袁 偉,柳廣弟,羅文斌
(1.中國石油大學(xué)(北京) 油氣資源與探測國家重點(diǎn)實(shí)驗(yàn)室,北京 102249; 2.中國石油大學(xué)(北京) 地球科學(xué)學(xué)院,北京 102249)
?
鄂爾多斯盆地延長組長7段沉積速率及其對烴源巖有機(jī)質(zhì)豐度的影響
袁 偉1,2,柳廣弟1,2,羅文斌1,2
(1.中國石油大學(xué)(北京) 油氣資源與探測國家重點(diǎn)實(shí)驗(yàn)室,北京 102249; 2.中國石油大學(xué)(北京) 地球科學(xué)學(xué)院,北京 102249)
以鄂爾多斯盆地延長組長7段富有機(jī)質(zhì)頁巖為對象,基于米蘭科維奇旋回理論,計(jì)算了該段3個(gè)小層的沉積速率,發(fā)現(xiàn)長7段的沉積速率整體較小(平均1.31 cm·a-1),并且具有從長73到長71逐漸增大的特征。另外,利用△logR法對已經(jīng)計(jì)算了沉積速率的井進(jìn)行TOC含量測井預(yù)測,并結(jié)合沉積速率和TOC含量的數(shù)據(jù)建立了兩者的相關(guān)關(guān)系。研究表明:當(dāng)沉積速率小于1.35 cm·a-1時(shí),TOC含量與沉積速率沒有明顯的相關(guān)關(guān)系,沉積物中的有機(jī)質(zhì)豐度主要受其他因素的控制,如古生產(chǎn)力條件和保存條件;當(dāng)沉積速率大于1.35 cm·a-1時(shí),TOC含量具有隨沉積速率變大而逐漸減小的趨勢,說明沉積速率越大,沉積物中的有機(jī)質(zhì)被稀釋或破壞越嚴(yán)重,有機(jī)質(zhì)豐度就越小。
沉積速率;有機(jī)質(zhì)豐度;烴源巖;米蘭科維奇旋回;延長組;鄂爾多斯盆地
袁偉,柳廣弟,羅文斌.鄂爾多斯盆地延長組長7段沉積速率及其對烴源巖有機(jī)質(zhì)豐度的影響[J].西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,31(5):20-26.
YUAN Wei,LIU Guangdi,LUO Wenbin.Deposition rate of the seventh member of Yangchang Formation,Ordos Basin and its impact on organic matter abundance of hydrocarbon source rock[J].Journal of Xi'an Shiyou University (Natural Science Edition),2016,31(5):20-26.
沉積速率是指某段地層的厚度與該段地層年齡的比值。地層厚度數(shù)據(jù)的獲取比較容易,可以通過野外露頭實(shí)際測量或者直接在測井曲線上讀取,而要求取地層的年齡則相對困難。目前獲取地層年齡的主要方法為同位素測年,該方法測得的年齡為地層的絕對年齡,但是對時(shí)間跨度不大的地層來說,其達(dá)百萬年級的誤差往往不能滿足研究的需求。近幾年來,為了更加精確地計(jì)算沉積速率,越來越多的學(xué)者開始運(yùn)用米蘭科維奇旋回(地球軌道旋回)理論來識別旋回地層厚度及對應(yīng)的天文周期,從而計(jì)算出地層的沉積速率。該方法的優(yōu)點(diǎn)是精度高,識別的天文周期精度可以達(dá)到0.02~0.40 Ma[1]。這種方法被用于許多盆地,并取得不錯的成果[1-6]。沉積速率是控制有機(jī)質(zhì)富集、影響富有機(jī)質(zhì)頁巖形成的重要因素之一[7-8]。研究表明,沉積速率與有機(jī)質(zhì)含量具有一定的關(guān)系,沉積速率過低,則有機(jī)質(zhì)易被氧化破壞;沉積速率過高,則有機(jī)質(zhì)易被稀釋[9-15]。由于受測年手段的限制,關(guān)于海相地層沉積速率與有機(jī)質(zhì)豐度之間關(guān)系的研究較多,而關(guān)于陸相盆地沉積速率與有機(jī)質(zhì)豐度之間的關(guān)系研究較少[16]。
三疊系延長組長7段為典型的陸相深湖-半深湖沉積,是鄂爾多斯盆地中生界最重要的烴源巖。但是延長組長7段3個(gè)小層(長71、長72和長73)有機(jī)質(zhì)豐度相差較大,是否受沉積速率對有機(jī)質(zhì)豐度的影響尚不清楚。因此,本文的主要目的是根據(jù)米蘭科維奇旋回理論,利用小波分析和頻譜分析技術(shù)分別對鄂爾多斯盆地延長組長7段3個(gè)小層(長71、長72和長73)進(jìn)行沉積速率計(jì)算,分析沉積速率變化規(guī)律,并探討沉積速率對延長組長7段有機(jī)質(zhì)豐度的影響。
