寧傳麗,蔡斌華,王 濤,喬玉山
(南京農(nóng)業(yè)大學(xué) 園藝學(xué)院, 南京210095)
?
五倍體草莓及其十倍體的葉片差異表達(dá)蛋白分析
寧傳麗,蔡斌華,王濤,喬玉山*
(南京農(nóng)業(yè)大學(xué) 園藝學(xué)院, 南京210095)
以二倍體綠色草莓(FragariaviridisDuch.)為父本、八倍體栽培草莓‘房香’(F. ×ananassa‘Fusanoka’)為母本雜交所得的五倍體草莓(株系代號(hào):FxLs-11-37,2n=5x=35)及其染色體加倍而成的十倍體(株系代號(hào):A3,2n=10x=70)草莓為試材,觀察記載其部分農(nóng)藝性狀、SPAD值以及凈光合速率,利用雙向凝膠電泳技術(shù)對(duì)草莓染色體加倍后葉片蛋白質(zhì)進(jìn)行了分析,獲得了分辨率高、重復(fù)性好的電泳圖譜。結(jié)果表明:(1)與五倍體FxLs-11-37相比,十倍體A3的株型明顯矮化、植株冠徑變大、葉長(zhǎng)葉寬增大、葉片增厚以及葉色濃綠,其葉片的SPAD值與凈光合速率顯著高于FxLs-11-37。(2)通過(guò)PDQuest軟件對(duì)圖譜分析表明,兩者在等電點(diǎn)4~7、分子量14.4~66.2 kD范圍內(nèi)蛋白質(zhì)斑點(diǎn)分布最多,可識(shí)別的總蛋白質(zhì)斑點(diǎn)數(shù)超過(guò)700個(gè),其中蛋白質(zhì)表達(dá)差異水平在1.5倍以上的有18個(gè),2.0倍以上的有4個(gè)。利用MALDI-TOF-MS/MS質(zhì)譜技術(shù)鑒定了這4個(gè)差異蛋白質(zhì),分別是草莓主要過(guò)敏原a 1-E、核內(nèi)不均一核糖核蛋白1、葉綠體硫辛?;厦?、NAD(P)H 脫氫酶(醌)FQR1類似蛋白質(zhì)。這些差異蛋白質(zhì)主要與抗逆、mRNA轉(zhuǎn)運(yùn)、物質(zhì)與能量代謝相關(guān)。熒光定量PCR對(duì)上述4個(gè)蛋白編碼基因的轉(zhuǎn)錄表達(dá)水平檢測(cè)表明,與蛋白質(zhì)表達(dá)差異的趨勢(shì)一致。該研究獲得了草莓染色體加倍后差異表達(dá)的蛋白質(zhì),為深入研究提供了線索。
草莓;五倍體;染色體加倍;差異蛋白質(zhì)
草莓屬(FragariaDuch.)植物染色體基數(shù)x=7,倍性水平豐富,主要有二倍體(2x=14)、四倍體(4x=28)、八倍體(8x=56)等類型。人工雜交獲得的草莓屬多樣性倍性資源[1-2],為草莓倍性育種奠定了基礎(chǔ),也為多倍體形成機(jī)制研究提供了寶貴資源。隨著倍性的改變,植物基因組的結(jié)構(gòu)和基因的表達(dá)會(huì)發(fā)生一系列的變化,如染色體重組、基因沉默、基因的非加性表達(dá)等[3-4]。植物多倍體的表型常表現(xiàn)出植株粗壯、節(jié)間變短、葉色更深[5]、生長(zhǎng)緩慢、開(kāi)花推遲[6-7]及抗性增強(qiáng)[8]等特征,這些變化歸根結(jié)底是蛋白質(zhì)表達(dá)的結(jié)果[9-10]。
蛋白質(zhì)組學(xué)為蛋白水平上的差異研究提供了新技術(shù),在植物研究中的應(yīng)用越來(lái)越廣泛,如雄性不育[11]、抗病抗逆研究[12]等。植物多倍化的蛋白質(zhì)組學(xué)方面的研究已有不少報(bào)道,涉及木薯[13]、擬南芥[14]、香蕉[15]、甘藍(lán)[16]、棉花[17]、馬鈴薯[18]和小麥[19-20]等。雖然草莓是較早開(kāi)展蛋白質(zhì)表達(dá)譜研究的果樹(shù)種類之一[21],但有關(guān)草莓屬植物多倍體蛋白質(zhì)組學(xué)的相關(guān)研究尚屬空白。本研究采用雙向電泳技術(shù)進(jìn)行蛋白質(zhì)組學(xué)分析,探尋草莓五倍體種間雜種與染色體加倍后蛋白質(zhì)表達(dá)譜的差異,并對(duì)差異蛋白點(diǎn)進(jìn)行基質(zhì)輔助激光解吸電離飛行時(shí)間質(zhì)譜(MALDI-TOF-MS/MS)鑒定,進(jìn)一步豐富草莓染色體加倍的分子生物學(xué)機(jī)制。
1.1實(shí)驗(yàn)材料
