張文平,劉佰明,張 珊,萬方浩,3,褚 棟
?
基于EPG技術(shù)的煙粉虱兩個(gè)品系取食行為的比較
張文平1,劉佰明2,張 珊1,萬方浩1,3,褚 棟1
(1青島農(nóng)業(yè)大學(xué)農(nóng)學(xué)與植物保護(hù)學(xué)院,山東青島 266109;2天津市植物保護(hù)研究所,天津300384;3中國農(nóng)業(yè)科學(xué)院植物保護(hù)研究所植物病蟲害 生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,北京 100193)
【目的】是煙粉虱()體內(nèi)的一種次生內(nèi)共生菌。有研究表明Q型煙粉虱品系(C+品系)與未感染品系(C-品系)的寄主適合度有很大差異,但其產(chǎn)生差異的行為機(jī)制尚不明確。論文旨在研究兩個(gè)Q型煙粉虱品系的取食行為差異,以期從行為學(xué)角度揭示兩個(gè)品系適合度差異的原因。【方法】應(yīng)用刺吸電位技術(shù)(electrical penetration graph, EPG)記錄Q型煙粉虱C+品系和C-品系在棉花與番茄上6 h的取食波形,然后對(duì)取食波形進(jìn)行分類統(tǒng)計(jì),共選取19個(gè)參數(shù)(非韌皮部參數(shù)11個(gè),韌皮部參數(shù)8個(gè))進(jìn)行數(shù)據(jù)分析,比較這兩個(gè)品系在非韌皮部和韌皮部的取食行為差異?!窘Y(jié)果】共獲得118個(gè)有效記錄,其中在棉花上58個(gè)(C-品系28個(gè),C+品系30個(gè)),在番茄上60個(gè)(C-品系31個(gè),C+品系29個(gè))。在取食棉花的非韌皮部階段,煙粉虱C+品系刺探的總持續(xù)時(shí)間和路徑波(C波)總持續(xù)時(shí)間顯著高于C-品系(<0.05),C+品系第一次E波后非刺探時(shí)間顯著低于C-品系(<0.05);在韌皮部階段,兩個(gè)品系分泌唾液(E1波)和吸食汁液(E2波)的相關(guān)參數(shù)無顯著差異(>0.05),6 h能到達(dá)韌皮部階段的煙粉虱比例也無顯著差異(>0.05)。在取食番茄的非韌皮部階段,煙粉虱C+品系的刺探總次數(shù)和第一次E波前的刺探次數(shù)均顯著高于C-品系(<0.05),C+品系從第一次刺探到第一次持續(xù)取食的時(shí)間顯著長于C-品系(<0.05),但刺探的平均持續(xù)時(shí)間顯著短于C-品系;在韌皮部階段,兩個(gè)品系在與分泌唾液和吸食汁液相關(guān)的參數(shù)均無顯著差異(>0.05),6 h能到達(dá)韌皮部階段的煙粉虱比例也無顯著差異(>0.05)??傮w上,煙粉虱C+品系和C-品系在韌皮部的取食行為參數(shù)無顯著差異;在非韌皮部C+品系較C-品系具有更長的刺探時(shí)間和更多的刺探總次數(shù)?!窘Y(jié)論】煙粉虱C+品系和C-品系在寄主植物韌皮部的取食行為沒有差異,在非韌皮部存在顯著差異。在非韌皮部的取食行為差異可能與其適合度差異有關(guān)。
Q型煙粉虱;適合度;刺吸電位技術(shù);取食行為
【研究意義】煙粉虱()是一種世界性農(nóng)業(yè)害蟲。該害蟲被認(rèn)為是一個(gè)含有許多隱種的物種復(fù)合體[1-2],其中Q型煙粉虱(即煙粉虱MED隱種)近十多年來傳入許多國家(包括中國)并給農(nóng)業(yè)生產(chǎn)造成嚴(yán)重危害[3]。Q型煙粉虱的入侵災(zāi)變機(jī)制與其種群的生態(tài)適應(yīng)性等多種因素密切相關(guān)[4]。研究表明,內(nèi)共生菌是許多昆蟲種群生態(tài)適應(yīng)性的重要影響因素。內(nèi)共生菌可以通過調(diào)控宿主昆蟲的生殖方式或影響宿主昆蟲適合度等方式,對(duì)昆蟲種群生物學(xué)與生態(tài)學(xué)產(chǎn)生深遠(yuǎn)的影響[5]。煙粉虱體內(nèi)含有多種內(nèi)共生菌[6-8],一些內(nèi)共生菌能對(duì)煙粉虱的生物學(xué)造成各種影響[9-10]。其中,是煙粉虱體內(nèi)一種重要的次生內(nèi)共生菌。對(duì)煙粉虱的影響及其機(jī)理研究將為煙粉虱的生物防治提供新的思路?!厩叭搜芯窟M(jìn)展】在許多節(jié)肢動(dòng)物中,可導(dǎo)致宿主的雌性化[11]、孤雌生殖[12]或胞質(zhì)不親和[13-14],能影響宿主的適合度[15]和產(chǎn)卵行為[16]。迄今為止,煙粉虱體內(nèi)的相關(guān)研究較少[17]。