亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        不同滴灌量對(duì)冬小麥干物質(zhì)積累、轉(zhuǎn)運(yùn)及產(chǎn)量的影響

        2016-11-01 01:29:47雷鈞杰張永強(qiáng)張宏芝賽力汗薛麗華于建新梁玉超陳興武
        新疆農(nóng)業(yè)科學(xué) 2016年4期
        關(guān)鍵詞:新疆產(chǎn)量差異

        雷鈞杰,張永強(qiáng),張宏芝,賽力汗·賽,薛麗華,喬 旭,于建新,馮 賓,梁玉超,王 成,陳興武

        (1.新疆農(nóng)業(yè)科學(xué)院糧食作物研究所,烏魯木齊 830091;2.農(nóng)業(yè)部荒漠綠洲作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室,烏魯木齊 830091;3.新疆農(nóng)業(yè)科學(xué)院核技術(shù)生物技術(shù)研究所,烏魯木齊 830091;4.奇臺(tái)縣農(nóng)業(yè)技術(shù)推廣中心,新疆奇臺(tái) 831800)5.新疆農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,烏魯木齊 830052);

        ?

        不同滴灌量對(duì)冬小麥干物質(zhì)積累、轉(zhuǎn)運(yùn)及產(chǎn)量的影響

        雷鈞杰1,2,張永強(qiáng)1,2,張宏芝2,3,賽力汗·賽1,2,薛麗華1,2,喬 旭1,2,于建新4,馮 賓4,梁玉超5,王 成5,陳興武1,2

        (1.新疆農(nóng)業(yè)科學(xué)院糧食作物研究所,烏魯木齊830091;2.農(nóng)業(yè)部荒漠綠洲作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室,烏魯木齊830091;3.新疆農(nóng)業(yè)科學(xué)院核技術(shù)生物技術(shù)研究所,烏魯木齊830091;4.奇臺(tái)縣農(nóng)業(yè)技術(shù)推廣中心,新疆奇臺(tái)831800)5.新疆農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,烏魯木齊830052);

        【目的】研究滴灌量對(duì)冬小麥干物質(zhì)積累和轉(zhuǎn)運(yùn)特征的影響?!痉椒ā吭诖筇锏喂鄺l件下,設(shè)置3 150(W1)、3 900(W2)、4 650(W3)和5 400 m3/hm2(W4),對(duì)照滴灌量為0(CK)共5種不同處理,研究不同滴灌量對(duì)冬小麥葉面積指數(shù)(LAI)、干物質(zhì)積累、轉(zhuǎn)運(yùn)及產(chǎn)量的影響?!窘Y(jié)果】隨著滴灌量的增加,各處理冬小麥的LAI和干物質(zhì)均呈W3>W4>W2>W1>CK的變化規(guī)律;干物質(zhì)快增期出現(xiàn)在拔節(jié)后4~55 d,快增期持續(xù)時(shí)間(△t)為35~50 d,最大積累速率(Vm)為0.043~0.075 mg/(株·d);花前同化物轉(zhuǎn)運(yùn)量呈“先增后降”的趨勢(shì),花后同化物轉(zhuǎn)運(yùn)量呈增加趨勢(shì),但花前、花后同化物轉(zhuǎn)運(yùn)總量以W3最大為1.574 g/株。產(chǎn)量最高為8 602.41 kg/hm2(W3處理),分別較W1、W2、W4和CK增產(chǎn)12.41%、2.77%、1.07%和33.00%?!窘Y(jié)論】冬小麥全生育期適宜的滴灌量為4 650 m3/hm2。

        滴灌量;冬小麥;干物質(zhì)積累和轉(zhuǎn)運(yùn);產(chǎn)量

        0 引 言

        【研究意義】新疆地處亞歐大陸腹地,氣候干燥,降雨稀少,蒸發(fā)強(qiáng)烈,水資源匱乏,是我國典型的綠洲灌溉農(nóng)業(yè)區(qū),92.4%的耕地為灌溉農(nóng)業(yè),沒有水就沒有新疆的農(nóng)業(yè)[1]。因此,節(jié)水灌溉是新疆發(fā)展農(nóng)業(yè)的必然選擇,而滴灌作為一種先進(jìn)的節(jié)水灌溉技術(shù),可根據(jù)作物需水規(guī)律,將灌溉水源直接輸送到作物根部,以點(diǎn)滴狀緩慢而均勻地滴入作物根區(qū)土壤中,被根系充分吸收利用,最大限度地降低土壤水分滲漏和農(nóng)業(yè)用水浪費(fèi),可有效緩解水資源不足與農(nóng)業(yè)用水利用率較低的矛盾[2]。近年來隨著滴灌技術(shù)在密植作物小麥上的應(yīng)用與研究,滴灌小麥栽培面積不斷擴(kuò)大?!厩叭搜芯窟M(jìn)展】對(duì)滴灌水麥研究主要集中在不同滴灌帶配置方式[1,3-4],及同一滴灌帶配置方式下小麥產(chǎn)量性狀均呈現(xiàn)行間差異[5,6]、滴灌量對(duì)春小麥生長(zhǎng)發(fā)育[7]、葉綠素含量和光合特性[8]、根系分布[9]、水分利用效率及產(chǎn)量的影響方面[10-11]。【本研究切入點(diǎn)】目前研究大部分集中在對(duì)春小麥的研究上,對(duì)滴灌冬小麥的研究較少,雖有一些報(bào)道,但對(duì)不同的試驗(yàn)條件下得出的結(jié)論不盡相同,研究在大田滴灌條件下,設(shè)置5種不同滴灌量處理,研究不同處理下冬小麥干物質(zhì)積累特征及產(chǎn)量構(gòu)成特點(diǎn),探究滴灌量對(duì)冬小麥干物質(zhì)積累、轉(zhuǎn)運(yùn)及產(chǎn)量形成的機(jī)理。【擬解決的關(guān)鍵問題】在大田滴灌條件下,研究不同滴灌量對(duì)冬小麥干物質(zhì)積累動(dòng)態(tài)變化及其轉(zhuǎn)運(yùn)、Logistic生長(zhǎng)函數(shù)特征和產(chǎn)量的影響,確定滴灌冬小麥適宜的滴灌量,為其高產(chǎn)、高效、節(jié)水、優(yōu)質(zhì)栽培提供理論依據(jù)與技術(shù)支撐。