以二倍體綠色草莓(FragariaviridisDuch.)為父本、八倍體栽培草莓‘房香’(F. ×ananassa‘Fusanoka’)為母本種間雜交獲得草莓實(shí)生苗,經(jīng)染色體計(jì)數(shù)確認(rèn)為五倍體的株系FxLs-11-37(2n=5x=35)為試材,用1.0 mg·L-1秋水仙素溶液浸泡莖尖48 h,獲得經(jīng)染色體基數(shù)確定為十倍體的株系A(chǔ)3(2n=10x=70)[22]。上述試材盆栽于南京農(nóng)業(yè)大學(xué)牌樓實(shí)驗(yàn)基地,于6月上旬,選取長(zhǎng)勢(shì)整齊的植株,剪取靠近頂端生長(zhǎng)點(diǎn)往外數(shù)第一張展開(kāi)葉(復(fù)葉)的中心葉,液氮速凍后存于-70 ℃冰箱備用。
1.2 1農(nóng)藝性狀及SPAD(Soil plant analysis development)值測(cè)定隨機(jī)選取長(zhǎng)勢(shì)旺盛且一致的FxLs-11-37與A3各10株,按照趙密珍等[23]的描述測(cè)量其株高、中心葉的葉長(zhǎng)及葉寬以及植株冠徑。采用SPAD-502 Plus便攜式葉綠素測(cè)定儀分別測(cè)量成熟葉片和幼葉的SPAD值,測(cè)定標(biāo)準(zhǔn)為:幼葉測(cè)定靠近頂端生長(zhǎng)點(diǎn)往外數(shù)第一張展開(kāi)葉(復(fù)葉)的中心葉,成熟葉片測(cè)定靠近頂端生長(zhǎng)點(diǎn)往外數(shù)第三張展開(kāi)葉(復(fù)葉)的中心葉,計(jì)算平均值,方差分析采用SPSS 19.0。
1.2 2凈光合速率的測(cè)定分別選取5株長(zhǎng)勢(shì)旺盛且一致的FxLs-11-37與A3,在陽(yáng)光較好的天氣,利用LP-6400型便攜式光合儀測(cè)定靠近頂端生長(zhǎng)點(diǎn)第三張展開(kāi)葉(復(fù)葉)的中心葉在7:30、9:00、10:30、12:00、15:00、16:30與18:00等7個(gè)時(shí)間點(diǎn)的凈光合速率(net photosynthetic rate,Pn),計(jì)算平均值,方差分析采用SPSS 19.0。
1.3蛋白質(zhì)提取
采用TCA-丙酮沉淀法提取草莓葉片總蛋白質(zhì)。分別稱取約0.6 g樣品液氮中研磨成粉,轉(zhuǎn)至10 mL離心管,加入7 mL -20 ℃預(yù)冷的質(zhì)量濃度為100 g·L-1TCA/丙酮(含0.07% DTT),-20 ℃沉淀1.5 h后于4 ℃、12 000 r/min離心30 min,棄上清;將沉淀重懸浮于-20 ℃預(yù)冷丙酮溶液(含0.07% DTT),-20 ℃過(guò)夜,4 ℃、12 000 r/min離心30 min,棄上清,重復(fù)此步驟直至上清液無(wú)色。將盛有沉淀的離心管用封口膜封口,扎孔,置于4 ℃冰箱干燥成蛋白質(zhì)干粉。每1 mg蛋白質(zhì)干粉加入10 μL的蛋白質(zhì)裂解緩沖液4 ℃裂解3.5 h后于4 ℃、12 000 r/min離心30 min,取上清液,重復(fù)該步驟1~2次至裂解緩沖液中無(wú)雜質(zhì)。
表1 熒光定量PCR引物Table 1 Specific primers used in qPCR
1.4蛋白質(zhì)質(zhì)量濃度測(cè)定
草莓葉片總蛋白質(zhì)量濃度測(cè)定采用Bradford[24]法:以牛血清蛋白(BSA)為標(biāo)準(zhǔn)蛋白,測(cè)定其在595 nm波長(zhǎng)下的吸光度A595,以不同質(zhì)量濃度的BSA為橫坐標(biāo),測(cè)得的吸光度A595為縱坐標(biāo),繪制標(biāo)準(zhǔn)曲線(R2≥0.99),計(jì)算樣品中蛋白質(zhì)的含量。
1.5雙向凝膠電泳
阿里衣服沒(méi)穿,爬起來(lái),先到桌前按了一下錄音機(jī)的鍵,哀樂(lè)轟一聲響起。阿里打開(kāi)窗子,哀樂(lè)便如同被釋放,從窗口涌了出去。
通過(guò)計(jì)算,取一定量含1.5 mg蛋白質(zhì)的溶液加入裂解液至總體積為350 μL,沿IPG膠條槽緩慢均勻加入,將17 cm pH 4~7的IPG預(yù)制膠條膠面朝下覆蓋在樣品上,在膠面上覆蓋少許礦物油,蓋上蓋子。將膠條槽放在IPGphor等電聚焦電泳儀中,設(shè)置等電聚焦程序:50 V水化13 h,250 V慢速升壓1 h,500 V慢速升壓1 h,1 000 V線性升壓1 h,2 000 V線性升壓1 h,10 000 V線性升壓4 h,10 000 V快速聚焦使運(yùn)行電壓與時(shí)間的乘積達(dá)65 000 VH,完成蛋白等電聚焦分離,等電聚焦過(guò)程溫度設(shè)為19 ℃。