鄂爾多斯盆地位于中國中部,是一個(gè)多旋回的克拉通盆地[17-18],是中國重要的陸相含油氣盆地之一,具有巨大的資源潛力[19]。鄂爾多斯盆地晚三疊世延長期為大型內(nèi)陸湖泊,主要發(fā)育河流-三角洲-湖泊沉積體系,沉積了厚達(dá)千米的生儲蓋地層組合[20]。根據(jù)巖性、電性和含油性特征的差異,延長組至上而下可以劃分為10個(gè)油層組,即長1—長10。其中長7段進(jìn)一步又可細(xì)分為長71、長72和長73小層,主要由硅質(zhì)巖、富有機(jī)質(zhì)頁巖和凝灰?guī)r夾層組成,厚度80~120 m[21]。
延長組長7段烴源巖是中生代油藏最重要的油源,分布面積約為1.0×105km2[21],有機(jī)質(zhì)豐度較高,TOC質(zhì)量分?jǐn)?shù)主要分布在6%~14%,最高可達(dá)40%[22]。延長組長7段3個(gè)小層之間的有機(jī)質(zhì)豐度具有一定的差異(表1),其中,長73的烴源巖分布范圍最廣,有機(jī)質(zhì)豐度最高,其TOC質(zhì)量分?jǐn)?shù)平均值到達(dá)10.4%;之后湖盆逐漸萎縮,長72的烴源巖分布范圍縮小,有機(jī)質(zhì)豐度也減小,到長71時(shí),烴源巖的分布范圍最小,其有機(jī)質(zhì)豐度也最低[23-24]。
表1 鄂爾多斯盆地延長組長7段有機(jī)質(zhì)豐度Tab.1 Statistics of the organic matter abundance of 7thmember of Yanchang Formation in Ordos Basin
米蘭科維奇旋回主要受日地系統(tǒng)所控制,主要參數(shù)為偏心率周期、斜率周期和歲差周期[25],這些周期自古至今逐漸增加,其中,偏心率周期相對穩(wěn)定,增加緩慢,而斜率周期和歲差周期的增加相對較快。根據(jù)Berger[26]的計(jì)算,晚三疊世的米蘭科維奇旋回周期如表2所示。
表2 晚三疊世米蘭科維奇旋回周期 及其比值[26]Tab.2 Milankovitch cycles and their ratios in the Late Triassic (Berger, 1992)[26]
識別米蘭科維奇旋回的常用替代指標(biāo)有δ18O值、地層磁化率和自然伽馬(GR)曲線。由于GR曲線具有取樣數(shù)據(jù)點(diǎn)多、經(jīng)濟(jì)、方便的特點(diǎn),故最為常用。鄂爾多斯盆地大部分地區(qū)長7段(尤其是長73)都具有明顯高的鈾(U)異常,這種現(xiàn)象造成GR曲線的異常。因此,本次研究用釷(Th)曲線作為替代指標(biāo)來識別米蘭科維奇旋回。Hu[1]在研究松遼盆地白堊紀(jì)的天文旋回時(shí),也成功地使用過Th曲線這種替代指標(biāo)。
本次研究主要利用Matlab7.0自帶的小波分析工具包對鄂爾多斯盆地20口井長7段的Th和GR曲線(沒有U異常的井可以仍用GR曲線)分層進(jìn)行小波分析和頻譜分析,綜合識別米蘭科維奇旋回,之后進(jìn)行沉積速率的計(jì)算。下面以B167井長71小層為例,介紹沉積速率的計(jì)算方法。
首先對原始數(shù)據(jù)進(jìn)行l(wèi)g(x+1)處理以消除信號的噪聲,然后利用Matlab7.0的一維離散小波分析工具加載數(shù)據(jù),選擇db25小波對信號進(jìn)行8尺度分解,得到近似分量a8和細(xì)節(jié)分量d8,d7,…,d1(圖1)。之后應(yīng)用小波強(qiáng)制消噪方法,分析各細(xì)節(jié)分量的頻譜特征,即選定某一高頻信號并將消噪閾值置0,其余高頻信號的消噪閾值置于最大,執(zhí)行降噪處理后得到降噪后的重構(gòu)信號,對重構(gòu)信號進(jìn)行頻譜分析,得到其頻譜及優(yōu)勢頻率[23]。由于測井?dāng)?shù)據(jù)的取樣間距為0.125 m,則每米為8個(gè)數(shù)據(jù)點(diǎn),因此,頻率的倒數(shù)除以8就是該頻率所對應(yīng)的地層厚度。
