陳太聰 李盈盈 蘇成 馬海濤
摘要: 在環(huán)境激勵(lì)下辨識(shí)結(jié)構(gòu)模態(tài)時(shí),系統(tǒng)階次作為關(guān)鍵計(jì)算參數(shù)不易準(zhǔn)確判定,通常采用基于假設(shè)系統(tǒng)階次的穩(wěn)定圖方法來(lái)輔助進(jìn)行,但其中穩(wěn)定軸的判定較為主觀,容易遺漏真實(shí)模態(tài)及引入虛假模態(tài)?;跀?shù)據(jù)挖掘技術(shù),提出識(shí)別概率直方圖(Identificationprobability Histogram,IpHist)的新方法,對(duì)不同假設(shè)系統(tǒng)階次下通過(guò)隨機(jī)子空間識(shí)別得到的多組備選模態(tài),根據(jù)頻率容差和模態(tài)置信度容差準(zhǔn)則進(jìn)行一致性聚類,繼而計(jì)算群組聚類結(jié)果的識(shí)別概率,并繪制相應(yīng)的識(shí)別概率直方圖,最后選取識(shí)別概率大的結(jié)果作為結(jié)構(gòu)模態(tài)結(jié)果。通過(guò)IASCASCE結(jié)構(gòu)健康監(jiān)測(cè)工作組提供的4層框架Benchmark模型算例,闡述了所提IpHist方法在環(huán)境激勵(lì)下辨識(shí)結(jié)構(gòu)模態(tài)的有效性,顯示了方法較強(qiáng)的抗噪能力。
關(guān)鍵詞: 模態(tài)辨識(shí); 隨機(jī)子空間; 穩(wěn)定圖; 識(shí)別概率直方圖
中圖分類號(hào): O327; TU317+.1文獻(xiàn)標(biāo)志碼: A文章編號(hào): 10044523(2016)04056107
DOI:10.16385/j.cnki.issn.10044523.2016.04.001
引言
近年來(lái),針對(duì)環(huán)境激勵(lì)進(jìn)行結(jié)構(gòu)模態(tài)識(shí)別的多種方法在結(jié)構(gòu)檢測(cè)領(lǐng)域得到了廣泛的應(yīng)用[12],其中的隨機(jī)子空間法[3]直接在時(shí)域內(nèi)進(jìn)行數(shù)據(jù)分析,避免了傳統(tǒng)頻域方法——峰值拾取法[4]中頻率分辨率誤差的問(wèn)題,不僅能識(shí)別結(jié)構(gòu)系統(tǒng)的模態(tài)頻率,也能識(shí)別結(jié)構(gòu)系統(tǒng)的模態(tài)振型和阻尼比,在實(shí)際結(jié)構(gòu)檢測(cè)中逐漸受到重視[5]。在該方法的應(yīng)用中,系統(tǒng)的階次是關(guān)鍵的計(jì)算參數(shù),常用的辦法是對(duì)觀測(cè)矩陣進(jìn)行奇異值分解,繼而根據(jù)奇異值的突變情況來(lái)確定系統(tǒng)的階次[6]。但在工程實(shí)踐中,由于受到多種噪聲的影響,奇異值的突變狀態(tài)不易辨別,難以準(zhǔn)確判定系統(tǒng)的階次[7]。Peeters和De Roeck提出了基于假設(shè)系統(tǒng)階次的穩(wěn)定圖方法[8],可實(shí)現(xiàn)噪聲情況下的模態(tài)識(shí)別[9],但其中穩(wěn)定軸的判定較為主觀,識(shí)別結(jié)果容易遺漏真實(shí)模態(tài)及引入虛假模態(tài)。針對(duì)這些問(wèn)題,作者先期探討了應(yīng)用直方圖取代穩(wěn)定圖的可能性,獲得了較好的辨識(shí)效果[10]。在此基礎(chǔ)上,本文將明確提出識(shí)別概率的概念,并引入一致性聚類算法,給出識(shí)別概率直方圖(Identificationprobability Histogram,簡(jiǎn)稱IpHist)方法的完整操作流程,應(yīng)用于隨機(jī)子空間識(shí)別過(guò)程中,實(shí)現(xiàn)環(huán)境激勵(lì)下真實(shí)結(jié)構(gòu)模態(tài)的有效辨識(shí)。
Abstract: During the modal identification of a structure subjected to ambient excitations, the system order as a crucial computation parameter is not easy to be determined, and the stabilization diagram method based on assumed system orders is often adopted to help the identification. But how to distinguish the stabilization axes is in fact subjective, which may lead to possible inclusion of pseudo vibration modes instead of real modes into the final results. To avoid these problems, an identificationprobability histogram (IpHist) method in use of the data mining technique is proposed in the present paper. Firstly, the stochastic subspace method is applied to identify the alternative modes with different assumed system orders. Then, all the alternative modes are clustered into several categories by using the criteria of frequency tolerance and MAC tolerance, and the identification probability of each category is obtained along with the corresponding identificationprobability histogram. Finally, the clustered modes with large identification probability are chosen to be the structural modes. By taking a fourstory Benchmark model provided by the IASCASCE structural health monitoring workgroup as example, numerical results are presented to illustrate the effectiveness and antinoise capacity of the proposed IpHist method for modal identification of structures subjected to ambient excitations.
Key words: modal identification; stochastic subspace; stabilization diagram; identificationprobability histogram