等電聚焦結(jié)束后,立即進(jìn)行膠條的平衡。將IPG膠條放于10 mL平衡緩沖液1中,在水平搖床上振蕩15 min,取出IPG膠條沖洗,放入10 mL平衡緩沖液2中,水平搖床上振蕩15 min。平衡結(jié)束后,將浸洗后的膠條轉(zhuǎn)入體積濃度為12%的十二烷基硫酸鈉-聚丙烯酰胺凝膠(SDS-PAGE)板中進(jìn)行第二向垂直電泳。電泳結(jié)束后,采用G-250膠體考染法染色8 h,超純水脫色至背景清晰。上述電泳分析重復(fù)3次。
1.6凝膠掃描及質(zhì)譜分析
使用Image Scanner掃描儀對(duì)染色后的凝膠進(jìn)行掃描,獲得蛋白質(zhì)點(diǎn)圖像,掃描模式為灰度模式,光密度值為300 dpi。采用PDQuest 8.0分析軟件對(duì)掃描圖像進(jìn)行分析。與參考膠的蛋白質(zhì)點(diǎn)表達(dá)量相比,選取1.5倍以上差異且統(tǒng)計(jì)學(xué)測(cè)驗(yàn)具有顯著性差異的蛋白質(zhì)點(diǎn)做為差異表達(dá)蛋白質(zhì)點(diǎn)。
取2倍以上差異表達(dá)蛋白質(zhì)點(diǎn)進(jìn)行酶解,酶解方法參照Katayama等[25]的方法:將含有差異蛋白質(zhì)點(diǎn)的膠塊切下,重新溶解于5 μL含0.1% TFA的溶液中,然后按照1∶1的比例與含50% ACN和1% TFA的α-氰基-4-羥基肉桂酸飽和溶液混合后,取1 μL樣品用ABI5800串聯(lián)飛行時(shí)間質(zhì)譜儀(MALDI-TOF-TOF)(Applied Biosystems)進(jìn)行質(zhì)譜點(diǎn)靶鑒定。
1.7差異蛋白質(zhì)相關(guān)基因的qRT-PCR分析
采用CTAB法分別提取FxLs-11-37及A3的幼嫩葉片樣品總RNA,用核酸蛋白分析儀測(cè)量體積濃度并以1.0%瓊脂糖凝膠電泳檢測(cè)RNA完整性。總RNA為模板按照反轉(zhuǎn)錄試劑盒PrimescriptTMreagent Kit with gDNA Eraser(TaKaRa)說(shuō)明書(shū)反轉(zhuǎn)錄得到cDNA第一鏈。根據(jù)差異蛋白質(zhì)對(duì)應(yīng)的核苷酸序列,采用Beacon Designer 8.13軟件設(shè)計(jì)實(shí)時(shí)熒光定量PCR引物(表1)。采用草莓Actin基因作為內(nèi)標(biāo),以cDNA為模板對(duì)4種差異蛋白質(zhì)的相關(guān)基因進(jìn)行qPCR分析:20 μL反應(yīng)體系包括SYBR?Premix Ex TaqTMⅡ(TaKaRa)10 μL,正、反向引物分別為0.3 μL,稀釋10×cDNA模板1 μL,超純水8.4 μL;反應(yīng)程序?yàn)椋?4 ℃預(yù)變性4 min;94 ℃變性20 s,56 ℃退火20 s,72 ℃延伸40 s,40個(gè)循環(huán),重復(fù)3次,儀器為7300 Real Time PCR System實(shí)時(shí)熒光定量PCR儀。利用Excel 2007軟件進(jìn)行數(shù)據(jù)錄入,使用2-ΔΔCt法,以FxLs-11-37為對(duì)照,進(jìn)行差異蛋白質(zhì)相關(guān)基因相對(duì)表達(dá)量分析。
2.1五倍體草莓染色體加倍后農(nóng)藝性狀、SPAD值和凈光合速率的變化
與五倍體草莓株系FxLs-11-37比較,染色體加倍的株系A(chǔ)3農(nóng)藝性狀、SPAD值和凈光合速率均發(fā)生了顯著的變化。其中,十倍體株系A(chǔ)3表現(xiàn)出明顯的株型矮化、植株冠徑變大,葉寬增大以及葉長(zhǎng)略增大、葉片略增厚以及葉色濃綠等性狀特征(表2);成熟葉片的SPAD值(48.29)明顯高于FxLs-11-37(39.81),其幼葉的SPAD值(33.83)略高于FxLs-11-37(30.53)(表3);除18:00外,其余時(shí)段A3葉片的凈光合速率比FxLs-11-37高(表3)。
2.2五倍體草莓與其十倍體草莓的差異蛋白分析
經(jīng)PDQuestTM 2-D Analysis軟件分析,3個(gè)重復(fù)都具有的點(diǎn)才被認(rèn)為是確定的點(diǎn),結(jié)果顯示重復(fù)組的相似系數(shù)平均為73.5%,表明重復(fù)性較好。獲得的染色體加倍前后葉片清晰且重復(fù)性較好的2-DE圖譜(圖1),F(xiàn)xLs-11-37與A3蛋白質(zhì)的分布模式圖相似,總蛋白質(zhì)點(diǎn)數(shù)均超過(guò)700個(gè),集中分布在等電點(diǎn)4~7和分子量14.4~66.2 kD范圍內(nèi)。