        1 材料與方法

        1.1材 料

        試驗(yàn)于2013~2014年在新疆奇臺(tái)縣西地鎮(zhèn)西地村進(jìn)行,試驗(yàn)區(qū)位于E89°13′,N43°25′,年均日照時(shí)數(shù)2 280~3 230 h,年均氣溫4.7℃,年均降雨量176 mm,蒸發(fā)量2 141 mm。極端最高氣溫39℃,極端最低氣溫-37.3℃。全年無霜期156 d。試驗(yàn)地土壤為灌溉灰漠土,播前0~40 cm土壤有機(jī)質(zhì)含量2.84%,堿解氮含量52.22 mg/kg,速效磷含量20.20 mg/kg,速效鉀含量237 mg/kg。

        1.2方 法

        1.2.1試驗(yàn)設(shè)計(jì)

        采用單因素隨機(jī)區(qū)組試驗(yàn)設(shè)計(jì),在大田滴灌條件下設(shè)置3 150(W1)、3 900(W2)、4 650(W3)和5 400 m3/hm2(W4),對(duì)照處理滴灌量為0(CK)共5種不同的滴灌量處理,小區(qū)面積36 m2(3.6 m×10 m),重復(fù)3次,為防止水分漏滲,小區(qū)之間空1.5 m寬隔離帶,各小區(qū)均用水表控制進(jìn)水量。供試品種為新冬22號(hào),于2013年9月26日播種,行距15 cm。滴灌帶采用1管4行的布置方式,毛管間距60 cm。播前結(jié)合整地深施磷酸二銨300 kg/hm2、尿素58.5 kg/hm2作為基肥,在冬小麥拔節(jié)期、孕穗期、開花期分別追施尿素228.75、76.2和76.2 kg/hm2,在小麥灌漿期滴施KH2PO4(純度98%),每次滴施22.5 kg/hm2。表1

        表1不同滴灌量及滴灌時(shí)期(m3/hm2)
        Table 1The amount of drip irrigation distribution in different stage under different treatments

        處理Treatments越冬前Pre-winter起身期Recoverystage拔節(jié)期Jointingstage孕穗期Bootingstage抽穗期Headingstage開花期Floweringstage灌漿前期Earlystageoffilling灌漿中期Middlestageoffilling總量TotalW1900225450562.5225337.52252253150W29003006007503004503003003900W3900375750937.5375562.53753754650W490045090011254506754504505400CK000000000

        1.2.2測(cè)定項(xiàng)目1.2.2.1小麥群體動(dòng)態(tài)調(diào)查

        基本苗、冬前總莖數(shù)、返青總莖數(shù)、起身期總莖數(shù)(春季最大總莖數(shù))、收獲穗數(shù)。

        1.2.2.2葉面積和葉面積指數(shù)

        于冬小麥拔節(jié)期、孕穗期、開花期,花后12 d、花后24 d,每處理每重復(fù)連續(xù)選取10個(gè)單莖,測(cè)定每個(gè)單莖的綠色葉片的長(zhǎng)和寬,并根據(jù)以下公式計(jì)算出葉面積指數(shù)(LAI)。

        單莖葉面積=長(zhǎng)×寬×0.83.

        LAI=單莖葉面積×1 hm2莖數(shù)/10000.

        1.2.2.3干物質(zhì)

        于冬小麥拔節(jié)期、孕穗期、開花期,花后12 d、花后24 d、成熟期,每處理每重復(fù)取20株小麥鮮樣,剪去根,將植株分為葉片、莖鞘、穎殼和穗軸、籽粒部分,放入105℃烘箱中殺青15 min,80℃烘24 h至恒重后稱干重,分別測(cè)定各部分的干物質(zhì)重。采用Logistic方程擬合滴灌冬小麥干物質(zhì)積累變化:

        y=k/[1+e(a-bt)].

        式中:y為冬小麥拔節(jié)t天單株干物質(zhì)積累量(g/株);t為冬小麥拔節(jié)后的天數(shù)(d);k表示冬小麥單株干物質(zhì)理論最大積累量(g/株);a、b為待定系數(shù)。

        根據(jù)方程推導(dǎo)得到的幾個(gè)特征值:

        最快生長(zhǎng)時(shí)間段的起始時(shí)間t1=[ln(ea)-1.317] /b,終止時(shí)間t2=[ln(ea)+1.317] /b;

        最大相對(duì)生長(zhǎng)速率Vm=-bk/ 4,最大相對(duì)生長(zhǎng)速率出現(xiàn)時(shí)間tm=-a/b.

