朱慧鑫,鄧羽松,夏振剛,趙媛,丁樹文
(華中農(nóng)業(yè)大學資源與環(huán)境學院,430070,武漢)
鄂東南花崗巖崩崗剖面土壤液塑限特征及影響因子分析
朱慧鑫,鄧羽松,夏振剛,趙媛,丁樹文?
(華中農(nóng)業(yè)大學資源與環(huán)境學院,430070,武漢)
崩崗是鄂東南花崗巖地區(qū)普遍存在的土壤侵蝕現(xiàn)象,給農(nóng)業(yè)生態(tài)與經(jīng)濟發(fā)展帶來了嚴重影響。研究崩崗剖面土壤液塑限特征不僅有利于崩崗侵蝕機理的研究,也為崩崗水土流失的防治改良提供理論依據(jù)。以通城縣五里鎮(zhèn)典型的花崗巖崩崗剖面為對象,通過室外采樣結合室內(nèi)液塑限聯(lián)合測定實驗,以及土壤理化性質(zhì)測定,分析花崗巖崩崗剖面土壤液塑限規(guī)律及其影響因子,并探討其與崩崗發(fā)育的關系。結果表明:花崗巖崩崗不同層次間的土壤液塑限差異顯著,淋溶層和淀積層的液限值均大于50%,塑限值為30%左右,顯著高于母質(zhì)層;土壤液塑限值受黏粒質(zhì)量分數(shù)、有機質(zhì)質(zhì)量分數(shù)、容重、游離氧化鐵質(zhì)量分數(shù)等影響,并隨各因子的增大而增大,均呈正相關關系;其中,黏粒質(zhì)量分數(shù)、游離氧化鐵質(zhì)量分數(shù)對土壤液塑限的影響更加顯著(R2=0.860**,R2=0.908**)。花崗巖崩崗土壤液塑限過渡層、母質(zhì)層相對較低,在遇到降雨沖刷時,土體狀態(tài)極易發(fā)生改變,易發(fā)生水土流失。利用土壤基本理化性質(zhì),可以對土壤液塑限進行預測,并為加強崩崗侵蝕機理研究及其治理提供依據(jù)。
花崗巖;崩崗;液限;塑限;影響因子
崩崗是發(fā)生在我國南方花崗巖地區(qū)相當嚴重的土壤侵蝕現(xiàn)象,主要是山坡土體在水力和重力的共同作用下,受破壞致崩塌和沖刷而造成的[1-2],集中分布在湖北、安徽、江西、廣東、湖南、福建、廣西7?。ㄗ灾螀^(qū))的花崗巖風化殼深厚的丘陵區(qū)[3]。崩崗侵蝕模數(shù)大,侵蝕危害嚴重,侵蝕泥沙堆積掩埋農(nóng)田、損毀水利交通設施、淤積江河湖塘,極大地制約著生態(tài)環(huán)??沙掷m(xù)發(fā)展[4]。
近年來,崩崗的研究深得廣泛重視,取得了一定的研究成果。在現(xiàn)有研究中,眾多的學者將研究點放在了崩崗水分運移上。如牛德奎等[5]、邱世鈞[6]、吳志峰[7]、鄧羽松[8]等眾多學者描述了崩崗侵蝕的內(nèi)在機理,提出水分對崩崗土壤入滲能力、抗蝕性和抗剪能力等均有影響。土壤液限和塑限即界限含水量,分別是土壤處于塑性狀態(tài)時的最高含水量和最低含水量[9],它可以表征土壤狀態(tài)隨含水量的變化而改變的能力,是土壤力學性質(zhì)的直觀反映,對預測地表徑流及降雨對崩崗侵蝕的影響有重要意義;因此,探討土壤液塑限性質(zhì)對崩崗的深入研究是有價值的。
目前,國際上關于土壤液塑限的研究主要集中在建筑工程、施工技術方面,用于分析巖土力學[10-11],已為施工所用。對于探討土壤液塑限影響因子及其與崩崗侵蝕關系的研究報道甚少,且相關研究大都集中在土壤顆粒和有機質(zhì)質(zhì)量分數(shù)2個因子上。如花可可等[12]對低有機質(zhì)質(zhì)量分數(shù)的土壤紫色土和水稻土進行研究,并簡述有機質(zhì)與液塑限的關系,表明土壤液限值與有機質(zhì)和黏粒質(zhì)量分數(shù)成正比。李卓等[13]研究發(fā)現(xiàn),黏粒質(zhì)量分數(shù)有利于土壤持水,從而可以提高土壤液限值。莊雅婷等[14]說明了崩崗紅土層的顆粒組成與有機質(zhì)對土壤液塑限的影響。這些研究雖各自從不同的土壤類型和土壤層次進行研究,闡述土壤液塑限的影響因子,但土壤液塑限作為受多因素影響的指標,其影響因子容重和游離氧化鐵對其的具體作用卻受到了忽略。