以表達(dá)量大于1.5倍為差異點(diǎn),獲得差異表達(dá)蛋白質(zhì)點(diǎn)18個(gè),A3表達(dá)上調(diào)的2個(gè)、下調(diào)的16個(gè),其中表達(dá)量超過(guò)2倍的差異點(diǎn)有4個(gè),編號(hào)依次為 8106、8515、8006、5121。經(jīng)MALDI-TOF-MS/MS技術(shù)進(jìn)行鑒定,這4個(gè)差異蛋白質(zhì)是:草莓主要過(guò)敏原a1-E(major strawberry allergen Fra a1-E,8106)、核內(nèi)不均一核糖核蛋白1(heterogeneous nuclear ribonucleoprotein 1,8515)、葉綠體硫辛?;厦?(lipoyl synthase 1,chloroplastic,8006)、NAD(P)H脫氫酶(醌)FQR1類似蛋白質(zhì)(NAD(P)H dehydrogenase (quinone)FQR1-like,5121,表4),這些差異蛋白質(zhì)(點(diǎn))是下一步需要分析的對(duì)象。
表2 五倍體草莓與其十倍體草莓的部分農(nóng)藝性狀Table 2 Some agronomic traits of FxLs-11-37 and A3
注:表中同列數(shù)據(jù)后不同的小寫(xiě)字母表示FxLs-11-37與A3間差異顯著(P<0.05),下同
Note: Different normal letters at the end of figure on the same column indicate significant differences (P<0.05). The same as below
表3 五倍體草莓與其十倍體草莓的SPAD值和凈光合速率Table 3 SPAD reading and net photosynthetic rate of FxLs-11-37 and A3
黑色數(shù)字表示蛋白質(zhì)表達(dá)差異水平在1.5~2.0倍的14個(gè)蛋白點(diǎn);白色數(shù)字表示蛋白質(zhì)表達(dá)差異水平在2.0倍以上的4個(gè)蛋白點(diǎn);Mr為分子量Marker圖1 五倍體草莓與其十倍體的葉片雙向凝膠電泳圖譜The 14 proteins whose expression levels had a 1.5-2.0 times change were marked in dark numbers, and the 4 proteins whose expression levels had more than 2.0 times change were marked in white numbers. Mr. Molecular weight markerFig.1 Two dimensional electrophoresis maps of FxLs-11-37 and A3 strawberry leaves表4 五倍體草莓與其十倍體的葉片差異蛋白質(zhì)MALDI-TOF-TOF-MS-MS鑒定Table 4 Identification of differentially expressed proteins between the FxLs-11-37 and A3 strawberry leaves by MALDI-TOF-TOF-MS-MS
編號(hào)Spot理論分子量Molecularweight/kD等電點(diǎn)Isoelectricpoint得分Score肽片段覆蓋率SC/%登錄號(hào)Accessionno蛋白質(zhì)名稱Proteinname物種來(lái)源Sourceorganism8106177666.1352862CAJ85645.1草莓主要過(guò)敏原a1-EMajorstrawberryallergenFraa1-E栽培草莓F.×ananassa8515423536.5435325XP_004296398.1核內(nèi)不均一核糖核蛋白1Heterogeneousnuclearribonucleo-protein1森林草莓F.vescasubsp.vesca8006399408.82411XP_011463424.1葉綠體硫辛?;厦?Lipoylsynthase1,chloroplasticc森林草莓F.vescasubsp.vesca5121217965.8036940XP_004293489.1NAD(P)H脫氫酶(醌)FQR1類似蛋白質(zhì)NAD(P)Hdehydrogenase(quinone)FQR1-like森林草莓F.vescasubsp.vesca