長期田間監(jiān)測(cè)表明,山東省各地Q型煙粉虱的感染率一直較低(7.6%—17.3%)[18];全國范圍內(nèi)監(jiān)測(cè)結(jié)果也發(fā)現(xiàn)Q型煙粉虱的感染率較低(<16.3%)[19]。這些調(diào)查結(jié)果表明,Q型煙粉虱感染種群在田間生態(tài)系統(tǒng)中并沒有很強(qiáng)的生物學(xué)優(yōu)勢(shì)。Fang等[20]利用兩性生命表和競(jìng)爭(zhēng)取代的方法研究發(fā)現(xiàn),Q型煙粉虱未感染品系(簡稱C-品系)比感染品系(簡稱C+品系)具有更好的適合度和更強(qiáng)的競(jìng)爭(zhēng)能力。【本研究切入點(diǎn)】C+品系和C-品系的適合度差異產(chǎn)生的行為機(jī)制尚不清楚,揭示兩個(gè)品系的適合度差異產(chǎn)生的原因?qū)斫釷型煙粉虱的入侵、傳播和有效防治具有重要意義。刺吸電位技術(shù)(electrical penetration graph,EPG)是一種記錄植食性刺吸式昆蟲取食行為的技術(shù),是研究昆蟲寄主適應(yīng)性[21-23]、植物抗蟲性[24-25]、昆蟲的傳毒機(jī)理[26-27]等的重要研究手段。同時(shí),該技術(shù)還被用于揭示農(nóng)藥對(duì)昆蟲取食的影響[28]?!緮M解決的關(guān)鍵問題】選取煙粉虱的兩種主要寄主植物棉花和番茄,利用EPG技術(shù)分析煙粉虱C+品系與C-品系在番茄和棉花上的取食行為,對(duì)韌皮部與非韌皮部取食行為參數(shù)進(jìn)行比較,以期從取食行為的角度揭示煙粉虱這兩個(gè)品系適合度差異產(chǎn)生的原因。
室內(nèi)試驗(yàn)于2014年在青島農(nóng)業(yè)大學(xué)生物入侵實(shí)驗(yàn)室進(jìn)行。
1.1 供試植物與煙粉虱種群
試驗(yàn)用棉花()品種為魯棉研21號(hào),番茄()品種為浙粉212,將種子分別種在花盆里(1.5 L)的營養(yǎng)土中,然后放置于溫度(30±1)℃、相對(duì)濕度RH為(60±5)%,光周期L﹕D=16 h﹕8 h的人工氣候室內(nèi)。種子發(fā)芽后每隔3 d澆一次水。待棉花長至2—3片真葉期,番茄長至4—5片真葉期,分別選取長勢(shì)一致的苗用于試驗(yàn)。
試驗(yàn)用Q型煙粉虱種群于2012年3月采自山東省濟(jì)南市,室內(nèi)于棉花上長期飼養(yǎng),參照Khasdan等[29]的方法定期進(jìn)行純度檢測(cè)。在Q型煙粉虱取食番茄植株的EPG試驗(yàn)前,將煙粉虱棉花種群轉(zhuǎn)移至番茄植株上飼養(yǎng)2代以適應(yīng)寄主。煙粉虱在溫度(27±1)℃,相對(duì)濕度RH為(60±5)%,光周期L﹕D=16 h﹕8 h的人工氣候室內(nèi)飼養(yǎng)。用于EPG試驗(yàn)的煙粉虱均為羽化不到2 d的未交配雌蟲。
1.2 煙粉虱C+與C-品系的建立
在飼養(yǎng)的Q型煙粉虱種群中隨機(jī)選取1對(duì)成蟲,放在帶有兩片真葉棉花苗的養(yǎng)蟲杯中,共50個(gè)重復(fù)。產(chǎn)卵3 d后,將煙粉虱成蟲移除,保留葉片上的卵繼續(xù)發(fā)育至羽化。每個(gè)重復(fù)取后代煙粉虱成蟲雌雄分別至少5頭用于檢測(cè)。被檢測(cè)后代成蟲若全部感染,該養(yǎng)蟲杯中的煙粉虱被視為C+品系;若全部未感染,該養(yǎng)蟲杯中的煙粉虱被視為C-品系。將篩選出的兩個(gè)煙粉虱品系持續(xù)飼養(yǎng),并定期進(jìn)行檢測(cè)。
1.3 共生菌的檢測(cè)
將煙粉虱成蟲放置于0.2 mL PCR管中于-20℃保存,參照Chu等[30]方法提取單頭煙粉虱DNA后,以此為模板進(jìn)行PCR擴(kuò)增,使用的上下游引物分別為CLOf(5′-GCGGTGTAAAATGAGCGTG-3′)和CLOr1(5′-ACCTMTTCTTAACTCAAGCCT-3′)[31]。反應(yīng)體系為20 μL,其中1.3 μL的10×PCR緩沖液,0.26 μL(10 mmol·L-1)的dNTP混合物,上下游引物分別為0.26 μL(20 μmol·L-1),Taq酶為0.13 μL,DNA模板為2 μL,無菌純水9.3 μL。PCR擴(kuò)增程序?yàn)椋?5℃預(yù)變性5 min,35個(gè)循環(huán)(95℃變性30 s,57℃退火30 s,72℃延伸1 min),最后72℃延伸5 min。