考察各細(xì)節(jié)分量優(yōu)勢頻率所對應(yīng)地層厚度的比值, 發(fā)現(xiàn)d2、d3和d5細(xì)節(jié)分量的優(yōu)勢頻率(圖2,分別為0.133 20、0.068 18和0.019 48)所對應(yīng)的地層厚度分別為0.94 m、1.83 m和6.42 m,它們的比值(0.94∶1.83∶6.42=1.00∶1.95∶6.84)與米蘭科維奇旋回周期的比值(18 ka∶35 ka∶123 ka=1.00∶1.94∶6.83)基本相符,故認(rèn)為細(xì)節(jié)分量d2、d3和d5優(yōu)勢頻率所對應(yīng)的地層厚度分別受米蘭科維奇旋回周期18 ka、35 ka和123 ka控制。王起琮[23]在應(yīng)用米蘭科維奇旋回研究整個(gè)延長組的旋回層序時(shí)發(fā)現(xiàn)各小波旋回地層厚度的沉積時(shí)限為相關(guān)米蘭科維奇旋回周期的2倍,并把這種現(xiàn)象歸于小波分析數(shù)學(xué)方法上的原因。那么細(xì)節(jié)分量d2、d3和d5優(yōu)勢頻率所對應(yīng)地層厚度的沉積時(shí)限應(yīng)分別為36 ka、70 ka和246 ka。根據(jù)公式沉積速率=地層厚度/對應(yīng)沉積時(shí)限,把旋回地層厚度(0.94 m、1.83 m、6.42 m)和對應(yīng)沉積時(shí)限(36 ka、70 ka、246 ka)數(shù)據(jù)帶入,求得B167井長71段的沉積速率約為2.61 cm/ka。
圖1 B167井延長組長71段Th曲線db25離散小波變換分解結(jié)構(gòu)圖Fig.1 Decomposition structure diagram of db25 DWT of Th curve in the first segment of 7th member of Yanchang Formation in well B167
圖2 B167井延長組長71段Th曲線d2、d3、d5細(xì)節(jié)分量及頻譜分析Fig.2 The d2,d3 and d5 detail components of Th curve in the first segment of 7th member of Yanchang Formation in well B167 and their spectrograms
根據(jù)上述計(jì)算沉積速率的方法,分別計(jì)算了鄂爾多斯盆地21口井長7段3個(gè)小層的沉積速率,結(jié)果如表3所示,長71段沉積速率的分布范圍為1.10~2.61 cm/ka,平均1.44 cm/ka;長72段沉積速率為1.01~2.65 cm/ka,平均值為1.35 cm/ka;長73段沉積速率的分布范圍為1.01~1.45 cm/ka,平均值為1.15 cm/ka。整個(gè)長7段的平均沉積速率為1.31 cm/ka。
鄧秀芹[27]對長7段底部和上部的2層凝灰?guī)r(間距96 m)進(jìn)行了鋯石U-Pb同位素定年,結(jié)果分別為228±2 Ma和221±2 Ma,據(jù)此計(jì)算長7段的平均沉積速率為1.37 cm/ka。對比2種方法計(jì)算的沉積速率結(jié)果,發(fā)現(xiàn)相差不大,故認(rèn)為利用米蘭科維奇旋回理論計(jì)算鄂爾多斯盆地延長組長7段沉積速率的方法是可靠的。
根據(jù)前面沉積速率的計(jì)算結(jié)果(表3)可以看出,在整體上延長組長7段的沉積速率具有從長73到長71逐漸加快的特征。這種現(xiàn)象的原因可能是長73期到長71期湖盆水體逐漸變淺,沉積物中的砂質(zhì)含量逐漸增加,從而使得沉積速率越來越快。
另外,我們收集了松遼盆地、珠江口盆地、二連盆地中幾套烴源巖的沉積速率數(shù)據(jù)(表4),對比發(fā)現(xiàn)鄂爾多斯盆地延長組長7段具有較低的沉積速率。
表3 鄂爾多斯盆地延長組長7段各小層沉積速率Tab.3 Statistics of deposition rate of 7th member of Yanchang Formation in Ordos Basin
表4 松遼盆地、珠江口盆地、二連盆地中 幾套烴源巖沉積速率統(tǒng)計(jì)Tab.4 Statistics of deposition rate of several sets of hydrocarbon source rock in Songliao Basin, Pearl River Mouth Basin and Erlian Basin
