張俊麗
(內(nèi)蒙古民族大學(xué) 數(shù)學(xué)學(xué)院,內(nèi)蒙古 通遼 028043)
非奇異H -矩陣的一類迭代判別法
張俊麗
(內(nèi)蒙古民族大學(xué) 數(shù)學(xué)學(xué)院,內(nèi)蒙古 通遼 028043)
非奇異H-矩陣應(yīng)用廣泛,但在實(shí)用中其判定十分困難。根 -對(duì)角占優(yōu)矩陣與非奇異H-矩陣的關(guān)系,給出一類非奇異H-矩陣的迭代判定準(zhǔn)則,對(duì)已有的相關(guān)結(jié)果進(jìn)行推廣和改進(jìn),并用數(shù)值算例驗(yàn)證了該判定準(zhǔn)則的有效性。
非奇異H-矩陣;-對(duì)角占優(yōu)矩陣;不可約;非零元素
非奇異H-矩陣在計(jì)算數(shù)學(xué)、動(dòng)力系統(tǒng)理論以及神經(jīng)網(wǎng)絡(luò)等眾多領(lǐng)域都有重要的應(yīng)用,但是其判定卻比較困難。近年來很多學(xué)者對(duì)其作了較深入的研究,并給出了一些重要結(jié)果[1-9]。例如,文獻(xiàn)[1]給出了非奇異H-矩陣的簡捷判據(jù);文獻(xiàn)[3]給出了非奇異H-矩陣的迭代判定方法,改進(jìn)了文獻(xiàn)[1]的結(jié)果。本文給出一類非奇異H-矩陣的新迭代判定準(zhǔn)則,從而推廣了文獻(xiàn)[1-4]的結(jié)果。
為敘述方便,引入下列記號(hào):
Cn×n表示 n×n階復(fù)矩陣的集合;
[1]黃廷祝.非奇異H矩陣的簡捷判據(jù)[J].計(jì)算數(shù)學(xué),1993,15(3) :318-328.HUANG Tinzhu.Some Simple Determinate Conditions for Nonsingular H-Matrix[J].Mathematica Numerica Sinica,1993,15(3) :318-328.
[2]干泰彬,黃廷祝.非奇異H矩陣的實(shí)用充分條件[J].計(jì)算數(shù)學(xué),2004,26(1) :109-116.GAN Taibin,HUANG Tingzhu.Practical Sufficient Conditions for Nonsingular H-Matrices[J].Mathematica Numerica Sinica,2004,26(1) :109-116.
[3]王峰.非奇異H-矩陣判定的迭代準(zhǔn)則[J].安徽大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,36(6) :16-20.WANG Feng.New Iterative Codes for Nonsingular HMatrices[J].Journal of Anhui University(Natural Science Edition),2012,36(6) :16-20.
[4]黃澤軍,劉建州.非奇異H-矩陣的一類新迭代判別法[J].工程數(shù)學(xué)學(xué)報(bào),2008,25(5) :939-942.HUANG Zejun,LIU Jianzhou.New Iterative Criteria for Nonsingular H-Matrices[J].Chinese Journal of Engineering Mathematics,2008,25(5) :939-942.
[5]BERMAN A,PLEMMONSR J.Nonnegative Matrix in the Mathematical Sciences[M].New York:Academic Press,1979 :24-83.
[6]周偉偉,徐仲,陸全,等.非奇H-矩陣細(xì)分迭代判定準(zhǔn)則[J].數(shù)值計(jì)算與計(jì)算機(jī)應(yīng)用,2011,32(4) :293-300.ZHOU Weiwei,XU Zhong,LU Quan,et al.Subdivided and Iterative Codes for Nonsingular H-Matrices[J].Journal on Numerical Methods and Computer Applications,2011,32(4) :293-300.
[7]張俊麗,韓貴春.一類非奇異H-矩陣的迭代判定準(zhǔn)則[J].河南科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016,37(1) :88-91.ZHANG Junli,HAN Guichun.Iterative Criteria for a Kind of Nonsingular H-matrices[J].Journal of Henan University of Science & Technology(Natural Science), 2016,37(1) :88-91.
[8]薛媛,劉建州.H-矩陣的一類實(shí)用遞進(jìn)判別法[J].湘南學(xué)院學(xué)報(bào),2014,35(2) :1-4.XUE Yuan,LIU Jianzhou.A Type of Practical Progressive Criteria for Identifying H-Matrices[J].Journal of Xiangnan University,2014,35(2) :1-4.
[9]丁碧文,劉建州.廣義嚴(yán)格對(duì)角占優(yōu)的充分條件[J].高等學(xué)校計(jì)算數(shù)學(xué)學(xué)報(bào),2009,31(4) :310-318.DING Biwen,LIU Jianzhou.Sufficient Conditions of Generalized Strictly Diagonally Dominant Matrix[J].Numerical Mathematics:A Journal of Chinese Universities,2009,31(4) :310-318.
(責(zé)任編輯 :鄧光輝)
An Iterative Method for the Determination of Non-singular H-Matrices
ZHANG Junli
(School of Mathematics,Inner Mongolia University for the Nationalities,Tongliao Inner Mongolia 028043,China)
Although the non-singular H-matrix has found its wide applications nowadays, the determination of its practical use seems rather difficult.An improvement and its promotion have been made of the relevant results based on the analysis of the relations between -diagonally dominant matrices and non-singular H-matrices, with the criteria of the latter one accordingly determined, thus further verifying the validity of these criteria with numerical examples.
non-singular H-matrix;-diagonally dominant matrix;irreducible;non-zero elements chain
O151.21
A
1673-9833(2016)04-0074-04
10.3969/j.issn.1673-9833.2016.04.014
2016-05-30
國家自然科學(xué)基金資助項(xiàng)目(11361038),內(nèi)蒙古自然科學(xué)與技術(shù)研究基金資助項(xiàng)目(NJZY13159)
張俊麗(1980-),女,山東菏澤人,內(nèi)蒙古民族大學(xué)講師,主要研究方向?yàn)閿?shù)值代數(shù),E-mail:jl_zhang7706@163.com