonged post-copulatory mounting inOxyayezoensis(Orthoptera: Catantopidae) [J]. Acta Ecologica Sinica, 2004, 24(1):84-88.

        [84] 宋亮. 克氏原螯蝦 (Procambarusclarkii) 性選擇及遺傳多樣性研究[D]. 蘇州: 蘇州大學, 2012.

        Song L. Study on Sexual Selection and Genetic Diversity ofProcambarusclarkia[D]. Suzhou: Soochow University, 2012.

        [85] 于紅, 孫曉琪, 于瑞海, 等. 脈紅螺交配后性選擇機制 [J]. 水產(chǎn)學報, 2016, 40(6): 911-916.

        Yu H, Sun X Q, Yu R H, et al. Mechanism of postcopulatory sexual selection inRapanavenosa[J]. Journal of Fisheries of China, 2016, 40(6): 911-916.

        [86] Yeates S, Searle J, Ward R G, et al. A two-second delay confers first-male fertilization precedence within in vitro sperm competition experiments in Atlantic salmon[J]. Journal of Fish Biology, 2007, 70(1): 318-322.

        [87] Gasparini C, Simmons L W, Beveridge M, et al. Sperm swimming velocity predicts competitive fertilization success in the green swordtailXiphophorushelleri[J]. PLoS One, 2010, 5(8): e12146.

        [88] Hanlon R T, Messenger J B. Cephalopod Behavior [M]. Cambridge: Cambridge University Press, 1996:125-127

        [89] Wada T, Takegaki T, Mori T, et al. Reproductive behavior of the Japanese spineless cuttlefishSepiellajaponica[J]. Venus: journal of the Malacological Society of Japan, 2006, 65(3): 221-228.

        [90] Katoh E, Sbragaglia V, Aguzzi J, et al. Sensory biology and behaviour ofNephropsnorvegicus[J]. The ecology and biology ofNephropsnorvegicus. Adv. Mar. Biol, 2013, 64: 65-106.

        [91] 陳道海, 鄭亞龍. 虎斑烏賊 (Sepiapharaonis) 繁殖行為譜分析[J]. 海洋與湖沼, 2013, 44(4): 931-936.

        Chen D H, Zheng Y L. The reproduction ethogram of cuttlefishSepiapharaonis[J]. Oceanologia et Limnologia Sinica, 2013, 44(4): 931-936.

        [92] Sefc K M, Mattersdorfer K, Sturmbauer C, et al. High frequency of multiple paternity in broods of a socially monogamous cichlid fish with biparental nest defence [J]. Molecular Ecology, 2008, 17(10): 2531-2543.

        [93] Zhang X G, Tong J G, Xi B X. Applications of microsatellite markers in studies of genetics and breeding of fish [J]. Chinese Journal of Agricultural Biotechnology, 2006, 3(02): 83-87.

        [94] Travis J, Trexler J C, Mulvey M. Multiple paternity and its correlates in femalePoecilialatipinna(Poeciliidae) [J]. Copeia, 1990: 722-729.

        [95] Masuda H, Amaoka K, Araga C, et al. The fishes of the Japanese Archipelago [M]. Japan: Tokai Univer., 1984:1-456.

        [96] Wourms J P. Reproduction and development ofSebastesin the context of the evolution of piscine viviparity [J]. Environmental Biology of Fishes, 1991, 30(1-2): 111-126.

        [97] Yoshida K, Nakagawa M, Wada S. Pedigree tracing of a hatchery-reared stock used for aquaculture and stock enhancement based on DNA markers [J]. Fish Gen Breed Sci, 2001, 30: 27-35.

        [98] Sogard S M, Gilbert-Horvath E, Anderson E C, et al. Multiple paternity in viviparous kelp rockfish,Sebastesatrovirens[J]. Environmental Biology of Fishes, 2008, 81(1): 7-13.

        [99] Gonzalez E B, Murakami T, Teshima Y, et al. Paternity testing of wild black rockfishSebastesinermis(brownish type) from the Seto Inland Sea of Japan [J]. Ichthyological Research, 2009, 56(1): 87-91.