目前關(guān)于沉積速率與烴源巖有機(jī)質(zhì)豐度關(guān)系的觀點(diǎn)主要可以歸納為3點(diǎn):一是沉積速率越高,烴源巖中有機(jī)質(zhì)被降解的時(shí)間越短,有機(jī)質(zhì)豐度越高,相反沉積速率越低,有機(jī)質(zhì)與氧氣接觸時(shí)間越長,有機(jī)質(zhì)豐度則越低[9-11];二是高沉積速率帶來的大量碎屑物質(zhì)會稀釋烴源巖中的有機(jī)質(zhì),沉積速率越高,烴源巖有機(jī)質(zhì)豐度越低[12-13];三是沉積速率與烴源巖有機(jī)質(zhì)豐度的關(guān)系復(fù)雜,不是簡單的正相關(guān)或負(fù)相關(guān)關(guān)系[14-15]。丁修建[2]在研究二連盆地陸相沉積速率與烴源巖有機(jī)質(zhì)豐度的關(guān)系時(shí),發(fā)現(xiàn)其受沉積環(huán)境的氧化還原程度和古生產(chǎn)力影響明顯,即在沉積速率低于5 cm/ka時(shí),沉積速率和烴源巖有機(jī)質(zhì)豐度的關(guān)系主要受沉積環(huán)境的氧化還原程度影響,在沉積速率高于5 cm/ka時(shí),沉積速率與烴源巖有機(jī)質(zhì)豐度的關(guān)系主要受古生產(chǎn)力影響。
為了研究延長組長7段沉積速率與烴源巖有機(jī)質(zhì)豐度的關(guān)系,利用△logR法[28]對已經(jīng)計(jì)算過沉積速率的井進(jìn)行TOC含量測井預(yù)測(其中X43和Z58井因缺少聲波曲線而無法計(jì)算),結(jié)果如表4所示,長71段TOC質(zhì)量分?jǐn)?shù)為0.17%~4.16%,平均1.72%;長72段TOC質(zhì)量分?jǐn)?shù)為0.21%~6.62%,平均3.01%;長73段TOC質(zhì)量分?jǐn)?shù)為1.17%~16.77%,平均6.93%。長7段的TOC含量具有長73>長72>長71的特征。
表5 鄂爾多斯盆地延長組長7段各小層TOC含量統(tǒng)計(jì)Tab.5 Statistics of TOC content of 7th member of Yanchang Formation in Ordos Basin
在此基礎(chǔ)上,結(jié)合TOC含量和沉積速率數(shù)據(jù)建立延長組長7段各小層TOC含量與沉積速率的關(guān)系圖(圖3)。從圖中可以發(fā)現(xiàn),當(dāng)沉積速率小于1.35 cm/ka時(shí),TOC含量與沉積速率沒有明顯的相關(guān)關(guān)系,說明在此沉積速率區(qū)間,沉積速率對烴源巖有機(jī)質(zhì)豐度沒有明顯的控制作用。但是從圖3可知,TOC含量在整體上具有長73>長72>長71的特征,而烴源巖有機(jī)質(zhì)的含量除了受沉積速率的控制之外,還與古生產(chǎn)力和保存條件有關(guān)[2]。因此,在沉積速率小于1.35 cm/ka的區(qū)間內(nèi),沉積物中的有機(jī)質(zhì)豐度可能主要受其他因素(如古生產(chǎn)力條件和保存條件)的控制。
當(dāng)沉積速率大于1.35 cm/ka時(shí),烴源巖的TOC含量在整體上也具有長73>長72>長71的特征,但是TOC含量卻有隨沉積速率變大而逐漸減小的趨勢,說明在此區(qū)間內(nèi),不管古生產(chǎn)力和保存條件對烴源巖有機(jī)質(zhì)豐度的影響如何,沉積速率對TOC含量都有明顯的控制作用。沉積速率越大,單位時(shí)間內(nèi)陸源碎屑的輸入量就越多,進(jìn)入沉積物中的有機(jī)質(zhì)被稀釋的程度也就越嚴(yán)重,使得烴源巖有機(jī)質(zhì)豐度越??;相反,沉積速率越小,單位時(shí)間內(nèi)陸源碎屑的輸入量就越少,沉積有機(jī)質(zhì)在沉積物中所占的比例也越高,因此,烴源巖有機(jī)質(zhì)豐度越高。
圖3 鄂爾多斯盆地延長組長7段TOC含量 與沉積速率的關(guān)系Fig.3 Relationship between TOC content and deposition rate of 7th member of Yanchang Formation, Ordos Basin
(1)鄂爾多斯盆地延長組長7段的沉積速率整體較小,長71、長72和長73小層的平均沉積速率分別為1.44 cm/ka、1.35 cm/ka和1.15 cm/ka,具有從長73到長71逐漸增大的特征。