        快速增長(zhǎng)期持續(xù)的時(shí)間△t=t2-t1.

        干物質(zhì)積累與轉(zhuǎn)運(yùn)量的計(jì)算方法如下[13]:

        花前同化物轉(zhuǎn)運(yùn)量(g)=開花期干物重(g)-成熟期營養(yǎng)器官干重(g)。

        花后同化物轉(zhuǎn)運(yùn)量(g)=成熟期籽粒干重(g)-花前同化物轉(zhuǎn)運(yùn)量(g)。

        花前同化物轉(zhuǎn)運(yùn)率(%)=花前同化物轉(zhuǎn)運(yùn)量(g)/開花期營養(yǎng)器官干重(g)×100%。

        花后同化物轉(zhuǎn)運(yùn)率(%)=花后同化物轉(zhuǎn)運(yùn)量(g)/[收獲時(shí)全株干重(g)-開花時(shí)全株干重(g)] ×100%。

        花前同化物對(duì)籽粒的貢獻(xiàn)率(%)=花前同化物轉(zhuǎn)運(yùn)量(g)/成熟期籽粒干重(g) ×100%。

        花后同化物對(duì)籽粒的貢獻(xiàn)率(%)=花后同化物轉(zhuǎn)運(yùn)量(g)/成熟期籽粒干重(g)×100%。

        1.2.2.4產(chǎn)量及產(chǎn)量結(jié)構(gòu)

        成熟期從各小區(qū)選取4 m2(2 m×2 m)樣點(diǎn),單獨(dú)人工收割,脫粒后風(fēng)干稱重,并折算產(chǎn)量,籽粒含水量為13%。另從每小區(qū)取1 m雙行樣段,調(diào)查有效穗數(shù)、穗粒數(shù)和千粒重。

        1.3數(shù)據(jù)統(tǒng)計(jì)

        采用Microsoft Excel 2003作圖,用DPS7.05軟件統(tǒng)計(jì)分析數(shù)據(jù)。

        2 結(jié)果與分析

        2.1不同滴灌量對(duì)冬小麥葉面積指數(shù)的影響

        葉面積指數(shù)(LAI)是反映植物群體生長(zhǎng)狀況的一個(gè)重要指標(biāo),其大小直接與最終產(chǎn)量高低密切相關(guān)。研究表明,不同處理滴灌冬小麥LAI的總體變化趨勢(shì)基本一致,均呈“先增加后緩慢下降”的單峰變化趨勢(shì),且各處理均在孕穗期達(dá)到峰值,最大為5.68(W3處理),分別較同期W1、W2、W4和CK高出3.51%、0.80%、3.66%和14.72%,其與W1、W2和W4處理差異不顯著,但與CK處理的差異達(dá)極顯著水平(P<0.01)。進(jìn)一步分析可知,在孕穗期以前,W1、W2、W3和W4處理間的差異不大,孕穗期之后處理間差異逐漸增大,但整個(gè)生育期各處理均顯著高于對(duì)照CK。圖1

        圖1不同滴灌量冬小麥葉面積指數(shù)動(dòng)態(tài)變化
        Fig.1 The dynamic change of leaf area index of winter wheat under different drip irrigation amount

        2.2不同滴灌量冬小麥干物質(zhì)積累特征的影響

        研究表明,各處理干物質(zhì)積累過程的總趨勢(shì)基本一致,即隨著生育進(jìn)程的推進(jìn)冬小麥單株干物質(zhì)積累量逐漸增加。其中孕穗期以前積累緩慢,從孕穗期到花后24 d增長(zhǎng)迅速,花后24 d以后冬小麥干物質(zhì)基本保持穩(wěn)定,但整個(gè)生育進(jìn)程中,滴灌冬小麥地上部分干物質(zhì)基本呈W3>W4>W2>W1>CK的變化規(guī)律,尤其是小麥開花之后其它處理明顯高于不灌水的對(duì)照CK。用Logistic方程對(duì)不同滴灌量處理冬小麥的干物質(zhì)積累量進(jìn)行擬合,其曲線擬合度的R2值均超過了0.97,達(dá)極顯著水平。表2,圖2

        圖2不同滴灌量冬小麥干物質(zhì)積累動(dòng)態(tài)
        Fig.2 The dynamic change of dry matter of winter wheat under different drip irrigation amount

        研究表明,滴灌冬小麥地上部分干物質(zhì)量積累最快的時(shí)期出現(xiàn)在拔節(jié)后的4~55 d(5月13日至7月2日),干物質(zhì)積累最大速率(Vm)出現(xiàn)在拔節(jié)后的26~29 d,快速積累期(△t)為35~50 d。進(jìn)一步分析可知,隨著滴灌量的增加冬小麥單株干物質(zhì)總量和Vm均呈“先上升后下降”的變化規(guī)律,且均在W3處理達(dá)到最大值,其與W1、W2、W4和CK相比,干物質(zhì)理論最大積累量分別增加8.31%、10.24%、0.19%和25.93%;Vm分別增加了0.017、0.006、0.004、0.032 g/(株·d)?!鱰與Vm的變化規(guī)律基本呈相反的趨勢(shì),具體為:CK>W1>W4>W3>W2。干物質(zhì)的積累由干物質(zhì)積累速率與其持續(xù)時(shí)間共同決定的,只有二者相互統(tǒng)一,才能獲得較高的干物質(zhì)積累量,為獲得高產(chǎn)打下基礎(chǔ)。表2