        [100] Evans J P, Magurran A E. Patterns of sperm precedence and predictors of paternity in the Trinidadian guppy [J]. Proceedings of the Royal Society of London B: Biological Sciences, 2001, 268(1468): 719-724.

        [101] Hain T J A, Neff B D. Multiple paternity and kin recognition mechanisms in a guppy population [J]. Molecular Ecology, 2007, 16(18): 3938-3946.

        [102] Paterson I G, Partridge V, Buckland-Nicks J. Multiple paternity inLittorinaobtusata(Gastropoda, Littorinidae) revealed by microsatellite analyses [J]. The Biological Bulletin, 2001, 200(3): 261-267.

        [103] Buresch K M, Hanlon R T, Maxwell M R, et al. Microsatellite DNA markers indicate a high frequency of multiple paternity within individual field-collected egg capsules of the squidLoligopealeii[J]. Marine Ecology Progress Series, 2001, 210: 161-165.

        [104] Toonen R J. Genetic evidence of multiple paternity of broods in the intertidal crabPetrolisthescinctipes[J]. Marine Ecology Progress Series, 2004, 270: 259-263.

        [105] Martinez J L, Moran P, Perez J, et al. Multiple paternity increases effective size of southern Atlantic salmon populations [J]. Molecular Ecology, 2000, 9(3): 293-298.

        [106] Chesser R K, Smith M W, Smith M H. Biochemical genetics of mosquitofish III. incidence and significance of multiple insemination [J]. Genetica, 1984, 64(2): 77-81.

        [107] Evans J P, Magurran A E. Multiple benefits of multiple mating in guppies[J]. Proceedings of the National Academy of Sciences, 2000, 97(18): 10074-10076.

        [108] Pitnick S, Spicer G S, Markow T. Phylogenetic examination of female incorporation of ejaculate inDrosophila[J]. Evolution, 1997: 833-845.

        [109] Rooney J, Lewis S M. Differential allocation of male-derived nutrients in two lampyrid beetles with contrasting life-history characteristics [J]. Behavioral Ecology, 1999, 10(1): 97-104.

        [110] Panova M, Bostr?m J, Hofving T, et al. Extreme female promiscuity in a non-social invertebrate species [J]. PLoS One, 2010, 5(3): e9640.

        [111] Leslie J F, Vrijenhoek R C. Genetic analysis of natural populations ofPoeciliopsismonacha: Allozyme inheritance and pattern of mating [J]. The Journal of Heredity, 1976, 68(5): 301-306.

        [112] Robbins L W, Hartman G D, Smith M H. Dispersal, reproductive strategies, and the maintenance of genetic variability in mosquitofish (Gambusiaaffinis) [J]. Copeia, 1987(1): 156-164.

        [113] Trexler J C, Travis J, Dinep A. Variation among populations of the sailfin molly in the rate of concurrent multiple paternity and its implications for mating-system evolution[J]. Behavioral Ecology and Sociobiology, 1997, 40(5): 297-305.

        [114] Zane L, Nelson W S, Jones A G, et al. Microsatellite assessment of multiple paternity in natural populations of a live-bearing fish,Gambusiaholbrooki[J]. Journal of Evolutionary Biology, 1999, 12(1): 61-69.

        [115] Kelly C D, Godin J G J, Wright J M. Geographic variation in multiple paternity within natural populations of the guppy (Poeciliareticulata) [J]. Proceedings of the Royal Society of London B: Biological Sciences, 1999, 266(1436): 2403-2408.

        [116] Van Doornik D M, Parker S J, Millard S R, et al. Multiple paternity is prevalent in Pacific ocean perch (Sebastesalutus) off the Oregon coast, and is correlated with female size and age [J]. Environmental Biology of Fishes, 2008, 83(3): 269-275.

        [117] Gray A K, Rodgveller C J, Lunsford C R. Evidence of multiple paternity in quillback rockfish [J]. U S Dep Commer, NOAA Tech Memo NMFS-AFSC-303, 2015: 1-25.

        [118] Anderson C, Werdenig A, Koblmüller S, et al. Same school, different conduct: rates of multiple paternity vary within a mixed-species breeding school of semi-pelagic cichlid fish (Cyprichromisspp.) [J]. Ecology and Evolution, 2016, 6(1): 37-45.