對崩崗剖面各層次間液塑限存在的差異性和規(guī)律性,在現(xiàn)有研究中并未涉及;因此,本研究以分析崩崗剖面各層次間的土壤液塑限特征,并豐富其影響因子的探究為創(chuàng)新點,對鄂東南典型花崗巖崩崗剖面各層次土體,采用液塑限聯(lián)合測定法,進行液塑限測定,描述研究區(qū)土壤液塑限特征,比較各層次土壤液塑限之間的差異,結合土壤的基本理化性質(zhì)(黏粒質(zhì)量分數(shù)、有機質(zhì)質(zhì)量分數(shù)、容重、游離氧化鐵質(zhì)量分數(shù)),深入分析液塑限的影響因子及其對崩崗侵蝕的作用。
研究區(qū)通城縣位于鄂東南地區(qū)(E 113°36′~114°47′,N 29°21′~29°25′),屬于北亞熱帶季風氣候區(qū),氣候溫和,雨量充沛,年平均氣溫15.5~16.7℃,最低氣溫-15.2℃,最高氣溫39.7℃,無霜期為260 d,年平均降水量1 550mm。研究區(qū)崩崗主要發(fā)生在低丘的花崗巖風化殼上,土壤類型為紅壤。通城縣是湖北省崩崗集中分布的典型地區(qū),全縣共有崩崗1 102處,占湖北省崩崗總數(shù)的47%,崩崗侵蝕總面積占通城水土流失面積的58.4%[15]。
本研究分別選取通城縣五里鎮(zhèn)的2處活動型崩崗(BG1和BG2,見圖1)。BG1是位于E 113°36′41″,N 29°21′04″,海拔125.95 m的瓢型崩崗,BG2分布在E 114°46′31″,N 29°24′09″,海拔123.89 m,是弧形崩崗。對2崩崗侵蝕剖面依照顏色、質(zhì)地進行層次的劃分,記錄形態(tài)特征和厚度。采樣層次分別為淋溶層、淀積層、過渡層和母質(zhì)層。采樣內(nèi)容包括散土和原狀土,原狀土采用環(huán)刀取樣,用膠帶密封防止水分蒸發(fā),散土采樣采取多點混合進行,在各個層次剖面上采集混合樣。各采集點土壤各層基本理化性質(zhì)見表1。
圖1 活動型崩崗侵蝕剖面Fig.1 Erosion profiles of active collapse slope
表1 崩崗各層次基本理化性質(zhì)Tab.1 Physical and chemical properties of different layers in collapse slope
土壤液塑限值采用液塑限聯(lián)合測定方法,試驗土壤過0.5mm篩后,取200 g代表性土樣加不等量純水,調(diào)制3種不同稠度試樣,采用電磁落錐法,分別測圓錐自重下沉入試樣5 s時的下沉深度,3點圓錐入土深度大約分別為3~4、7~9和15~17 mm。按標準規(guī)定:下沉深度17mm所對應的含水量為17 mm液限,沉入2 mm所對應的含水量為塑限;土壤顆粒組成采用吸管法測定;密度采用環(huán)刀、烘干稱量法測得;土壤有機質(zhì)采用重鉻酸鉀(K2Cr2O7)-硫酸亞鐵(FeSO4)法測定;游離氧化鐵質(zhì)量分數(shù)采用二亞硫酸鈉-檸檬酸鈉-重碳酸鈉(DCB法)測定。
利用所測的土壤液限、塑限值計算塑性指數(shù)
式中:Ip為塑性指數(shù);wL為液限,%;wp為塑限,%。
試驗數(shù)據(jù)處理,采用Excel2007進行數(shù)據(jù)統(tǒng)計與分析,并繪制相應的圖表進行比對,利用SPSS 18.0進行相關性分析。
3.1 崩崗剖面土壤液塑限特征
如表2所示,2處崩崗各層次間的界限含水量都有較明顯的差別,淋溶層、淀積層遠高于母質(zhì)層,2處崩崗淋溶層塑限值分別為32.3%和26.5%,液限值為57.1%和50.8%;淀積層塑限值分別為31.3%和35.8%,液限值為58.2%和55.3%。2處崩崗淋溶層、淀積層液限值均大于50%,塑限值均在30%左右,說明這2層的土體具有較好的抵抗外力變形的能力。母質(zhì)層的液塑限均為最低值,塑限值分別為21.7%和26.2%;液限值分別為34.6%和36.1%。BG1過渡層液塑限值較低,BG2其值較高,與淀積層接近,液限值近55%,塑限值近35%。這說明含水量的變化,對上面的土層影響較小,當遇到降雨沖刷時,土體狀態(tài)不易轉變?yōu)榱鲃訝顟B(tài),可謂更加堅實,不易流失;相反,含水量的變化對母質(zhì)層土體的狀態(tài)影響很大,一旦水分質(zhì)量分數(shù)稍有增加,土體就可從固體狀態(tài)轉變?yōu)榱鲃訝顟B(tài),非常容易發(fā)生流失。