PCR產(chǎn)物使用1.0%(g·mL-1)的瓊脂糖凝膠電泳進(jìn)行檢測(cè),目的片段長度為450 bp,出現(xiàn)目的條帶的為煙粉虱C+品系個(gè)體,沒有出現(xiàn)目的條帶的個(gè)體采用實(shí)時(shí)熒光定量RT-PCR(real-time RT-PCR)進(jìn)行檢測(cè)。所用的引物為Card-F(5′-ACGGGAGGCAGCAGTA-3′)和Card-R(5′-CCGCAGGGATTGTTTT-3′)[32],反應(yīng)體系為10 μL,其中5 μL的SYBR Green Supermix,上下游引物分別為0.1 μL(20 μmol·L-1,DNA模板為1 μL,無菌純水3.8 μL。擴(kuò)增程序?yàn)椋?5℃預(yù)變性1 min,40個(gè)循環(huán)(95℃變性10 s,55℃退火15 s,72℃延伸15 s)。
1.4 EPG波形記錄
使用Giga-8 DC-EPG系統(tǒng)(荷蘭瓦赫寧根大學(xué))記錄煙粉虱取食植物的刺探電位圖譜。為屏蔽外界環(huán)境的電磁干擾,煙粉虱C+品系與C-品系的取食試驗(yàn)分別在兩個(gè)法拉第籠中(50 cm×50 cm×60 cm)進(jìn)行,每個(gè)法拉第籠中記錄4個(gè)重復(fù)。依照湯清波等[33]的方法將約2 cm的金絲(直徑12.5 μm)用導(dǎo)電銀膠粘在供試煙粉虱的前胸背板上。將粘連好的煙粉虱饑餓20 min,然后連接到EPG昆蟲電極的銅釘上。記錄前,將粘在金絲上的煙粉虱放置在葉面背面。每頭煙粉虱均持續(xù)記錄6 h。所有試驗(yàn)均在溫度(27±1)℃,相對(duì)濕度RH為(60±5)%,光周期L﹕D=16 h﹕8 h的人工氣候室內(nèi)進(jìn)行。
1.5 EPG數(shù)據(jù)分析
參考Moreno-DELAFUENTE等[34]的標(biāo)準(zhǔn),將EPG波形劃分為非刺探波(np)、路徑波(C)[刺吸障礙波(F)和木質(zhì)部取食波(G)也合并到這類波形里]、韌皮部唾液分泌波(E1)、韌皮部取食波(E2)(E2≥10 min)。使用stylet+d軟件(荷蘭瓦赫寧根大學(xué))進(jìn)行波形記錄,stylet+a軟件(荷蘭瓦赫寧根大學(xué))進(jìn)行波形分析。煙粉虱C-品系和C+品系在棉花上的取食記錄分別重復(fù)40次,在番茄上分別重復(fù)45次。
參照van Helden等[35]和湯清波等[33]共選擇19個(gè)參數(shù)進(jìn)行統(tǒng)計(jì)分析。使用SPSS19.0軟件進(jìn)行顯著性分析。首先檢測(cè)數(shù)據(jù)方差齊性和正態(tài)性,符合正態(tài)分布的數(shù)據(jù)采用獨(dú)立樣本檢驗(yàn)(<0.05),不符合正態(tài)分布的數(shù)據(jù)進(jìn)lg10轉(zhuǎn)換或反正弦轉(zhuǎn)換。轉(zhuǎn)換后的數(shù)據(jù)仍不符合正態(tài)分布的采用Mann-Whitney U-test分析。其中,“能到達(dá)韌皮部階段的煙粉虱比例”使用卡方檢測(cè)進(jìn)行分析。
EPG試驗(yàn)共獲得118個(gè)有效記錄,其中在棉花上58個(gè)(C-品系28個(gè),C+品系30個(gè)),在番茄上60個(gè)(C-品系31個(gè),C+品系29個(gè))。統(tǒng)計(jì)的19個(gè)參數(shù)中,非韌皮部參數(shù)11個(gè),韌皮部參數(shù)8個(gè)。
2.1 煙粉虱在棉花非韌皮部的EPG參數(shù)
在棉花上取食的非韌皮部階段,統(tǒng)計(jì)的11個(gè)參數(shù)中有3個(gè)具有顯著性差異(<0.05)(表1)。煙粉虱C+品系刺探的總持續(xù)時(shí)間和C波總持續(xù)時(shí)間顯著高于C-品系,分別是C-品系的1.51和1.41倍。煙粉虱C+品系的第一次E波后非刺探時(shí)間顯著低于C-品系。
表1 煙粉虱C-品系和C+品系在棉花非韌皮部取食的EPG參數(shù)
“*”表示對(duì)應(yīng)參數(shù)差異顯著(<0.05)。下同“*” indicated significant differences (<0.05). The same as below
2.2 煙粉虱在棉花韌皮部的EPG參數(shù)
煙粉虱C-品系和C+品系在棉花上可到達(dá)韌皮部并持續(xù)取食(E2≥10min)的分別為14和12個(gè)。韌皮部參數(shù)(包括與唾液分泌和吸食植物汁液的相關(guān)參數(shù))均沒有顯著性差異(>0.05)(表2)。
表2 煙粉虱C-品系和C+品系在棉花韌皮部取食的EPG參數(shù)
2.3 煙粉虱在番茄非韌皮部的EPG參數(shù)