        表2不同滴灌量冬小麥地上部分干物質(zhì)積累的Logistic模擬及其特征值
        Table 2Logistic and their eigenvalues of dry matter accumulation of aboveground parts of winter wheat under different treatments

        處理TreatmentsLogistic方程EquationVmg/(株·d)持續(xù)時(shí)間Duration(d)tmt1t2△tR2W1y=3.7688/[1+e(1.0719-0.0615t)]0.05829.448.0150.8842.870.9847**W2y=3.7030/[1+e(1.0755-0.0739t)]0.06926.558.7344.3735.640.9883**W3y=4.0821/[1+e(1.1192-0.0730t)]0.07527.349.2945.3936.100.9904**W4y=4.0742/[1+e(1.0307-0.0689t)]0.07126.977.8446.1038.260.9924**CKy=3.2415/[1+e(0.9128-0.0530t)]0.04329.234.3754.0949.720.9741**

        注:t冬小麥拔節(jié)后的天數(shù);y冬小麥干物質(zhì)積累量;Vm干物質(zhì)最大增長(zhǎng)速率;tm干物質(zhì)積累最大速率出現(xiàn)的時(shí)間;t1和t2分別為L(zhǎng)ogistic生長(zhǎng)函數(shù)的兩個(gè)拐點(diǎn);△t干物質(zhì)快速積累持續(xù)天數(shù);**P<0.01

        Note:t:The days after jointing stage of winter wheat;y:The dry matter accumulation of winter wheatVm:The maximum increase rate of dry matter;tm:The days of the maximum dry matter accumulation rate occurred;t1andt2are two inflexions of the Logistic equations, respectively;△t:The continued days of dry matter rapid accumulation(d);**P<0.01

        2.3不同滴灌量對(duì)冬小麥干物質(zhì)轉(zhuǎn)運(yùn)特征的影響

        研究表明,不同滴灌量處理對(duì)冬小麥花前、花后同化物轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)率和對(duì)籽粒產(chǎn)量的貢獻(xiàn)率均有顯著的影響。隨著滴灌量的增加,冬小麥花前同化物轉(zhuǎn)運(yùn)量呈“先增后降”的變化趨勢(shì),在W2處理達(dá)到最大,為0.585 g/株,比W1、W3、W4和CK分別增加了33.98%、11.69%、37.97%和81.63%,達(dá)極顯著差異水平(P<0.01);花后同化物轉(zhuǎn)運(yùn)量呈增加趨勢(shì),最大值為1.128 g/株(W4處理)比W1、W2、W3和CK分別增加了74.38%、26.66%、7.40%和65.44%,其中與W1、W2和CK達(dá)極顯著差異水平(P<0.01),與W3達(dá)顯著差異水平(P<0.05)。累積滴灌冬小麥花前、花后同化物轉(zhuǎn)運(yùn)量可得出W3處理最大為1.574g/株,比W1、W2、W4和CK的同化物多轉(zhuǎn)運(yùn)了0.491、0.098、0.022和0.685 g/株,表明適宜的滴灌量能夠促進(jìn)冬小麥同化物向籽粒轉(zhuǎn)運(yùn),有利于達(dá)到小麥高產(chǎn)。表3

        表3不同滴灌量冬小麥花前和花后同化物轉(zhuǎn)運(yùn)
        Table 3Effects of different drip irrigation amount on assimilation transportation after and before anthesis of winter wheat

        處理Treatments花前同化物Assimilationbeforeanthesis花后同化物Assimilationafteranthesis轉(zhuǎn)運(yùn)量Transportation(g/株)轉(zhuǎn)運(yùn)率Transportatingrate(%)對(duì)籽粒貢獻(xiàn)率Contributionrate(%)轉(zhuǎn)運(yùn)量Transportation(g/株)轉(zhuǎn)運(yùn)率Transportatingrate(%)對(duì)籽粒貢獻(xiàn)率Contributionrate(%)W10.437cC23.72bB40.32aA0.647eC41.81dC59.68dCW20.585aA26.88aA39.66aA0.890cB67.11bA60.34dCW30.524bB22.89bB33.29bB1.050bA68.25bA66.71cBW40.424cC18.91cC27.34cC1.128aA72.29aA72.66bBCK0.208dD12.07dD23.36dD0.682dC60.91cB76.64aA

        注:大小寫字母分別表示差異達(dá)到0.01和0.05顯著水平,下同

        Note:The capital lowercase letters indicate significant difference at 0.01 and 0.05 level,respectively,the same as below

        2.4不同滴灌量對(duì)冬小麥產(chǎn)量及產(chǎn)量構(gòu)成影響

        研究表明,不同處理對(duì)滴灌冬小麥有效穗數(shù)的影響不大,最高為535.56×104穗/hm2(W2處理),但與其它處理間差異不顯著。穗粒數(shù)和千粒重隨著滴灌量的增加呈“先增后降”的變化趨勢(shì),且均在W3處理達(dá)到最高,分別為31.73粒和48.49 g,其中穗粒數(shù)W3處理與W2、W4處理達(dá)顯著性差異(P<0.05),與W1、CK達(dá)極顯著差異(P<0.01);千粒重W3處理與W1、W2、W4處理之間差異不顯著,但均顯著高于CK。表明滴灌條件下適當(dāng)增加灌水量可以增加冬小麥的穗粒數(shù)和千粒重,為獲得高產(chǎn)奠定了基礎(chǔ)。籽粒產(chǎn)量隨著滴灌量的增加呈現(xiàn)W3>W4>W2>W1>CK的變化規(guī)律,W3處理產(chǎn)量最高為8 602.41 kg/hm2,分別較W1、W2、W4和CK增產(chǎn)12.41%、2.77%、1.07%和33.00%,其與W1、CK差異達(dá)極顯著水平(P<0.01),與W2、W4差異不顯著。滴灌處理下冬小麥地上部分的生物量呈“先降后增”變化規(guī)律,其與籽粒產(chǎn)量變化趨勢(shì)恰恰相反,呈W3