表2 崩崗各層次界限含水率及質(zhì)地Tab.2 Moisture content of boundaries and texture of different layers in collapse slope
塑性指數(shù)是液塑限之差值,可用于土體分類。根據(jù)GB/T 50145—2007《土的工程分類標準》[16],2處崩崗的母質(zhì)層的塑性指數(shù)介于9.9%~12.9%之間,均屬于含細粒土砂,其余層次均在18%以上,屬于粉土質(zhì)砂。土體的性質(zhì)不同,使得土壤抵抗侵蝕的能力也有所不同。此地崩崗上2層土壤塑性指數(shù)較高,在小雨和中雨、降雨持續(xù)時間短的情況下,塑性狀態(tài)不易改變,土壤相對緊實,土體強度較高,不容易出現(xiàn)崩塌和流失等現(xiàn)象;但若降雨持續(xù)時間足夠長,土壤的含水量達到一個較高的水平,導致土壤自重明顯增加,土壤抗剪強度下降,就可能發(fā)生崩塌現(xiàn)象[17]。而此地崩崗母質(zhì)層的土壤液限和塑限值比上2層土壤的相同指標小很多,塑性指數(shù)也很低;因此,在短時間下小雨的情況下,土壤很容易達到塑限值,加之土壤松散,土體強度小,極易發(fā)生崩塌及水土流失。由于液塑限低的土壤層次處于崩崗下部,在長時間的雨水沖刷下,母質(zhì)層土體抗剪強度迅速下降,形成軟弱面,漸漸流失,侵蝕情況比淋溶層、淀積層嚴重很多,導致下層土體掏空,形成內(nèi)凹的跌坑,工程上稱為“龕”。龕的形成與發(fā)育是崩崗形成的初步階段[18]。龕形成后,其上層土體少了下層支撐,在土壤自重的影響下,更易發(fā)生溯源侵蝕,發(fā)生土體的全面崩塌。
3.2 土壤液塑限與理化性質(zhì)相關性分析
為了探究土壤各基本理化性質(zhì)對液塑限的影響,利用SPSS對土壤液塑限、塑性指數(shù)與黏粒質(zhì)量分數(shù)、有機質(zhì)質(zhì)量分數(shù)、密度、游離氧化鐵質(zhì)量分數(shù)的數(shù)據(jù)進行相關性分析,結果見表3。
3.2.1 黏粒質(zhì)量分數(shù)對土壤液塑限的影響 土壤黏粒質(zhì)量分數(shù)是土壤可蝕性的重要影響因素。由表1可知,2處采樣崩崗黏粒質(zhì)量分數(shù)的變化規(guī)律都為淋溶層、淀積層黏粒質(zhì)量分數(shù)高,隨采樣深度的增加而逐漸減小,母質(zhì)層幾乎不含黏粒。對比2處崩崗的土壤液塑限變化規(guī)律,通過相關性分析得知土壤液塑限值與土壤黏粒質(zhì)量分數(shù)成正相關,達到極顯著水平(表3),適當提高土壤黏粒質(zhì)量分數(shù),可以使土壤液塑限值增大。這可能是由于崩崗試驗區(qū)淀積層的花崗巖分化程度較強,高嶺石等黏土礦物質(zhì)量分數(shù)較多[19],在降雨過程中,水分入滲,淋溶層中的黏粒被攜帶向下運移,淀積在淀積層,堵塞了通氣孔隙,使土壤的疏水性能和排水性能降低,滲透系數(shù)變小,保水性能增加,地表容易產(chǎn)流,進而相應提高土壤液塑限值[20]。淋溶層的液限值比淀積層的低,是因淋溶層土壤中根系發(fā)育,黏粒質(zhì)量分數(shù)少,土體較為疏松,使得滲透系數(shù)較大,保水性能有所降低,液塑限值也隨之減小。反之,母質(zhì)層的黏粒質(zhì)量分數(shù)極低,2處崩崗分別為3.68%與4.04%,遠遠小于其他土層,與其他土層的黏粒質(zhì)量分數(shù)差異達到顯著水平,且塑性指數(shù)低,屬含細粒土砂。