圖柱表示蛋白質(zhì)豐度;線段表示基因表達(dá)量圖2 五倍體草莓與其十倍體的差異表達(dá)蛋白質(zhì)及其相應(yīng)基因轉(zhuǎn)錄表達(dá)量Block diagram. Protein abundance; Line segment. Gene expression levelFig.2 Differentially expressed proteins and their corresponding gene expression levels in FxLs-11-37 and A3 leaves
2.3差異蛋白質(zhì)相關(guān)基因的表達(dá)分析
對(duì)A3與FxLs-11-37差異蛋白質(zhì)相應(yīng)基因進(jìn)行qPCR表達(dá)分析,A3與FxLs-11-37相比,草莓主要過(guò)敏原a 1-E蛋白質(zhì)表達(dá)量下降230%,基因相對(duì)表達(dá)量下降940%;不均一核糖核蛋白1蛋白質(zhì)表達(dá)量下降410%,基因相對(duì)表達(dá)量下降350%;葉綠體硫辛?;厦?蛋白質(zhì)表達(dá)量下降410%,基因相對(duì)表達(dá)量下降120%;NAD(P)H脫氫酶(醌)FQR1類似蛋白質(zhì)(簡(jiǎn)稱FQR1)表達(dá)量下降280%,基因相對(duì)表達(dá)量下降140%。4個(gè)差異蛋白表達(dá)量下降,其相應(yīng)基因轉(zhuǎn)錄表達(dá)量也下降,兩者趨勢(shì)相同(圖2)。
多倍體植物因其具有更強(qiáng)的抗逆性,使多倍體育種成為提高植物抗逆性的有效途徑[26]。由于雜交及倍性水平的影響,特別是異源多倍體會(huì)發(fā)生非隨機(jī)的序列消除現(xiàn)象、偏向性表達(dá)以及基因沉默等基因組印記,從而維持新生基因組的穩(wěn)定和進(jìn)化[27]?;蚪M印記的產(chǎn)生,與多倍體形成后的遺傳及表觀變化有關(guān)。在表觀遺傳上,常通過(guò)DNA甲基化、組蛋白修飾、RNA干擾以及劑量補(bǔ)償?shù)确绞絹?lái)影響基因表達(dá)并產(chǎn)生顯著的表型效應(yīng)[28]。本研究發(fā)現(xiàn),十倍體草莓株系在植株冠徑,葉寬葉長(zhǎng)、葉片厚度以及葉色等皆超過(guò)五倍體草莓株系,葉綠素含量(SPAD值)也較高且具更高的凈光合速率,這可能賦予十倍體草莓株系更強(qiáng)的適應(yīng)性或抗逆性。
植物染色體加倍后,基因的劑量效應(yīng)和基因互作效應(yīng)使多倍體植株發(fā)生一系列變化,增強(qiáng)多倍體的適應(yīng)性[26]。草莓主要過(guò)敏原a 1-E,作為發(fā)育調(diào)控防御系統(tǒng)的一部分,參與植物防御反應(yīng),是病程相關(guān)生物刺激應(yīng)激反應(yīng)蛋白質(zhì),在正常情況下,植物體內(nèi)過(guò)敏原含量低,在受到病原菌侵染時(shí),過(guò)敏原含量會(huì)升高;葉綠體硫辛酰合酶1基因可能參與植物抗逆反應(yīng),逆境條件下,鹽地堿蓬種子內(nèi)硫辛?;繒?huì)升高,而在正常狀態(tài)下,硫辛酰合酶表達(dá)量很少[29],上述這兩種蛋白表達(dá)量降低可能與十倍體草莓株系抗性或適應(yīng)性強(qiáng)相關(guān)。Avery和Pottorf[30]指出多倍體植株生長(zhǎng)發(fā)育緩慢可能與生長(zhǎng)素含量低導(dǎo)致細(xì)胞分裂緩慢有關(guān),F(xiàn)QR1基因受生長(zhǎng)素的誘導(dǎo)[31],當(dāng)生長(zhǎng)素含量低時(shí),F(xiàn)OR1表達(dá)量也低,這可能是五倍體草莓加倍而成的十倍體草莓植株生長(zhǎng)緩慢的原因之一。
由于雙向凝膠電泳本身的局限性,本實(shí)驗(yàn)未能檢測(cè)到更多的差異蛋白質(zhì),實(shí)際上在其他植物染色體加倍過(guò)程中所產(chǎn)生的參與信號(hào)傳導(dǎo)[32-33]、轉(zhuǎn)錄因子[34]和激素代謝[35]等差異蛋白質(zhì)是廣泛存在的,下一步我們將利用新的高通量手段如iTRAQ等技術(shù)對(duì)草莓染色體加倍前后蛋白質(zhì)表達(dá)的差異進(jìn)行全面分析,以期更全面了解植物染色體加倍后影響植物表型的相關(guān)因素。
[1]ELLIS J R.Fragaria-Potentillaintergeneric hybridization and evolution inFragaria[J].ProceedingsoftheLinneanSocietyofLondon, 1962, 173(2): 99-106.