        表4不同滴灌量下冬小麥產(chǎn)量、產(chǎn)量構(gòu)成因素及收獲指數(shù)變化
        Table 4Effects of components and harvest winter wheat different drip irrigation amount

        處理Treatments穗數(shù)Spikenumber(104spilks/hm2)穗粒數(shù)Grainsperspike千粒重1000-grainweight(g)產(chǎn)量Yield(kg/hm2)生物量Totalbiomass(kg/hm2)收獲指數(shù)HarvestnumberW1522.22aA25.97cB47.96aA7652.23bB28240.14aA0.27cCDW2535.56aA28.93bA48.08aA8370.17aAB28394.36aA0.29bBCW3531.11aA31.73aA48.49aA8602.41aA26958.13aA0.32aAW4523.34aA29.73bA48.14aA8511.61aA27365.69aA0.31aABCK524.45aA25.13cB45.64bA6468.14bC24449.90bB0.26cD

        3 討 論

        植物生長(zhǎng)所需要的水分主要是由根系從土壤中汲取,而滴灌量大小直接影響著土壤含水量的高低,從而影響植物的生長(zhǎng)。研究表明,土壤水分狀況對(duì)小麥干物質(zhì)積累與分配有顯著影響[14]。拔節(jié)期后田間持水量為65%的處理小麥干物質(zhì)積累量和籽粒產(chǎn)量均顯著高于80%的處理[15],小麥開花后漬水和干旱均會(huì)顯著降低植株干物質(zhì)積累量和產(chǎn)量[16-17];也有學(xué)者研究認(rèn)為,小麥在某些生育時(shí)期水分虧缺反而有利于同化物向籽粒轉(zhuǎn)運(yùn),提高收獲指數(shù)[18],此結(jié)論在研究中進(jìn)一步得到了證實(shí)。研究結(jié)果表明,隨著滴灌量的增加冬小麥干物質(zhì)積累量呈“先增后降”的變化趨勢(shì),在W3處理達(dá)到最高,由于新疆屬于灌溉農(nóng)業(yè),降雨較少,滴灌條件下各處理的干物質(zhì)均顯著高于對(duì)照CK;適宜增加滴灌量不僅可以提高干物質(zhì)的積累速率和干物質(zhì)的積累量,還能有效促進(jìn)干物質(zhì)向籽粒轉(zhuǎn)運(yùn),而滴灌量較高的處理卻對(duì)干物質(zhì)轉(zhuǎn)運(yùn)總量有所制約。較高的干物質(zhì)積累和轉(zhuǎn)運(yùn)量有利于小麥獲得較高的籽粒產(chǎn)量。

        小麥籽粒中的干物質(zhì)大部分來源于其花后的光合作用產(chǎn)物和花前貯藏于營養(yǎng)器官的光合產(chǎn)物的轉(zhuǎn)運(yùn)、分配[19]。Sun等[20]研究表明,節(jié)水灌溉農(nóng)業(yè)應(yīng)尋求產(chǎn)量和水分利用效率的最佳結(jié)合,灌水量過多會(huì)顯著降低光合產(chǎn)物向籽粒轉(zhuǎn)運(yùn),造成減產(chǎn)[21];而土壤水分虧缺會(huì)導(dǎo)致植株葉片提前進(jìn)入衰老期,降低光合速率和灌漿速率,同樣也會(huì)造成減產(chǎn)[22]。研究表明,適當(dāng)增加滴灌量增產(chǎn)效果明顯,各處理產(chǎn)量最高為8 602.41 kg/hm2(W3處理),分別較W1、W2、W4和CK增產(chǎn)12.41%、2.77%、1.07%和33.00%,其與W1、CK差異達(dá)極顯著水平(P<0.01),與W2、W4差異不顯著。

        4 結(jié) 論

        通過不同滴灌量對(duì)冬小麥干物質(zhì)積累、轉(zhuǎn)運(yùn)及產(chǎn)量的影響研究發(fā)現(xiàn),適宜增加滴灌量能有效提高冬小麥LAI和干物質(zhì)積累,有利于光合產(chǎn)物向籽粒轉(zhuǎn)運(yùn),提高籽粒產(chǎn)量。試驗(yàn)條件下,冬小麥全生育期適宜的滴灌量為4 650 m3/hm2時(shí),干物質(zhì)積累量和花前、花后干物質(zhì)轉(zhuǎn)運(yùn)總量最大,產(chǎn)量最高,可供當(dāng)?shù)卮筇锷a(chǎn)參考。此灌水量與當(dāng)?shù)芈嘞啾?,雖然達(dá)到了節(jié)水和高產(chǎn)的目的,但距離精量灌溉和水分的高效利用仍有一定的距離,還要進(jìn)一步縮減灌溉梯度和滴灌量,以確定滴灌冬小麥最佳的滴灌制度。

        References)

        [1]張娜,張永強(qiáng),唐江華,等.滴灌帶配置方式對(duì)冬小麥生長(zhǎng)及產(chǎn)量的影響[J].麥類作物學(xué)報(bào),2013,33(6):1 197-1 201.