這可以說明母質(zhì)層的土體非常疏松,孔隙度很大,透水性強,致使該層土壤液塑限值較其他土壤層次都低;因此,松散的母質(zhì)層非常容易被破壞,在地表徑流、雨滴的作用下也很容易沖刷形成空洞,形成龕,進而崩塌。再者,吸附作用是土壤水保持的主要依靠,土壤比表面積愈大,吸附能力就愈強,持水能力就愈高。黏粒作為土粒中最細部分,其比表面積較其他粒徑土粒大,具有很強的吸附能力,當土壤中的水流通過土壤孔隙時,巨大的吸附作用形成較厚的吸附水膜,致使水流速度減緩,細微黏粒及在毛管力作用下的水膜可能填充細微孔隙,對水流起到一定的阻擋作用,進而影響土壤的液限性質(zhì)。
表3 土壤液塑限和各理化性質(zhì)間的相關系數(shù)整合Tab.3 Correlation coefficient between liquid and plastic limits of soil and the physical and chemical properties
3.2.2 有機質(zhì)對土壤液塑限的影響 有機質(zhì)是土壤的重要組成部分,其質(zhì)量分數(shù)的高低,對土壤的液塑限有著很大的影響,有機質(zhì)質(zhì)量分數(shù)過高,會引起土的高塑性[21]。由表1可知,2處崩崗的土壤有機質(zhì)質(zhì)量分數(shù)自上而下均呈遞減趨勢:最高為淋溶層,有機質(zhì)質(zhì)量分數(shù)分別為17.32和19.50 g/kg;最低為母質(zhì)層,有機質(zhì)質(zhì)量分數(shù)分別為5.78和1.54 g/ kg。根據(jù)表3 SPSS相關性分析數(shù)據(jù)發(fā)現(xiàn),土壤液塑限值與有機質(zhì)質(zhì)量分數(shù)呈正相關,隨有機質(zhì)質(zhì)量分數(shù)的增加相應增長。這可能是由于土壤有機質(zhì)質(zhì)量分數(shù)的增加,改善了土壤結構,使土壤孔隙度增加,同時又改變了土壤的膠體狀況,使土壤吸附作用增強,這都有利于土壤水分的保持,進而提高土壤的液限值。而淋溶層的有機質(zhì)質(zhì)量分數(shù)雖高,其液塑限值卻比淀積層低,可能是因為淋溶層具有根系到達和最表層的植物體堆積,由于根系發(fā)育,土壤結構較松散,土壤容重較小,滲透系數(shù)較大[14],持水能力不高,導致土壤液塑限值有所降低。此外,也有研究表明,土壤有機質(zhì)質(zhì)量分數(shù)越高,土壤有效水量越高[22],土壤液塑限值也相應越高,這與土壤液塑限值與有機質(zhì)質(zhì)量分數(shù)呈正相關相一致。以上都可以說明,土壤有機質(zhì)質(zhì)量分數(shù)越高,土壤液塑限值越高,土壤越不容易被沖刷侵蝕,越不容易失穩(wěn)崩塌。這為崩崗區(qū)水土流失防治提供了理論依據(jù),適當?shù)耐ㄟ^種植綠肥等措施,提高崩崗區(qū)底層土壤有機質(zhì),可改善土壤質(zhì)量,增加其抗沖性,防止龕的形成及土壤侵蝕的惡化。
3.2.3 土壤密度對土壤液塑限的影響 土壤密度是土壤的一個基本物理性質(zhì),是衡量土壤松緊程度的指標,對土壤的透氣性、入滲性能、持水能力以及土壤的抗侵蝕能力都有非常大的影響[23]。根據(jù)表1、表2數(shù)據(jù),經(jīng)相關性分析可知,土壤液塑限與密度呈正相關關系(表3)。土壤密度主要通過影響土壤水分入滲,造成土壤持水能力上的差異,進而影響土壤液塑限值。有研究表明,土壤密度增大,土壤團粒結構喪失,土壤孔隙減少,導致入滲能力降低[24]。在同一入滲歷時下,入滲率隨密度的增加而減?。?3]。由于入滲率低,水分難以進入土壤,減緩了土壤含水量的增加速度,使得液塑限值較高。采樣崩崗為典型的紅壤,有較多土壤腐殖質(zhì),結構較好,密度較高,總體持水能力較好,液塑限值較高,不易崩塌流失。雖然整體的抗蝕、持水能力較好,但各層之間存在一定差異,且呈一定規(guī)律。經(jīng)分析,淋溶層密度最大,土壤孔隙少,水分入滲率低,使得液限值提高;母質(zhì)層密度較小,土壤孔隙大,水分入滲率較高,導致液限值小。說明密度對土壤液塑限的影響很大。