在番茄上取食的非韌皮部階段,統(tǒng)計(jì)的11個(gè)參數(shù)中有4個(gè)具有顯著性差異(<0.05)(表3)。煙粉虱C+品系經(jīng)歷的從第一次刺探到第一次持續(xù)取食的時(shí)間顯著長于C-品系,是C-品系的1.20倍;C+品系的刺探總次數(shù)和第一次E波前的刺探次數(shù)顯著多于煙粉虱C-品系,分別是C-品系的1.54和1.74倍;C+品系刺探的平均持續(xù)時(shí)間顯著短于C-品系,是C-品系的68.45%。
表3 煙粉虱C-品系和C+品系在番茄非韌皮部取食的EPG參數(shù)
2.4 煙粉虱在番茄韌皮部的EPG參數(shù)
煙粉虱C-品系和C+品系在番茄上可到達(dá)韌皮部并持續(xù)取食(E2≥10 min)的個(gè)體分別為14個(gè)和7個(gè)。韌皮部參數(shù)(包括與唾液分泌和吸食植物汁液的相關(guān)參數(shù))均沒有顯著性差異(>0.05)(表4)。
表4 煙粉虱C+品系和C-品系取食番茄韌皮部的EPG參數(shù)
本研究發(fā)現(xiàn),在棉花非韌皮部取食階段,相對(duì)于煙粉虱C-品系,煙粉虱C+品系在路徑波上花費(fèi)更多的時(shí)間,同時(shí)具有更長的刺探總持續(xù)時(shí)間(表1);在番茄非韌皮部取食階段,路徑波時(shí)間和刺探總持續(xù)時(shí)間沒有顯著差異,但C+品系比C-品系進(jìn)行了更多的刺探,第一次到達(dá)韌皮部持續(xù)取食之前經(jīng)過的時(shí)間和第一次E波前的刺探次數(shù)均比煙粉虱C-品系多(表3);兩個(gè)品系的韌皮部取食階段,與吸食植物汁液相關(guān)的參數(shù),如E2波的總時(shí)間和平均時(shí)間等均沒有顯著性差異(表2、表4)。
相對(duì)于煙粉虱C-品系,煙粉虱C+品系在取食過程中需要消耗更多的能量,取食效率較低。首先,兩個(gè)品系在寄主植物韌皮部的取食行為沒有顯著差異,表明取食行為可能對(duì)二者獲取能量沒有影響。當(dāng)煙粉虱到達(dá)韌皮部篩管細(xì)胞取食時(shí),從韌皮部吸取汁液從而獲取氨基酸、糖分等營養(yǎng)[36-37],而糖類是昆蟲生長發(fā)育的主要能源物質(zhì),供給昆蟲生長發(fā)育所需的能量[38-39],煙粉虱的刺吸式取食是其獲取生長發(fā)育所需能量的唯一途徑。韌皮部取食參數(shù)中,韌皮部取食時(shí)間是最能直接反映刺吸式口器昆蟲寄主適應(yīng)性的參數(shù)。煙粉虱C+品系和C-品系在兩種寄主植物上的韌皮部取食時(shí)間(即E2波的總時(shí)間)均沒有差異,這表明兩個(gè)品系的取食量很接近,營養(yǎng)和能量的獲取沒有很大差異。因此,兩個(gè)品系在寄主植物上的取食行為可能沒有直接影響二者獲取能量。
兩個(gè)品系在寄主植物非韌皮部的取食行為存在顯著差異,表明煙粉虱C+品系可能比C-品系消耗更多的能量。非韌皮部取食階段是昆蟲在口針與植物表面接觸后刺入表皮通過葉肉細(xì)胞間隙的過程[40],昆蟲口針在到達(dá)韌皮部之前往往需要經(jīng)過多次刺探才能找到合適的吸食位點(diǎn)[41-42]。刺探次數(shù)越多,刺探時(shí)間越長,意味著在尋找合適的吸食位點(diǎn)的過程中消耗能量越多,取食效率較低。本研究中,煙粉虱C+品系比C-品系在棉花非韌皮部具有更長的刺探時(shí)間和路徑波時(shí)間;在番茄上有更多的刺探總次數(shù)。這表明C+品系可能比C-品系消耗更多的能量,取食效率相對(duì)較低。同時(shí),轉(zhuǎn)錄組數(shù)據(jù)分析也發(fā)現(xiàn)(未發(fā)表數(shù)據(jù)),相對(duì)于煙粉虱C-品系,C+品系與新陳代謝相關(guān)基因(如與ATP酶相關(guān)基因)的表達(dá)量多呈上升趨勢(shì),這也表明煙粉虱C+品系比C-品系可能消耗了更多能量。