        ZHANG Na, ZHANG Yong-qiang, TANG Jiang-hua, et al. (2013). Effect of drip irrigation layout on growth and yield of winter wheat [J].JournalofTriticeaeCrops, 33(6):1,197-1,201. (in Chinese)

        [2] Wood, M. L., & Finger, L. (2006). Influence of irrigation method on water use and production of perennial pastures in northern Victoria.AnimalProductionScience, 46(12): 1,605-1,614.

        [3]萬剛.滴灌帶不同配置方式對(duì)小麥生長(zhǎng)發(fā)育及產(chǎn)量的影響[J].安徽農(nóng)學(xué)通報(bào),2011,16(9):25-29.

        WAN Gang. (2011). Effect of Different drip irrigation layout on growth and yield of wheat [J].AnhuiAgri.Sci.Bull, 16(19):25-29, 100. (in Chinese)

        [4]王振華,鄭旭榮,龔婷婷,等.北疆滴灌春小麥毛管適宜布置模式[J].中國農(nóng)學(xué)通報(bào),2014,30(11):150-155.

        WANG Zheng-hua, ZHENG Xun-rong, GONG Ting-ting, et al. (2014). The sui
        Table drip irrigation capillary arrangement mode of spring wheat in north Xinjaing [J].ChineseAgriculturalScienceBulletin, 30(11): 150-155. (in Chinese)

        [5]魏建軍,楊相昆,張占琴,等.滴灌條件下不同冬麥行間產(chǎn)量性狀的差異[J].西北農(nóng)業(yè)學(xué)報(bào),2013,22(4):44-48.

        WEI Jian-jun,YANG Xiang-kun, ZHANG Zhan-qin, et al. (2013). Variation of yield traits between different rows of drip-irrigated winter wheat [J].ActaAgriculturaeBareali-occidentalisSinica, 22(4):44-48. (in Chinese)

        [6]薛麗華,段麗娜,謝小青,等.滴灌量對(duì)新冬18號(hào)行間產(chǎn)量差異的影響機(jī)理分析[J].新疆農(nóng)業(yè)科學(xué),2015,52(4):614-620.

        XUN Li-hua, DUAN Li-na, XIE Xiao-qing, et al. (2015). Analysis of mechanism of drip irrigation effect on xindong 18 interline difference differences in yield [J].XinjiangAgriculturalScience, 52(4):614-620. (in Chinese)

        [7]蔣桂英,魏建軍,劉萍,等.滴灌春小麥生長(zhǎng)發(fā)育與水分利用效率的研究[J].干旱地區(qū)農(nóng)業(yè)研究,2012,30(6):50-54,73.

        JIANG Gui-ying, WEI Jian-jun, LIU Ping, et al. (2012). Spring wheat growth and water use efficiency under drip irrigation [J].AgriculturalResearchintheAridAreas, 30(6): 50-54, 73. (in Chinese)

        [8]王冀川,高山,徐雅麗,等.不同滴灌量對(duì)南疆春小麥光合特征和產(chǎn)量的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2012,30(4):42-48.

        WANG Ji-chuan, GAO Shan, XU Ya-li et al.(2012). Effect of drip irrigation on photosynthetic characteristics and yield of spring wheat in south Xinjiang [J].AgriculturalResearchintheAridAreas, 30(4):42-48. (in Chinese)

        [9]王冀川,徐雅麗,高山, 等.滴灌條件下根區(qū)水分對(duì)春小麥根系分布特征及產(chǎn)量的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2011,(2):21-26.

        WANG Ji-cuan, XU Ya-li, GAO Shan, et al. (2011). Effects of soil moisture of root zone on root growth and yield of spring wheat under drip irrigation [J].AgriculturalResearchintheAridAreas, 29(2):21-26. (in Chinese)

        [10]程裕偉,馬富裕,王光全,等.不同水分處理對(duì)滴灌春小麥水分利用效率及產(chǎn)量的影響[J].新疆農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,(4):322-328.

        CHENG Yu-wei, MA Fu-yu, WANG Guang-quan, et al. (2013). Effects of Different Irrigation Intensity on Water Use Efficiency and Yield and Yield of Drip Irrigated Spring Wheat [J].JournalofXinjiangAgriculturalUniversity, (4): 322-328. (in Chinese)

        [11]聶紫瑾,陳源泉,張建省,等.黑龍港流域不同滴灌制度下的冬小麥產(chǎn)量和水分利用效率[J].作物學(xué)報(bào),2013,(9):1 687-1 692.

        NIE Zi-jin, CHEN Yuan-quan, ZHANG Jian-sheng, et al. (2013). Effects of Drip Irrigation Patterns on Wheat Yield and Water Use Efficiency in Heilonggang Region [J].ActaAgronSin, (9):1,687-1,692. (in Chinese)

        [12]商健,劉義國,姜雯,等.滴灌模式對(duì)冬小麥花后光合特性與產(chǎn)量的影響[J].麥類作物學(xué)報(bào),2013,(3):483-488.