3.2.4 游離氧化鐵質(zhì)量分數(shù)對土壤液塑限的影響游離氧化鐵是花崗巖風化土中的重要物質(zhì),也是母巖在成土過程中風化所形成的次生產(chǎn)物[1]。游離氧化鐵的質(zhì)量分數(shù)不同,土壤的膠結能力會發(fā)生較大變化,其質(zhì)量分數(shù)也會影響土壤的中小孔隙和比表面積的分布,小孔隙數(shù)量越多,其比表面積越大,進而影響土壤的蓄水能力。在各層次土壤中,淀積層的游離氧化鐵質(zhì)量分數(shù)最高,2處崩崗均超過30%,母質(zhì)層最低,只有15%左右。其他各層次呈現(xiàn),淋溶層較高,過渡層較小。經(jīng)相關性分析,液塑限、游離氧化鐵兩者也呈正相關(見表3),其中與液限相關性極顯著(R2=0.908**)??赡苁请S游離氧化鐵質(zhì)量分數(shù)的增多,土壤孔隙和比表面積增大,使土壤具有更強的吸附和膠結能力,影響水流速度,從而影響土壤的液塑限性質(zhì)。液塑限值較低的土體底部,當遇到降雨或發(fā)生其他地質(zhì)變化時,就容易崩塌,導致龕的形成、崩崗的發(fā)生。
1)鄂東南花崗巖崩崗土壤液塑限值在層次上具有一定規(guī)律,淋溶層、淀積層較高,過渡層次之,母質(zhì)層最低。但整體來講,各層次液塑限值均較高,液限值最高為58.2%,最低為34.6%,塑限值最高為35.8%,最低為21.7%。依據(jù)塑性指數(shù),可將崩崗剖面進行土體劃分,母質(zhì)層屬于含細粒土砂,淋溶層、淀積層、過渡層屬于粉土質(zhì)砂。
2)黏粒質(zhì)量分數(shù)與游離氧化鐵質(zhì)量分數(shù)此類膠結物,對土壤液塑限有較大的影響,特別是對液限值相關性極顯著。具體表現(xiàn)為黏粒質(zhì)量分數(shù)、游離氧化鐵質(zhì)量分數(shù)越高,土壤保水蓄水能力越強,液塑限值越高。土壤有機質(zhì)質(zhì)量分數(shù)及土壤密度,對液塑限影響大體表現(xiàn)為有機質(zhì)改變土壤結構,進而影響膠結作用,密度影響水分入滲率,均與土壤液塑限成正相關關系,其質(zhì)量分數(shù)越高,土壤液塑限值越高,抗侵蝕能力越強。
3)土壤液塑限值的高低,在一定程度上可以影響崩崗的可蝕性,母質(zhì)層的液塑限很低,極易被侵蝕,需引起高度重視,并采取多種工程措施加以防治。該研究結果為崩崗侵蝕機理的深入研究,以及龕的防治提供可靠依據(jù)。
[1] 王禮先,孫保平,余新曉,等.中國水利百科全書:水土保持分冊[M].北京:中國水利水電出版社,2004:48. Wang Lixian,Sun Baoping,Yu Xinxiao,et al.Chinese water conservancy encyclopedia:fascicle of soil and water conservation[M].Beijing:China Water and Power Press,2004:48.(in Chinese)
[2] 唐克麗.中國水土保持[M].北京:科學出版社,2004:80. Tang Keli.Soil and Water Conservation in China[M]. Beijing:Science Press,2004:80.(in Chinese)
[3] 劉洪鵠,劉憲春,張平倉,等.南方崩崗發(fā)育特征及其監(jiān)測技術探討[J].中國水土保持科學,2011,9(2):19. Liu Honghu,Liu Xianchun,Zhang Pingcang,et al. Characteristics of slop collapse and its monitoring technology in Southern China[J].Science of Soil and Water Conservation,2011,9(2):19.(in Chinese)