[2]雷家軍, 薛莉, 代漢萍. 草莓十二倍體種間雜種的獲得及其回交研究[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(22): 4 651-4 659.
LEI J J, XUE L, DAI H P. Obtaining dodecaploid interspecific hybrid in strawberry and its backcross[J].ScientiaAgriculturaSinica, 2012, 45(22): 4 651-4 659.
[3]王濤, 陳孟龍, 劉玲, 等. 植物多倍體化中基因組和基因表達(dá)的變化[J]. 植物學(xué)報(bào), 2015, 50(4): 504-515.
WANG T, CHEN M L, LIU L,etal. Changes in genome and gene expression during plant polyploidization[J].ChineseBulletinofBotany, 2015, 50(4): 504-515.
[4]WANG T, LIU L, NING C L,etal. Alterations of DNA methylation and gene expression during hybridization and polyploidization inFragariaspp.[J].ScientiaHorticulturae, 2016, 201: 218-224.
[5]侯麗麗, 施和平, 余武, 等. 煙草毛狀根多倍體誘導(dǎo)及其植株再生[J]. 生物工程學(xué)報(bào), 2014, 30(4): 581-594.
HOU L L, SHI H P, YU W,etal. Induction of polyploid in hairy roots ofNicotianatabacumand its plant regeneration[J].ChineseJournalofBiotechnology, 2014, 30(4): 581-594.
[6]GARBUTT K, BAZZAZ F A. Leaf demography, flower production and biomass of diploid and tetraploid populations ofPhloxdrummondiiHook. on a soil moisture gradient[J].NewPhytologist, 1983, 93(1): 129-141.
[7]GU X F, YANG A F, MENG H,etal.Invitroinduction of tetraploid plants from diploidZizyphusjujubaMill. cv. Zhanhua[J].PlantCellReports, 2005, 24(11): 671-676.
[8]ALLUM J F, BRINGLOE D H, ROBERTS A V. Chromosome doubling in aRosarugosaThunb. hybrid by exposure ofinvitronodes to oryzalin: the effects of node length, oryzalin concentration and exposure time[J].PlantCellReports, 2007, 26(11): 1 977-1 984.
[9]裴金玲, 楊紅蘭, 李春平, 等. 轉(zhuǎn)晚期胚胎發(fā)生豐富蛋白(LEA)基因棉花及抗旱性分析[J]. 分子植物育種, 2012, 10(3): 331-337.
PEI J L, YANG H L, LI C P,etal. Transgenic cotton withlateembryogenesisabundantprotein(LEA) gene and its drought tolerance[J].MolecularPlantBreeding, 2012, 10(3): 331-337.
[10]夏志強(qiáng), 何奕昆, 鮑時(shí)來(lái), 等. 植物開(kāi)花的組蛋白甲基化調(diào)控分子機(jī)理[J]. 植物學(xué)通報(bào), 2007, 24(3): 275-283.
XIA Z Q, HE Y K, PAO S L,etal. Molecular mechanism of plant flowering regulated by histone methylation[J].ChineseBulletinofBotany, 2007, 24(3): 275-283.