        SHANG Jian, LIU Yi-guo, JIANG Wen, et al.(2013). Effects of drip irrigation on patterns on photosynthetic characteristic after anthesis and yield of winter wheat [J].JournalofTriticeaeCrops, 33(3): 483-488. (in Chinese)

        [13] Jiang, D., Xie, Z. J., Cao, W. X., Dai, T. B., & Jing, Q. (2004). Effects of post-anthesis drought and waterlogging on photosynthetic characteristics, assimilates transportation in winter wheat.ActaAgronomicaSinica, 30(2): 175-182.

        [14] Ziaei, A. N., & Sepaskhah, A. R. (2003). Model for simulation of winter wheat yield under dryland and irrigated conditions.AgriculturalWaterManagement, 58(1): 1-17.

        [15]任巍,姚克敏,于強(qiáng),等.水分調(diào)控對(duì)冬小麥同化物分配與水分利用效率的影響研究[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2003,11(4):97-99.

        REN Wei, YAO Ke-min,YU Qiang, et al. (2003). Effect of water control in combination of depth and amount on dry matter partition and water use efficiency of winter wheat [J].ChinJEco-Agric, 11(4): 97-99. (in Chinese)

        [16]姜東,謝祝捷,曹衛(wèi)星,等.花后干旱和漬水對(duì)冬小麥光合特性和物質(zhì)運(yùn)轉(zhuǎn)的影響[J].作物學(xué)報(bào),2004,(2):175-182.

        JIANG Dong, XIE Zhu-jian, CAO Wei-xing, et al. (2004). Effects of post-anthesis drought and water-logging on photosynthetic characteristics, assimilates transportation in winter wheat [J].ActaAgronSin, 30(2): 175-182. (in Chinese)

        [17] Tambussi, E. A., Nogués, S., & Araus, J. L. (2005). Ear of durum wheat under water stress: water relations and photosynthetic metabolism.Planta, 221(3):446-458.

        [18] Kang, S., Zhang, L., Liang, Y., Hu, X., Cai, H., & Gu, B. (2002). Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China.AgriculturalWaterManagement, 55(3):203-216.

        [19]張娜,張永強(qiáng),李大平,等.滴灌量對(duì)冬小麥光合特性及干物質(zhì)積累過程的影響[J].麥類作物學(xué)報(bào),2014,34 (6):795-801.

        ZHANG Na, ZHANG Yong-qiang, LI Da-ping, et al. (2014). Effect of drip irrigation amount on photosnthesis characteristics and dry matter accumulation of winter wheat [J].JournalofTriticeaeCrops, 34(6):795-801. (in Chinese)

        [20] Sun, H. Y., Liu, C. M., Zhang, X. Y., Shen, Y. J., & Zhang, Y. Q. (2006). Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain.AgriculturalWaterManagement, 85(1):211-218.

        [21]鄭成巖,于振文,馬興華,等.高產(chǎn)小麥耗水特性及干物質(zhì)的積累與分配[J].作物學(xué)報(bào),2008,34(8):1 450-1 458.

        ZHENG Cheng-yan,YU Zhen-wen, MA Xing-hua,et al. (2008). Water consumption characteristic and dry matter accumulation and distribution in high-yielding wheat [J].ActaAgronomicaSinica, 34(8):1,450-1,458. (in Chinese)

        [22]婁成后,王學(xué)臣.作物生理產(chǎn)量[M].北京:中國農(nóng)業(yè)出版社,2001:52-63.

        LOU Cheng-hou, WANG Xue-chen.(2001).PhysiologyofCropYield[M]. Beijing: China Agriculture Press:52-63. (in Chinese)

        Fund project:Supported by Training Program for Youth Science and Technology Innovation Talents of Xinjiang Uygur Autonomous Region "Research into Accumulation and Translocation Characteristics of Dry Matter in Wheat Canopy under Drip Irrigation by Different Water and Nitrogen Regulations (2013721029); Open Subject of Key Laboratory of Crop Ecophysiology and Farming System in Desert Oasis Region, Ministry of Agriculture "The Effects of the Amount of Nitrogen Fertilizer Application on the Regulation System of Quality Formation of Winter Wheat under Drip Irrigation", The Science and Technology Support Program of Xinjiang Uygur Autonomous Region " Research into the Key Technology for the Production of High Yield and Efficiency Wheat under Drip Irrigation" (201231103), the Special Fund for the Modern Agricultural Technology System Construction "The Comprehensive Experimental Station in Xinjiang of the National Wheat Industry Technology System" (CARS-3-65) and the special project of Xinjiang water conservancy "integrated demonstration of drip irrigation and fertilizer for wheat in Xinjiang" (2015T25)

        Effect of Drip Irrigation Amount on Dry Matter Accumulation,Translocation and Yield in Winter Wheat

        LEI Jun-jie1,2, ZHANG Yong-qiang1,2, ZHANG Hong-zhi2,3, Sailihan Han1,2, XUE Li-hua1,2,QIAO Xu1,2, YU Jian-xin4, FENG Bin4, LIANG Yu-chao5, WANG Cheng5, CHEN Xing-wu1,2

        (1.ResearchInstituteofGrainCrops,XinjiangAcademyofAgriculturalSciences,Urumqi830091,China;2.KeyLaboratoryofCropEcophysiologyandFarmingSysteminDesertOasisRegion,MinistryofAgriculture,Urumqi830091,China; 3.ResearchInstituteofNuclearandBiotechnologies,XinjiangAcademyofAgriculturalSciences,Urumqi830091,China;4.CenterofAgriculturalTechniquesExtensionofQitaiArea,QitaiXinjiang831800,China); 5.CollegeofAgronomy,XinjiangAgriculturalUniversity,Urumqi830052,China