[4] 姜超,陳志彪,陳志強.我國崩崗侵蝕與國外劣地侵蝕機制類比[J].中國水土保持科學,2014,12(6):116. Jiang Chao,Chen Zhibiao,Chen Zhiqiang.Comparison ofmechanism between collapsing erosion in China and overseas badland erosion[J].Science of Soil and Water Conservation,2014,12(6):116.(in Chinese)
[5] 牛德奎.華南紅壤丘陵區(qū)崩崗發(fā)育的環(huán)境背景與侵蝕機理研究[D].南京:南京林業(yè)大學,2009:7. Niu Dekui.Research on theenvironmental factors and erosivemechanism of collapsing hill in South China[D].Nanjing:Nanjing Forestry University,2009:7.(in Chinese)
[6] 邱世鈞.紅土坡地崩崗侵蝕過程與機理[J].水土保持通報,1994,14(6):31. Qiu Shijun.Theprocess and mechanism of red earth slope disintegration erosion[J].Bulletin of Soil and Water Conservation,1994,14(6):31.(in Chinese)
[7] 吳志峰,鄧南榮,王繼增.崩崗侵蝕地貌與侵蝕過程[J].中國水土保持,1999,(4):10. Wu Zhifeng,Deng Nanrong,Wang Jizeng.Erosiongeo-morphology and process in Avalanching Hill Areas[J]. Soil and Water Conservation in China,1999,(4):10.(in Chinese)
[8] 鄧羽松,丁樹文,劉辰明,等.鄂東南花崗巖崩崗崩壁土壤水分特征研究[J].水土保持學報,2015,29(4):132. Deng Yusong,Ding Shuwen,Liu Chenming,et al.Soilmoisture characteristics of collapsing gully wall in granite area of Southeastern Hubei[J].Journal of Soil and Water Conservation,2015,29(4):132.(in Chinese)
[9] 黃昌勇,徐建明.土壤學[M].北京:中國農(nóng)業(yè)出版社,2010:150. Huang Changyong,Xu Jianming.Soilscience[M].Beijing:China Agriculture Press,2010:150.(in Chinese)
[10]Stavridakis E I.Influence of liquid limit and slaking on cement stabilized clayey admixtures[J].Geotechnical and Geological Engineering,1999,17(2):145.
[11]Zhang Wenhui,XiWenyong,Wang Baotian,et al.Test study of high liquid limit clay modified by quick lime used as sub-grade material[J].Journal of Central South U-niversity of Technology,2008,15(S2):126.