研究表明,昆蟲能量分配可能會(huì)影響其適合度[43-47]。一方面,昆蟲用于滯育解除等方面的能量消耗,可能降低其適合度。例如,中華通草蛉()在越冬后,滯育解除過程中可能需要能量消耗,使其生殖可用的能量減少,從而導(dǎo)致產(chǎn)卵量降低[48]。另一方面,昆蟲可能通過減少解毒代謝等方面的能量消耗,來增加其適合度。如感染中國番茄黃化曲葉病毒(TYLCCV)的煙粉虱可能通過減少解毒代謝來降低能量消耗,從而來增加自身的適合度[49]。此外,某些昆蟲可能存在降低能量代謝消耗進(jìn)而避免或減緩適合度代價(jià)的策略。如橘小實(shí)蠅()幼蟲在應(yīng)對(duì)殺蟲劑的持續(xù)脅迫時(shí),解毒代謝酶基因集中在中腸與脂肪體內(nèi)高度表達(dá),減少在抵御外源殺蟲劑傷害時(shí)額外能量的消耗[44],這可能避免或減緩了種群的適合度代價(jià)。本研究中,煙粉虱C+品系和C-品系的取食行為差異很可能通過影響能量消耗,進(jìn)而導(dǎo)致兩個(gè)品系適合度的差異。因此,筆者推測(cè)煙粉虱C+品系在取食寄主植物的過程中比C-品系消耗了更多能量,使煙粉虱用于繁殖方面的能量減少,從而導(dǎo)致適合度代價(jià)。今后,將結(jié)合其他技術(shù)(如基因熒光定量、RNAi等技術(shù))進(jìn)一步驗(yàn)證能量代謝與適合度代價(jià)的關(guān)系。
煙粉虱C+品系和C-品系在寄主植物韌皮部的取食行為沒有差異,在非韌皮部存在顯著差異。在非韌皮部的取食行為差異可能與其適合度差異有關(guān)。煙粉虱C+品系和C-品系的取食行為差異可能與影響能量代謝有關(guān)。
致謝:河南農(nóng)業(yè)大學(xué)化學(xué)生態(tài)實(shí)驗(yàn)室閆鳳鳴教授團(tuán)隊(duì)提供了EPG銀膠和技術(shù)指導(dǎo),美國肯塔基大學(xué)的Jordan Hampton博士和潘慧鵬博士對(duì)英文摘要進(jìn)行了潤色與修改,在此一并表示感謝!
[1] De Barro P J, Liu S S, Boykin L M, Dinsdale A B.: a statement of species status., 2011, 56: 1-19.
[2] Firdaus S, Vosman B, Hidayati N, Supena J, Darmo E, Visser R, van Heusden A W. Thespecies complex: additions from different parts of the world., 2013, 20(6): 723-733.
[3] Wang H L, Yang J, Boykin L M, Zhao Q Y, Li Q, Wang X W, Liu S S. The characteristics and expression profiles of the mitochondrial genome for the Mediterranean species of thecomplex., 2013, 14(1): 401.
[4] 褚棟, 潘慧鵬, 國棟, 陶云荔, 劉佰明, 張友軍. Q型煙粉虱在中國的入侵生態(tài)過程及機(jī)制. 昆蟲學(xué)報(bào), 2012, 55(12): 1399-1405.
Chu D, Pan H P, Guo D, Tao Y L, Liu B M, Zhang Y J. Ecological processes and mechanisms of invasion of the alien whiteflybiotype Q in China., 2012, 55(12): 1399-1405. (in Chinese)
[5] 褚棟, 張友軍, 畢玉平, 付海濱.屬共生菌及其對(duì)節(jié)肢動(dòng)物宿主適合度的影響. 微生物學(xué)報(bào), 2005, 45(5): 817-820.
Chu D, Zhang Y J, Bi Y P, Fu H B.endosymbionts and their effects on the fitness of the arthropod hosts., 2005, 45(5): 817-820. (in Chinese)
[6] Chiel E, Inbar M, Mozes-Daube N, White J A, Hunter M S, Zchori-Fein E. Assessments of fitness effects by the facultative symbiontin the sweetpotato whitefly (hemiptera: aleyrodidae)., 2009, 102(3): 413-418.
[7] Su Q, Oliver K M, Pan H P, Jiao X G, Liu B M, Xie W, Wang S L, Wu Q J, Xu B Y, White J A, Zhou X G, Zhang Y J. Facultative symbiontconfers benefits to(Hemiptera: Aleyrodidae), an invasive agricultural pest worldwide., 2013, 42(6): 1265-1271.