[11]伊風(fēng)艷, 石鳳翎, 龍瑞才, 等. 苜蓿雄性不育植株與可育植株現(xiàn)蕾初期花蕾蛋白質(zhì)組比較[J]. 西北植物學(xué)報(bào), 2013, 33(10): 1 964-1 971.
YI F Y, SHI F L, LONG R C,etal. Comparative proteomic analysis of bud proteins of alfalfa male sterile and fertile plants at bud emergence stage[J].ActaBot.Boreal. -Occident.Sin., 2013, 33(10): 1 964-1 971.
[12]蔣際謀, 鄧朝軍, 林永祥, 等. 枇杷果皮響應(yīng)高溫強(qiáng)光脅迫的蛋白質(zhì)組分析[J]. 熱帶亞熱帶植物學(xué)報(bào), 2014, 22(4): 383-390.
JIANG J M, DENG C J, LIN Y X,etal. Proteomic analysis of loquat peels under high temperature and strong light stresses[J].JournalofTropicalandSubtropicalBotany, 2014, 22(4): 383-390.
[13]安飛飛, 凡杰, 李庚虎, 等. 華南8號(hào)木薯及其四倍體誘導(dǎo)株系葉片蛋白質(zhì)組及葉綠素?zé)晒獠町惙治鯷J]. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(19): 3 978-3 987.
AN F F, FAN J, LI G H,etal. Comparison of leaves proteome and chlorophyll fluorescence ofCassavacv. SC8 and its tetraploid mutants[J].ScientiaAgriculturaSinica, 2013, 46(19): 3 978-3 987.
[14]NG D W, ZHANG C, MILLER M,etal. Proteomic divergence inArabidopsisautopolyploids and allopolyploids and their progenitors[J].Heredity, 2012, 108(4): 419-430.
[15]CARPENTIER S C, PANIS B, RENAUT J,etal. The use of 2D-electrophoresis anddenovosequencing to characterize inter-and intra-cultivar protein polymorphisms in an allopolyploid crop[J].Phytochemistry, 2011, 72(10): 1 243-1 250.
[16]ALBERTIN W, BRABANT P, CATRICE O,etal. Autopolyploidy in cabbage (BrassicaoleraceaL.) does not alter significantly the proteomes of green tissues[J].Proteomics, 2005, 5(8): 2 131-2 139.
[17]HU G, HOUSTON N L, PATHAK D,etal. Genomically biased accumulation of seed storage proteins in allopolyploid cotton[J].Genetics, 2011, 189(3): 1 103-1 115.
[18]HOEHENWARTER W, LARHLIMI A, HUMMEL J,etal. MAPA distinguishes genotype-specific variability of highly similar regulatory protein isoforms in potato tuber[J].JournalofProteomeResearch, 2011, 10(7): 2 979-2 991.
[19]AMIOUR N, MERLINO M, LEROY P,etal. Chromosome mapping and identification of amphiphilic proteins of hexaploid wheat kernels[J].TheoreticalandAppliedGenetics, 2003, 108(1): 62-72.
[20]ISLAM N, TSUJIMOTO H, HIRANO H. Proteome analysis of diploid, tetraploid and hexaploid wheat: towards understanding genome interaction in protein expression[J].Proteomics, 2003, 3(4): 549-557.
[21]ALM R, EKEFJRD A, KROGH M,etal. Proteomic variation is as large within as between strawberry varieties[J].JournalofProteomeResearch, 2007, 6(8): 3 011-3 020.
[22]陳丙義. 野生草莓核型分析、基因組大小評(píng)估及其種質(zhì)創(chuàng)新研究[D].南京:南京農(nóng)業(yè)大學(xué), 2013.
[23]趙密珍, 錢(qián)亞明, 王靜. 草莓優(yōu)質(zhì)品種及配套栽培技術(shù)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2010.
[24]BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].AnalyticalBiochemistry, 1976, 72(1/2): 248-254.
[25]KATAYAMA H, NAGASU T, ODA Y. Improvement of in-gel digestion protocol for peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J].RapidCommunicationsinMassSpectrometry, 2001, 15(16): 1 416-1 421.
[26]魏 望, 施富超, 王東瑋, 等. 多倍體植物抗逆性研究進(jìn)展[J]. 西北植物學(xué)報(bào), 2016, 36(4): 846-856.
WEI W, SHI F C, WANG D W,etal. Research progress on stress resistance in polyploidy plants[J].ActaBot.Boreal.-Occident.Sin., 2016, 36(4): 846-856.