[12]花可可,魏朝富,任鎮(zhèn)江.土壤液限和抗剪強度特征值及其影響因素研究:基于紫色土區(qū)[J].農(nóng)機化研究,2011,33(6):105. Hua Keke,Wei Chaofu,RenZhenjiang.Characters and effects of soil liquid limit and shear strength in purple hilly—mountainous Region[J].Journal of Agricultural Mechanization Research,2011,33(6):105.(in Chinese)
[13]李卓,吳普特,馮浩,等.黏粒質(zhì)量分數(shù)對土壤水分蓄持能力影響的模擬試驗[J].中國水土保持科學,2009,7(5):94. Li Zhuo,Wu Pute,F(xiàn)eng Hao,et al.Effects of soil clay content on soil water holding capacity by simulated experiments[J].Science of Soil and Water Conservation,2009,7(5):94.(in Chinese)
[14]莊雅婷,黃炎和,林金石,等.崩崗紅土層土壤液塑限特性及影響因素研究[J].水土保持研究,2014,21(103):208. Zhuang Yating,Huang Yanhe,Lin Jinshi,et al.Study onliquid limit and plastic limit characteristics and factors of Benggang in red soil layer[J].Research of Soil and Water Conservation,2014,21(103):208.(in Chinese)
[15]趙媛.鄂東南花崗巖崩崗巖土抗剪強度及崩解特性研究[D].武漢:華中農(nóng)業(yè)大學,2014:13. Zhao Yuan.Study on the rock-soil characteristics of shear strength and disintegration of granite collapse mound in Southestern Hubei[D].Wuhan:Huazhong Agricultural University,2014:13.(in Chinese)
[16]中華人民共和國水利部.土的工程分類標準:GB/T 50145—2007[S].北京:中國計劃出版社,2008:7. Ministry of Water Resources.Soil engineering classification standard:GB/T 50145- 2007[S].Beijing:China Planning Press,2008:7.(in Chinese)
[17]鄧羽松,夏棟,蔡崇法,等.基于分形理論模擬花崗巖崩崗剖面土壤水分特征曲線[J].中國水土保持科學,2016,14(2):1. Deng Yusong,Xia Dong,Cai Chongfa,et al.Simulation of water characteristic curve in the soil profile of the collapsing gully on granite area of South China based on the fractal theory[J].Science of Soil and Water Conservation,2016,14(2):1.(in Chinese)
[18]丁樹文,蔡崇法,張光遠.鄂東南花崗地區(qū)重力侵蝕及崩崗形成規(guī)律的研究[J].南昌工程學院學報,1995(S1):50. Ding Shuwen,Cai Chongfa,Zhang Guangyuan.Astudy on gravitational erosion and the formation of collapse mound in the granite area of Southeast Hubei[J].Journal of Nanchang Institute of Technology,1995(S1):50.(in Chinese)
[19]任兵芳,丁樹文,吳大國,等.鄂東南崩崗崩壁溯源侵蝕特征研究[J].人民長江,2015,46(7):76. Ren Bingfang,Ding Shuwen,Wudaguo,et al.Study of headward erosion characteristics of collapse downland in granite region in southeast Hubei Province[J].Yangtze River,2015,46(7):76.(in Chinese)
[20]鄧羽松,丁樹文,蔡崇法,等.鄂東南崩崗剖面土壤水分特征曲線及模擬[J].土壤學報,2016,53(2):355. Deng Yusong,Ding Shuwen,Cai Chongfa,eta l.Charac-teristiccurves and model analysis of soil moisture in col-lapsemound profiles in Southeast Hubei[J].Acta Pedologica Sinica,2016,53(2):355.(in Chinese)
[21]劉艷華.區(qū)域土的液限和塑限的相關性分析[J].長江科學院院報,2002,19(1):28. Liu Yanhua.Correlation analysis on liquid plastic limit of regional soil[J].Journal of Yangtze River Scientific Research Institute,2002,19(1):28.(in Chinese)
[22]文啟凱,賴忠盛,郭源.土壤持水力與土壤有機質(zhì)的關系[J].新疆農(nóng)業(yè)科學,1992,4:159. Wen Qikai,Lao Zhongsheng,Guo Yuan.The relationships betweensoil hydraulic and soil organic matters[J]. Xinjiang Agricultural Sciences,1992,4:159.(in Chinese)
[23]鄭紀勇,邵明安,張興昌.黃土區(qū)坡面表層土壤容重和飽和導水率空間變異特征[J].水土保持學報,2004,18(3):53. Zheng Jiyong,Shao Mingan,Zhang Xingchang.Spatial-variation of surface soil's bulk density and saturated hydraulic conductivity on slope in Loess region[J].Journal of Soil and Water Conservation,2004,18(3):53.(in Chinese)
[24]劉營營,佘冬立,劉冬冬,等.土地利用與土壤容重雙因子對土壤水分入滲過程的影響[J].水土保持學報,2013,27(5):84. Liu Yingying,She Dongli,Liu Dongdong,et al.Influence of land use patterns and bulk density on soil infiltration process[J].Journal of Soil and Water Conservation,2013,27(5):84.(in Chinese)
Liquid and plastic limits and influencing factors for the profiles of collapse slope in Southeast of Hubei Province