[8] Cass B N, Yallouz R, Bondy E C, Mozes-Daube N, Horowitz A R, Kelly S E, Zchori-Fein E, Hunter M S. Dynamics of the endosymbiontin an insect pest., 2015, 70(1): 287-297.
[9] Himler A G, Adachi-Hagimori T, Bergen J E, Kozuch A, Kelly S E, Tabashnik B E, Chiel E, Duckworth V E, Dennehy T J, Zchori-Fein E, Hunter M S. Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias., 2011, 332(6026): 254-256.
[10] 楊義婷, 郭建洋, 龍楚云, 劉懷, 萬方浩. 昆蟲內(nèi)共生菌及其功能研究進(jìn)展. 昆蟲學(xué)報(bào), 2014, 57(1): 111-122.
Yang Y T, Guo J Y, Long C Y, Liu H, Wan F H. Advances in endosymbionts and their functions in insects., 2014, 57(1): 111-122. (in Chinese)
[11] Giorgini M, Monti M M, Caprio E, Stouthamer R, Hunter M S. Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont., 2009, 102(4): 365-371.
[12] Provencher L M, Morse G E, Weeks A R, Normark B B. Parthenogenesis in thecomplex (Hemiptera: Diaspididae): a single origin of a worldwide, polyphagous lineage associated withbacteria., 2005, 98(5): 629-635.
[13] Xie R R, Zhou L L, Zhao Z J, Hong X Y. Male age influences the strength of-induced cytoplasmic incompatibility expression in the carmine spider mite, 2010, 45(3): 417-423.
[14] Harris L, Kelly S, Hunter M, Perlman S. Population dynamics and rapid spread of, a bacterial endosymbiont causing cytoplasmic incompatibility in(Hymenoptera: Aphelinidae)., 2010, 104(3): 239-246.
[15] Wang J J, Dong P, Xiao L S, Dou W. Effects of removal ofinfection on fitness of the stored-product pest(Psocoptera: Liposcelididae)., 2008, 101(5): 1711-1717.
[16] Kenyon S, Hunter M. Manipulation of oviposition choice of the parasitoid wasp,, by the endosymbiotic bacterium., 2007, 20(2): 707-716.
[17] 任素麗, 尹祥杰, 郭秋, 任順祥, 邱寶利. 利福平與高溫對(duì)的滅活效果及其對(duì)煙粉虱寄主發(fā)育與繁殖的影響.環(huán)境昆蟲學(xué)報(bào), 2015, 37(3): 467-474.
Ren S L, Yin X J, Guo Q, Ren S X, Qiu B L. Inactive efficiencies of rifampicin and high temperature toand its effects on the biology ofhost., 2015, 37(3): 467-474. (in Chinese)
[18] Chu D, Gao C S, De Barro P, Zhang Y J, Wan F H, Khan I. Further insights into the strange role of bacterial endosymbionts in whitefly,: comparison of secondary symbionts from biotypes B and Q in China., 2011, 101(4): 477-486.
[19] Pan H P, Li X C, Ge D Q, Wang S L, Wu Q J, Xie W, Jiao X G, Chu D, Liu B M, Xu B Y, Zhang Y J. Factors affecting population dynamics of maternally transmitted endosymbionts in., 2012, 7(2): e30760.
[20] Fang Y W, Liu L Y, Zhang H L, Jiang D F, Chu D. Competitive ability and fitness differences between two introduced populations of the invasive whiteflyQ in China., 2014, 9(6): e100423.
[21] Liu B, Yan F, Chu D, Pan H, Jiao X, Xie W, Wu Q, Wang S, Xu B, Zhou X, Zhang Y. Difference in feeding behaviors of two invasive whiteflies on host plants with different suitability: implication for competitive displacement., 2012, 8(5): 697-706.
[22] 李曉敏, 李靜靜, 湯清波, 閆鳳鳴. 煙堿對(duì)B型和Q型煙粉虱取食行為的影響—基于EPG 和液體飼囊技術(shù)體系. 中國農(nóng)業(yè)科學(xué), 2013, 46(10): 2041-2049.
Li X M, Li J J, Tang Q B, Yan F M. Effects of nicotine on feeding behavior ofB and Q biotypes based on EPG and liquid diet sac technique., 2013, 46(10): 2041-2049. (in Chinese)
[23] 盧少華, 李靜靜, 劉明楊, 白潤娥, 湯清波, 閆鳳鳴. 煙粉虱 B 型和 Q 型競(jìng)爭(zhēng)能力的室內(nèi)比較分析. 中國農(nóng)業(yè)科學(xué), 2015, 48(7): 1339-1347.
Lu S H, Li J J, Liu M Y, Bai R E, Tang Q B, Yan F M. Comparative analysis of the competitiveness between B and Q biotypes ofunder laboratory conditions., 2015, 48(7): 1339-1347. (in Chinese)
[24] YinH D, Wang X Y, Xue K, Huang C H, Wang R J, Yan M F, Xu C R. Impacts of transgenic Bt cotton on the stylet penetration behaviors ofbiotype B: evidence from laboratory experiments., 2010, 17(4): 344-352.