        【Objective】 In order to reveal the effect of drip irrigation amount on dry matter accumulation, translocation and yield of winter wheat in Xinjiang.【Method】The pot experiment with five different treatments of 3,150 m3/hm2(W1),3,900 m3/hm2(W2), 4,650 m3/hm2(W3), 5,400 m3/hm2(W4) and 0 (CK) was carried out to study the effects of drip irrigation amount on winter-wheat leaf area index (LAI), dry matter accumulation, transportation and yield.【Result】The results showed that with the increasing of drip irrigation amount, the amount of population dry matter accumulation and LAI all presented a trend of W3>W4>W2>W1>CK in the whole growing process; The fastest accumulation rate of total dry matter of winter wheat was from 4 to 55 days after the jointing,and the rapid growth period of total dry matter accumulation was from 33 to 35 days,the maximum accumulation rate was from 0.043-0.075 g/(plant·d). The assimilative translocation amount was "first rise and then drop" trend before flowering stage, after flowering assimilation transport volume showed an increasing trend, but before flowering, after flowering, total assimilation transport amount was at maximum of 1.574 g / strains under W3. The highest yield of 8,602.41 kg/hm2was under W3, which was 12.41%,2.77%,1.07% and 33.00% higher than W1,W2,W4and CK,respectively.【Conclusion】Therefore, 4,650 m3/hm2could be the sui
        Table drip irrigation amount for whole growing process of winter in the local natural conditions.

        drip irrigation quantities;winter wheat;dry matter accumulation;dry matter translocation;yield

        10.6048/j.issn.1001-4330.2016.04.002

        2015-11-17

        自治區(qū)青年科技創(chuàng)新人才培養(yǎng)工程項(xiàng)目“不同水氮調(diào)控下滴灌小麥冠層干物質(zhì)積累與運(yùn)轉(zhuǎn)特征研究”(2013721029);農(nóng)業(yè)部荒漠綠洲作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室開放課題“施氮量對(duì)滴灌冬小麥品質(zhì)形成的調(diào)控機(jī)制” ;自治區(qū)科技支撐項(xiàng)目“新疆小麥滴灌高產(chǎn)高效關(guān)鍵技術(shù)研究”(201231103);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金“國家小麥產(chǎn)業(yè)技術(shù)體系新疆綜合試驗(yàn)站”(CARS-3-65);新疆水利專項(xiàng)“小麥滴灌水肥一體化集成示范(2015T25)”。

        雷鈞杰(1972-),男,甘肅古浪人,研究員,研究方向?yàn)樽魑锔弋a(chǎn)栽培,(E-mail)leijunjie@sohu.com

        陳興武(1960-),男,陜西山陽人,研究員,研究方向?yàn)樽魑锔弋a(chǎn)栽培,(E-mail)cxw0723@sina.com

        S512

        A

        1001-4330(2016)04-0596-08

        猜你喜歡
        新疆產(chǎn)量差異
        相似與差異
        音樂探索(2022年2期)2022-05-30 21:01:37
        2022年11月份我國鋅產(chǎn)量同比增長(zhǎng)2.9% 鉛產(chǎn)量同比增長(zhǎng)5.6%
        今年前7個(gè)月北海道魚糜產(chǎn)量同比減少37%
        在新疆(四首)
        海水稻產(chǎn)量測(cè)評(píng)平均產(chǎn)量逐年遞增
        找句子差異
        生物為什么會(huì)有差異?
        2018上半年我國PVC產(chǎn)量數(shù)據(jù)
        聚氯乙烯(2018年9期)2018-02-18 01:11:34
        M1型、M2型巨噬細(xì)胞及腫瘤相關(guān)巨噬細(xì)胞中miR-146a表達(dá)的差異
        新疆多怪
        絲綢之路(2014年9期)2015-01-22 04:24:46
        国产极品久久久久极品| 国产精品亚洲а∨天堂2021| 亚洲成熟丰满熟妇高潮xxxxx| 亚洲av无码无线在线观看| 亚洲第一最快av网站| 99久久国产综合精品五月天| 久久午夜无码鲁丝片直播午夜精品| 精品人妻无码视频中文字幕一区二区三区| 成年女人免费视频播放体验区| 香蕉视频在线精品视频| 最新亚洲人成无码网站| 亚洲成av人片天堂网九九| 精品国免费一区二区三区| 中文字幕久久熟女人妻av免费| 日韩av在线手机免费观看| 蜜桃视频网站在线观看一区| 亚洲人精品午夜射精日韩| 人妻久久久一区二区三区| 国产成人麻豆精品午夜福利在线| 日韩在线看片| 亚洲AV秘 片一区二区三区| 亚洲不卡毛片在线观看| 国产免费一区二区在线视频| 日韩乱码人妻无码系列中文字幕| 色www永久免费视频| 香蕉久久久久久久av网站 | 淫妇日韩中文字幕在线| 偷拍熟女露出喷水在线91| 国产一区二区三区在线大屁股| 午夜爽爽爽男女免费观看影院| 亚洲精品久久久久久久不卡四虎| 人人妻人人澡人人爽人人精品| 久久亚洲精品成人综合| 宅男亚洲伊人久久大香线蕉| 日本国产精品久久一线| 亚洲最大的av在线观看| 国产一区高清在线观看| 国产肉体xxxx裸体784大胆| 精品亚洲成a人在线观看青青| 波多野结衣视频网址| 中文字幕丰满人妻有码专区|