(2)當(dāng)沉積速率小于1.35 cm/ka時(shí),TOC含量與沉積速率沒有明顯的相關(guān)關(guān)系,在此沉積速率區(qū)間,沉積物中的有機(jī)質(zhì)豐度主要受其他因素的控制,如古生產(chǎn)力條件和保存條件;當(dāng)沉積速率大于1.35 cm/ka時(shí),TOC含量具有隨沉積速率變大而逐漸減小的趨勢,說明沉積速率越大,沉積物中的有機(jī)質(zhì)被稀釋或破壞就越嚴(yán)重,有機(jī)質(zhì)豐度就越小。
致謝:
本論文在研究過程中,得到西安石油大學(xué)地球科學(xué)與工程學(xué)院王起琮老師的悉心指導(dǎo),在此由衷地表示感謝!
[1]HU Huaichun,ZHANG Shihong,JIANG Ganqing,et al.Astrochronology of the Early Turonian-Early Campanian terrestrial succession in the Songliao Basin,northeastern China and its implication for long-period behavior of the Solar System[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2013,385:55-70.
[2]丁修建,柳廣弟,查明,等.沉積速率與烴源巖有機(jī)質(zhì)豐度關(guān)系:以二連盆地為例[J].天然氣地球科學(xué),2015,26(6):1076-1085.
DING Xiujian,LIU Guangdi,ZHA Ming,et al.Relationship between sedimentation rate and organic matter abundance of source rocks:a case study of Erlian Basin[J].Natural Gas Geoscience,2015,26(6):1076-1085.
[3]THOMAS J G,ROY H W.Sedimentation rates off SW Africa since the late Miocene deciphered from spectral analyses of borehole and GRA bulk density profiles ODP Sites 1081-1084[J].Marine Geology,2002,180:29-47.
[4]徐道一,張海峰,韓延本,等.陸相沉積的天文地層研究方法簡介:以井下地層為例[J].地層學(xué)雜志,2007,32(增刊):431-442.
XU Daoyi,ZHANG Haifeng,HAN Yanben,et al.Introduction to the method for the astrostratigraphic study of terrestrial sediments:taking underground stratigraphy for an example[J].Journal of Stratigraphy,2007,32(supplement):431-442.
[5]劉洋,吳懷春,張世紅,等.珠江口盆地珠一坳陷韓江組—萬山組旋回地層學(xué)[J].地球科學(xué):中國地質(zhì)大學(xué)學(xué)報(bào),2012,37(3):411-423.
LIU Yang,WU Huaichun,ZHANG Shihong,et al.Cyclostratigraphy research on the Hanjiang-Wanshan Formation in the Zhuyi Depression,Pearl River Mouth Basin[J].Earth Science:Journal of China University of Geosciences,2012,37(3):411-423.
[6]李邵杰,何生,朱偉林,等.基于珠一坳陷旋回地層分析的烴源巖沉積速率研究[J].天然氣地球科學(xué),2014,25(9):1328-1340.
LI Shaojie,HE Sheng,ZHU Weilin,et al.The study on sedimentation rate of source rock based on cyclostratigraphic analysis in the Zhuyi Depression[J].Natural Gas Geoscience,2014,25(9):1328-1340.