[25] 胡想順, 趙惠燕, 胡祖慶, 李東鴻, 張宇紅. 禾谷縊管蚜在三個(gè)小麥品種上取食行為的EPG比較. 昆蟲學(xué)報(bào), 2007, 50(11): 1105-1110.
Hu X S, Zhao H Y, Hu Z Q, Li D H, Zhang Y H. Comparison offeeding behavior on seedlings of three wheat varieties., 2007, 50(11): 1105-1110. (in Chinese)
[26] Liu B M, Preisser E L, Chu D, Pan H P, Xie W, Wang S L, Wu Q J, Zhou X G, Zhang Y J. Multiple forms of vector manipulation by a plant-infecting virus:and., 2013, 87(9): 4929-4937.
[27] 羅晨, 岳梅, 徐洪富, 張芝利. EPG技術(shù)在昆蟲學(xué)研究中的應(yīng)用及進(jìn)展. 昆蟲學(xué)報(bào), 2005, 48(3): 437-443.
Luo C, Yue M, Xu H F, Zhang Z L. Application of electrical penetration graph (EPG) in entomological studies and new findings., 2005, 48(3): 437-443. (in Chinese)
[28] He Y P, Chen L, Chen J M, Zhang J F, Chen L Z, Shen J L, Zhu Y C. Electrical penetration graph evidence that pymetrozine toxicity to the rice brown planthopper is by inhibition of phloem feeding., 2011, 67(4): 483-491.
[29] Khasdan V, Levin, Rosner A, Morin S, Kontsedalov S, Maslenin L, Horowitz A R. DNA marker for identifying biotypes B and Q of(Hemiptera: Aleyrodidae) and studying population dynamics., 2005, 95(6): 605-613.
[30] Chu D, Zhang Y J, Cong B, Xu B Y, Wu Q J, Zhu G R. Sequences analysis of mtDNA COI gene and molecular phylogeny of different geographical populations of(Gennadius)., 2005, 4(7): 533-541.
[31] Weeks A R, Velten R, Stouthamer R. Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods.:, 2003, 270(1526): 1857-1865.
[32] Pan H P, Chu D, Liu B M, Xie W, Wang S L, Wu Q J, Xu B Y, Zhang Y J. Relative amount of symbionts in insect hosts changes with host-plant adaptation and insecticide resistance., 2013, 42(1): 74-78.
[33] 湯清波, 張大山, 姬琨, 丁識(shí)伯, 閆鳳鳴. 刺吸電位技術(shù)應(yīng)用中的幾個(gè)問題. 應(yīng)用昆蟲學(xué)報(bào), 2011, 48(5): 1519-1527.
Tang Q B, Zhang D S, Ji K, Ding S B, Yan F M. Some key points in applications of electrical penetration graph technique., 2011, 48(5): 1519-1527. (in Chinese)
[34] Moreno-Delafuente A, Garzo E, Moreno A, Fereres A. A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread., 2013, 8(4): e61543.
[35] van Helden M, Tjallingii W F. Tissue localisation of lettuce resistance to the aphidusing electrical penetration graphs., 1993, 68(3): 269-278.
[36] Lei H, Tjallingii W F, van Lenteren J C, Xu R M. Stylet penetration by larvae of the greenhouse whitefly on cucumber., 1996, 79(1): 77-84.
[37] Jiang Y X, Walker G P. Identification of phloem sieve elements as the site of resistance to silverleaf whitefly in resistant alfalfa genotypes., 2007, 125(3): 307-320.
[38] Nardone E, Dey T, Kevan P G. The effect of sugar solution type, sugar concentration and viscosity on the imbibition and energy intake rate of bumblebees., 2013, 59(9): 919-933.
[39] Detrain C, Prieur J. Sensitivity and feeding efficiency of the black garden antto sugar resources., 2014, 64: 74-80.
[40] Gabrys B, Tjallingii W F, Van Beek T A. Analysis of EPG recorded probing by cabbage aphid on host plant parts with different glucosinolate contents., 1997,23(7): 1661-1673.
[41] Lei H, Tjallingii W F, van Lenteren J C. Effect of tethering during EPG recorded probing by adults of the greenhouse whitefly., 1997, 121(1/5): 211-217.
[42] Lei H, van Lenteren J C, Xu R M. Effects of plant tissue factors on the acceptance of four greenhouse vegetable host plants by the greenhouse whitefly: an electrical penetration graph (EPG) study., 2001, 98(1): 31-36.
[43] 趙靜, 王甦, 郭曉軍, 高希武, 張帆. 寄生蜂低溫貯藏研究進(jìn)展. 中國農(nóng)業(yè)科學(xué), 2014, 47(3): 482-494.