        [119] Rossouw C, Wintner S P. Assessing multiple paternity in three commercially exploited shark species:Mustelusmustelus,CarcharhinusobscurusandSphyrnalewini[J]. Journal of Fish Biology, 2016, 89(2):1125-1141.

        [120] Figgener C, Chacón-Chaverri D, Jensen MP, et al. Paternity re-visited in a recovering population of Caribbean leatherback turtles (Dermochelyscoriacea) [J]. Journal of Experimental Marine Biology and Ecology, 2016, 475: 114-123.

        責任編輯 朱寶象

        Reproductive Strategies of Multiple Mating and Multiple Paternity of Aquatic Animals

        ZHANG Xiu-Mei , ZHANG Dong-Xue, WANG Liang

        (The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China)

        Multiple mating is common in many aquatic animals during their reproductive seasons. This paper reviews the research literature on reproductive strategies of multiple mating and paternity about aquatic animals, with the focus on the characteristics of sexual selection and the mechanisms and double-edged sword of multiple mating. Here, we provided a direct description of sperm competition, which was consisted of sperm displacement, cryptic female choice, patterns and guarding behavior. The feature of multiple paternity in some species, including fishes, gastropods, cephalopod and crustacean, was also listed. The existing problems of the bias on paternity and sexual selection were elaborated, as well as the synchronism and verification of behavioral experiments, biochemical detection and genetic analysis. The paper aimed to reveal the evolutionary mechanism of multiple mating and provide some referential information for the research on genetic diversity, artificial breeding and stock enhancement of aquatic animals.

        aquatic animals; reproductive strategies; multiple mating; multiple paternity; sexual selection; sperm competition

        國家自然科學基金項目(41676153)資助

        2016-08-29;

        2016-09-22

        張秀梅(1964-),女,教授、博導。E-mail: gaozhang@ouc.edu.cn

        S917.4

        A

        1672-5174(2016)11-022-10

        10.16441/j.cnki.hdxb/20160305

        張秀梅, 張東雪, 王亮. 水生動物多次交配繁殖策略與多重父權(quán)研究進展[J]. 中國海洋大學學報(自然科學版), 2016, 46(11): 22-31.

        ZHANG Xiu-Mei, ZHANG Dong-Xue, WANG Liang. Reproductive strategies of multiple mating and multiple paternity of aquatic animals [J].Periodical of Ocean University of China, 2016, 46(11): 22-31.

        Supported by Natural Science Foundation of China (41676153)

        制服丝袜一区二区三区| 2021国产最新无码视频| 中文字幕一区二区三在线| 亚洲一区二区三区2021| 国产福利视频在线观看| 亚洲一区中文字幕在线电影网| 天天插视频| 少妇被爽到自拍高潮在线观看| av网站不卡的av在线| 午夜被窝精品国产亚洲av香蕉| 97精品久久久久中文字幕| 亚洲熟女乱色一区二区三区| 亚洲色图综合免费视频| 午夜一区二区在线视频| 色中文字幕在线观看视频| 色www视频永久免费| 色婷婷综合激情| 久久国产女同一区二区| 亚洲av无码专区国产乱码4se| 欧美午夜刺激影院| 麻豆av传媒蜜桃天美传媒| 精品丝袜一区二区三区性色| 日本不卡的一区二区三区中文字幕| 久久精品国产亚洲av香蕉| 国产成人精品午夜福利| 中文字幕成人精品久久不卡| 久久久免费看少妇高潮| 狠狠色噜噜狠狠狠777米奇小说 | 久久久久无码中文字幕| 日本免费观看视频一区二区| 成人免费无码视频在线网站| 男人扒开女人下面狂躁小视频 | 国产精品制服一区二区| 久久日韩精品一区二区| 国产精品多p对白交换绿帽| 99国产超薄丝袜足j在线播放| 国产高跟丝袜在线诱惑| 国产精品人伦一区二区三| 亚洲欧美日韩国产精品一区二区| 国产喷水福利在线视频| 亚洲一区二区情侣|