[7]BARRY J K.Controlling factors on source rock development-a review of productivity,preservation,and sedimentation rate[C]//HARRIS N B.The Deposition of Organic Carbon Rich Sediments:Models,Mechanism,and Consequences.Tulsa:Society for Sedimentary Geology,2005:7-16.
[8]KATZ B J.Controls on distribution of lacustrine source rocks through time and space[C]//KATZ B J.Lacustrine Basin Exploration:Case Studies and Modern Analogs.AAPG Memoir 50.Tulsa:AAPG,1990:61-76.
[9]HEATH G R,MOORE T C,DAUPHIN J P.Organic carbon in deep sea sediments[C]//ANDERSON N R,MALAHOFF A.The Fate Fossil Fuel CO2in the Oceans.Office of Naval Research,Ocean Science and Technology Division,United States,Marine Science,1977:606-626.
[10] MULLER P J,SUESS E.Productivity,sedimentation rate,and sedimentary organic matter in the oceans-Organic carbon preservation[J].Deep Sea Research:Part A Oceanographic Research Papers,1979,26(12):1347-1362.
[11] HENRICHS S M,REEBURGH W S.Anaerobic mineralization of marine sediment organic matter:rates and the role of anaerobic processes in the oceanic carbon economy[J].Geomicrobiology Journal,1987,13(5):191-237.
[12] ARTHUR M A,DEAN W E.Organic matter production and preservation and evolution of anoxia in the Holocene Black Sea[J].Paleoceanography,1998,13(4):395-411.
[13] LOUTIT T S,HARDENBOL J,VAIL P R,et al.Condensed sections:the key to age determination and correlation of continental margin sequences[C]//WILGUS C K,HALTING B S,POSAMENTIER H,et al.Sea Level Changes:An Integrated Approach.Everest Geotech,Houston,TX,1988,42:183-213.
[14] IBACH L E J.Relationship between sedimentation rate and total organic carbon content in ancient marine sediments[J].AAPG Bulletin,1982,66(2):170-188.
[15] TYSON R V.Sedimentation rate,dilution,preservation and total organic carbon:some results of a modelling study[J].Organic Geochemistry,2001,32(11):333-339.
[16] 孫平昌.松遼盆地東南部上白堊統(tǒng)含油頁巖系有機(jī)質(zhì)富集環(huán)境動力學(xué)[D].長春:吉林大學(xué),2013.
[17]秦艷,張文正,彭平安,等.鄂爾多斯盆地延長組長7段富鈾烴源巖的鈾賦存狀態(tài)與富集機(jī)理[J].巖石學(xué)報(bào),2009,25(10):2469-2476.
QIN Yan,ZHANG Wenzheng,PENG Ping’an,et al.Occurrence and concentration of uranium in the hydrocarbon source rocks of Chang 7 member of Yanchang formation,Ordos Basin[J].Acta Petrologica Sinica,2009,25(10):2469-2476.
[18]張本浩,吳柏林,劉池陽,等.鄂爾多斯盆地延長組長7富鈾烴源巖鈾的賦存狀態(tài)[J].西北地質(zhì),2011,44(2):124-130.
ZHANG Benhao,WU Bailin,LIU Chiyang,et al.Occurrence of uranium in hydrocarbon of Chang7 member of Yanchang formation of Ordos basin[J].Northwestern Geology,2011,44 (2):124-130.
[19] QIU X W,LIU C Y,MAO G Z,et al.Late Triassic tuff intervals in the Ordos Basin,Central China:their epositional,petrographic,geochemical characteristics and regional implications[J].Journal of Asian Earth Sciences,2014,80:148-160.
[20]李鳳杰,鄭榮才,趙俊興.鄂爾多斯盆地米蘭科維奇旋回在延長組發(fā)育的一致性[J].西安石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,23(5):1-5.
LI Fengjie,ZHENG Rongcai,ZHAO Junxing.Uniformity of the Milankovitch cycle developed in the Yanchang formation of Ordos Basin[J].Journal of Xi’an Shiyou University(Natural Science Edition),2008,23(5):1-5.
[21] QIU Xinwei,LIU Chiyang,MAO Guangzhou,et al.Major,trace and platinum-group element geochemistry of the Upper Triassic nonmarine hot shales in the Ordos Basin,Central China[J].Applied Geochemistry,2015,53:42-52.