Zhao J, Wang S, Guo X J, Gao X W, Zhang F. Progress in research of cold storage of insect parasitoids., 2014, 47(3): 482-494. (in Chinese)
[44] 申光茂, 王曉娜, 黃勇, 豆威, 王進(jìn)軍. 橘小實(shí)蠅幼蟲解毒酶系基因應(yīng)對(duì)高效氯氰菊酯脅迫的組織特異性表達(dá). 中國農(nóng)業(yè)科學(xué), 2015, 48(19): 3857-3865.
Shen G M, Wang X N, Huang Y, Dou W, Wang J J.Tissue specific expression of genes encoding detoxification enzymes in the larvae ofundercypermethrin stress., 2015, 48(19): 3857-3865. (in Chinese)
[45] Carter M J, Simon J C, Nespolo R F. The effects of reproductive specialization on energy costs and fitness genetic variances in cyclical and obligate parthenogenetic aphids., 2012, 2(7): 1414-1425.
[46] Terblanche J S, Klok C J, Chown S L. Metabolic rate variation in(Diptera: Glossinidae): gender, ageing and repeatability., 2004, 50(5): 419-428.
[47] Kliot A, Ghanim M. Fitness costs associated with insecticide resistance., 2012, 68(11): 1431-1437.
[48] 陳珍珍, 李明貴, 郭亞楠, 印象初, 張帆, 許永玉. 光周期和溫度對(duì)中華通草蛉不同越冬時(shí)期成蟲滯育后生物學(xué)特性的影響. 中國農(nóng)業(yè)科學(xué), 2013, 46(8): 1610-1618.
Chen Z Z, Li M G, Guo Y N, Yin X C, Zhang F, Xu Y Y.Effects of photoperiod and temperature on the post-diapause biology of(Tjeder) adults in different overwintering periods., 2013, 46(8): 1610-1618. (in Chinese)
[49] Luan J B, Wang Y L, Wang J, Wang X W, Liu S S. Detoxification activity and energy cost is attenuated in whiteflies feeding on-infected tobacco plants., 2013, 22(5): 597-607.
(責(zé)任編輯 岳梅)
Comparison of Feeding Behavior Between TwoStrains Using EPG Technique
ZHANG Wen-ping1, LIU Bai-ming2, ZHANG Shan1, WAN Fang-hao1,3, CHU Dong1
(1College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao 266109, Shandong;2Tianjin Institute of Plant Protection, Tianjin 300384;3State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193)
【Objective】is one of the endosymbiont species infects in sweetpotato whiteflyGennadius (Hemiptera: Aleyrodidae). Previous studies have shown that there was a significantdifference in the fitness between- infected (C+) and -uninfected (C-) strains ofQ biotype. However, the behavioral mechanism causing the difference in fitness between the two strains is not clear. This study investigated the difference in the feeding behavior of these two strains to reveal the underlying mechanism responsible for the difference in fitness. 【Method】The feeding behavior of C+strain and C-strain on cotton and tomato during 6 h was recorded using an electrical penetration graph (EPG). The waveform types of feeding behavior were then identified and analyzed. A total of 19 parameters (11 parameters associated with non-phloem phase and 8 parameters associated with phloem phase) were calculated and analyzed to compare the two strains’ feeding behavior at phloem stage and non-phloem stage.【Result】Of the 118successful recordings obtained in this experiment, 58 recordings (C-strain=28 replicates and C+strain=30 replicates) were on cottons and 60 recordings (C-strain=31 replicates and C+strain=29 replicates) were on tomatoes. The results showed that at the non-phloem phase on cottonC+strain had a significantly longer total duration of probes than C-strain. C+strain had a significantly shorter time than C-strain in terms of in duration of np after the first E.The parameters associated with salivation into a sieve element and ingestion of a sieve element sap had no significant difference between the two strains on cotton at phloem phase, and the percentage of whiteflies reaching phloem phase within 6 hours had no significant difference. Meanwhile, at the non-phloem phase, C+strain had a greater number of total probes and probes before the 1st E than C-strain on tomato. C+strain also had a longer time from the 1st probe to the 1st sustained E2 and a shorter average probe time than C-strain. The parameters regarding salivation into a sieve element and ingestion of sieve element sap also had no significant difference between the two strains on tomato at phloem phase. Also, the percentage of whiteflies reaching phloem phase within 6 hours had no significant difference. On the whole, the parameters associated phloem phase had no significant difference between the two strains. Compared with C-strain, C+strain has a longer probing time and requires more probes at non-phloem phase.【Conclusion】The feeding behavior of C+strain and C-strain has no significant difference at phloem phase, but does have a significant difference at non-phloem phase. The results indicate that the feeding behavior difference of the two strains at non-phloem phase is most likely related to the difference in fitness.
Q biotype; fitness; electrical penetration graph (EPG); feeding behavior
2016-01-27;接受日期:2016-03-22
國家自然科學(xué)基金(31272105,31572064)、泰山學(xué)者建設(shè)工程專項(xiàng)經(jīng)費(fèi)
張文平,Tel:0532-88030319;E-mail:wenpingzhang@126.com。通信作者褚棟,Tel:0532-88030319;E-mail:chinachudong@qau.edu.cn