Zhu Huixin,Deng Yusong,Xia Zhengang,Zhao Yuan,Ding Shuwen
(College of Resources and Environment,Huazhong Agricultural University,430070,Wuhan,China)
[Background]Slope collapse,a serious soil erosion phenomenon in granite areas of South China,occursmainly on mound or hill slopes under the interaction of water and gravity,causing severe destruction and threats in a wide range,including Hubei,Jiangxi,Anhui,F(xiàn)ujian,Guangdong,and Guang xi,mainly south to the Yangtze River,and hence a grave impact on the economy in these hilly regions.The study of liquid and plastic limits not only has beneficial for the corrosion mechanism of slope collapse,but also provides theoretic basis for the prevention and control of soil and water loss.[Methods]In order to explore the objective law and influencing factors of liquid and plastic limits in different soil layers,a joint investigation of field survey and indoor analysis was used to study the relationships between liquid-plastic limits and some physical and chemical properties(such as bulk density,soil particle composition,organicmatter and free iron oxides)of soil.In this study,we selectedthe typical granite slope collapse from the town ofWuli in Tongcheng County as the objects,taking profile samples(eluvial horizon,illuvial horizon,cambic horizon,and parent material layer),and measuring their liquid and plastic limits with liquid-plastic combine tester.The physical and chemical properties weremeasured using reference method.The relationship followed from correlation calculations by using SPSS.Moreover,the characteristics and influencing factors of liquid limits and plastic limits,aswell as their relationships were analysed and discussed.[Results]The liquid limits of eluvial and illuvial horizons were both higher than 50%,while the plastic limits were about 30%.All of them are significantly higher than those of the parent material layer.We also discovered that the higher the soil clay content,organic matter content,bulk density and free iron oxides in the profile of slope collapse were,the higher the liquid limits and plastic limits were.This indicated significant positive correlation between these parameters.We noticed that the influence from soil clay content and from free iron oxides were specially remarkable(R2=0.860**,R2=0.908**).[Conculsions]There are the objective laws in different soil layers between the liquid and plastic limits of collapse slope.Eluvial horizon's and illuvial horizon's liquid and plastic limits of granite collapse slope are higher.As the consequence,the original soil state is quite easy to change and thus which causes loss of soil and water,when rains wash. Furthermore,liquid and plastic limits are closely correlated with soil clay content,organic matter content,bulk density and free iron oxides.Onemay predict and improve the liquid and plastic limits with aids of physical and chemical properties of soil.These results provide evidences for studying the erosion mechanism and the methods of prevention of slope collapse.
granite;collapse slope;liquid limit;plastic limit;influencing factor
S157.1
A
1672-3007(2016)05-0001-07
10.16843/j.sswc.2016.05.001
2016- 02- 20
2016- 07- 04
項目名稱:國家自然科學基金“花崗巖紅壤優(yōu)先流及其與崩崗侵蝕發(fā)育的關系”(41571258);華中農(nóng)業(yè)大學國家級大學生創(chuàng)新創(chuàng)業(yè)訓練計劃“花崗巖崩崗不同層次土壤可蝕性與抗沖性對龕形成的影響”(201510504021)
朱慧鑫(1995—),女,本科生。主要研究方向:水土保持與環(huán)境生態(tài)。E-mail:vincyicon@163.com
?通信作者簡介:丁樹文(1964—),男,副教授,碩士生導師。主要研究方向:水土保持與農(nóng)業(yè)生態(tài)。E-mail:dingshuwen@ mail.hzau.edu.cn