[27]劉玉玲, 韓興杰, 李同建, 等. 植物多倍體中的基因組印記[J]. 廣西植物, 2014, 34(3):290-293.
LIU Y L, HAN X J, LI T J,etal. The genomic imprinting in ployploid plants[J].Guihaia, 2014, 34(3): 290-293.
[28]LIU B, WENDEL J F. Epigenetic phenomena and the evolution of plant allopolyploids[J].MolecularPhylogeneticsandEvolution, 2003, 29(3): 365-379.
[29]代莉慧. 鹽地堿蓬種子萌發(fā)過(guò)程中耐鹽生理指標(biāo)測(cè)定及基因表達(dá)分析[D].內(nèi)蒙古包頭:內(nèi)蒙古科技大學(xué), 2013.
[30]AVERY G S, POTTORF L. Polyploidy, auxin and nitrogen in green plant tissue[J].AmericanJournalofBotany, 1945, 32(10): 669-671.
[31]LASKOWSKI M J, DREHER K A, GEHRING M A,etal.FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase[J].PlantPhysiology, 2002, 128(2): 578-590.
[32]TAYLOR C B. GA signaling: Genes and GTPases[J].ThePlantCell, 1998, 10(2): 131-133.
[33]ASHIKARI M, WU J, YANO M,etal. Rice gibberellin-insensitive dwarf mutant geneDwarf1 encodes the α-subunit of GTP-binding protein[J].ProceedingsoftheNationalAcademyofSciencesUSA, 1999, 96(18): 10 284-10 289.
[34]MADLUNG A, MASUELLI R W, WATSON B,etal. Remodeling of DNA methylation and phenotypic and transcriptional changes in syntheticArabidopsisallotetraploids[J].PlantPhysiology, 2002, 129(2): 733-746.
[35]ALLARIO T, BRUMOS J, COLMENERO-FLORES J M,etal. Tetraploid Rangpur lime rootstock increases drought toleranceviaenhanced constitutive root abscisic acid production[J].Plant,Cell&Environment, 2013, 36(4): 856-868.
(編輯:宋亞珍)
Differentially Expressed Proteins in Strawberry Leaves between Pentaploid and Its Corresponding Allodecaploid
NING Chuanli, CAI Binhua, WANG Tao, QIAO Yushan*
(College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China)
Pentaploid strawberry (FxLs-11-37, 2n=5x=35) derived from the hybridization between diploidFragariaviridis(male) and octaploidF. ×ananassa‘Fusanoka’ (female), and its allodecaploid (A3, 2n=10x=70) were employed for conducting proteomic analysis with two dimensional gel electrophoresis technology under observation of agronomic traits, soil and plant analyzer development (SPAD) readings, and the net photosynthetic rate. (1) Compared with FxLs-11-37, A3 showed a significant dwarf type, larger crown, increased leaf length and leaf width, much thicker in leaf, more dark green leaves, and it also has a bigger SPAD for leaf and net photosynthetic rate; (2) Protein spots of FxLs-11-37 and A3 analyzed using PDQuest software were mainly scattered in the isoelectric point ranging from pH 4 to 7, and molecular weight ranging from 14.4 to 66.2 kD. More than 700 expressed protein spots in FxLs-11-37 and A3 were detected. Expression levels of 18 protein spots changed over 1.5 fold after chromosome doubling, and 4 protein spots changed over 2.0 fold. We identified these 4 protein spots with MALDI-TOF-MS/MS mass spectrometry technology, and results showed that the 4 proteins are major strawberry allergen Fra a 1-E, heterogeneous nuclear ribonucleoprotein 1, lipoyl synthase 1, chloroplastic, and NAD(P)H dehydrogenase (quinine) FQR1-like. These proteins are involved in stress resistant, mRNA transport, material and energy metabolism. Results of real-time quantitative PCR of gene encoding the above four proteins demonstrated that the difference tendency of gene transcriptional expression was consistent with the proteins levels. We obtained the differentially expressed proteins in strawberry chromosome doubling, which provided tracks for further research.
strawberry; pentaploid; chromosome doubling; differential protein
1000-4025(2016)09-1794-07doi:10.7606/j.issn.1000-4025.2016.09.1794
2016-05-23;修改稿收到日期:2016-09-01
江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金(CX(15)1029)
寧傳麗(1985-),女,在讀碩士研究生,主要從事草莓生物技術(shù)研究。E-mail:2013104032@njau.edu.cn
喬玉山,教授,博士生導(dǎo)師,主要從事果樹(shù)育種與生物技術(shù)研究。E-mail:qiaoyushan@ njau.edu.cn
Q343.2+44; Q591.2; Q753
A