[22]楊華,張文正.論鄂爾多斯盆地長7段優(yōu)質(zhì)油源巖在低滲透油氣成藏富集中的主導(dǎo)作用:地質(zhì)地球化學(xué)特征[J].地球化學(xué),2005,34(2):147-154.
YANG Hua,ZHANG Wenzheng.Leading effect of the seventh member high-quality source rock of Yangchang formation in Ordos basin during the enrichment of low-permeability oil-gas accumulation:geology and geochemistry[J].Geochimica,2005,34(2):147-154.
[23]邱欣衛(wèi),劉池洋.鄂爾多斯盆地延長期湖盆充填類型與優(yōu)質(zhì)烴源巖的發(fā)育[J].地球?qū)W報(bào),2014,35(1):101-110.
QIU Xinwei,LIU Chiyang.Lake-basin filling types and development of high quality hydrocarbon source rocks in Ordos Basin in Late Triassic Yanchang period[J].Acta Geoscientica Sinica,2014,35(1):101-110.
[24] YUAN Xuanjun,LIN Senhu,LIU Qun,et al.Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern:a case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin,NW China[J].Petroleum Exploration and Development,2015,42(1):37-47.
[25]王起琮.旋回層序地層的控制因素[J].石油與天然氣地質(zhì),2009,30(5):648-657.
WANG Qicong.Controlling factors of cyclic sequence stratigraphy[J].Oil & Gas Geology,2009,30(5):648-657.
[26] BERGER A.Stability of the astronomical frequencies over the earth’s history for palaeoclimate[J].Science,1992,255:560-565.
[27]鄧秀芹,羅安湘,張忠義,等.秦嶺造山帶與鄂爾多斯盆地印支期構(gòu)造事件年代學(xué)對比[J].沉積學(xué)報(bào),2013,31(6):938-953.
DENG Xiuqing,LUO Anxiang,ZHANG Zhongyi,et al.Geochronological comparison on Indosinian tectonic events between Qinling orogeny and Ordos Basin[J].Acta Sedimentologica Sinica,2013,31(6):938-953.
[28]劉超,印長海,盧雙舫.變系數(shù)△LogR烴源巖測井評價(jià)技術(shù)關(guān)鍵參數(shù)厘定方法及應(yīng)用[J].天然氣地球科學(xué),2015,26(10):1925-1931.
LIU Chao,YIN Changhai,LU Shuangfang.Predicting key parameters for variable-coefficient △LogR logging technique and its application in source rocks evaluation[J].Natural Gas Geoscience,2015,26(10):1925-1931.
責(zé)任編輯:王輝
Deposition Rate of the Seventh Member of Yangchang Formation,Ordos Basin and Its Impact on Organic Matter Abundance of Hydrocarbon Source Rock
YUAN Wei1,2,LIU Guangdi1,2,LUO Wenbin1,2
(1.State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum (Beijing),Beijing 102249,China;2.Faculty of Geoscience,China University of Petroleum (Beijing),Beijing 102249,China)
The deposition rate of organic-rich shale in three sub-members of the seventh member of Yanchang Formation (Chang 7) in Ordos Basin was calculated using the method based on Milankovitch cycles.It is found that the deposition rate of the Chang 7 reservoir is very low,the average deposition rate is 1.31 cm/ka,and the deposition rate of from Chang 73to Chang 71gradually increases.The TOC content of the reservoir was predicted using △log R method,and the relationship between the deposition rate and TOC content was established based on the calculation result of the deposition rate and the prediction result of TOC content of some oil wells.It is shown that when the deposition rate is less than 1.35 cm/ka,there is no obvious correlation between TOC content and deposition rate,and the abundance of organic matter in sediments is mainly controlled by other factors such as the paleoproductivity and preservation conditions;when the deposition rate is more than 1.35 cm/ka,the TOC content gradually decreases with the increase of the deposition rate,which indicates that the greater the deposition rate,the less the abundance of organic matter because the organic matter is diluted and destroyed seriously.
deposition rate;organic matter abundance;hydrocarbon source rock;Milankovitch cycles;Yanchang Formation;Ordos Basin
2016-04-30
國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)(編號:2014CB239003)
袁偉(1988-),男,博士研究生,主要從事油氣藏形成機(jī)理與分布規(guī)律研究。E-mail:gujingyw@qq.com
10.3969/j.issn.1673-064X.2016.05.003
TE121.3
1673-064X(2016)05-0020-07
A