聶文靜, 王 輝, 胡志興, 廖福成
(北京科技大學 數(shù)理學院 北京 100083)
?
一類具有隨機項的三物種捕食-被捕食模型
聶文靜,王輝,胡志興,廖福成
(北京科技大學 數(shù)理學院北京 100083)
將環(huán)境中的白噪聲和Beddington-DeAngelis型功能反應函數(shù)考慮到含有修改的Leslie-Cower類型種群系統(tǒng)中,得到一類具有修改的Leslie-Cower類型的隨機三物種捕食-被捕食模型. 首先利用隨機微分方程比較原理得到具有修改的Leslie-Cower類型的隨機三物種捕食-被捕食模型,在任意給定的正的初值條件下,系統(tǒng)存在唯一的全局正解;然后,利用隨機微分方程比較原理和微分中值定理得到,在一定條件下三物種是隨機強平均持久,而且當白噪聲超出某個范圍時會使三個物種都趨于滅亡.
Leslie-Cower 型功能; Beddington-DeAngelis型功能; 隨機比較方程; 高斯白噪聲
物種及自然環(huán)境之間的動態(tài)相互作用吸引不少學者進行研究.其中捕食者功能反應是一個重要概念.文獻[1-4]研究的種群確定型模型,后來研究者發(fā)現(xiàn)生態(tài)系統(tǒng)會受到隨機因素的影響,于是開始考慮有白噪聲干擾的種群模型[5-7].隨機種群動力系統(tǒng)可以克服其局限性,更加精準的擬合數(shù)據(jù)并完美預測出生態(tài)系統(tǒng)未來趨勢,并且與其他功能反應函數(shù)在現(xiàn)實中進行種群動力系統(tǒng)數(shù)據(jù)模擬時,對比發(fā)現(xiàn),Beddington-DeAngelis型功能反應函數(shù)在某種程度上表現(xiàn)更好.
任何生態(tài)系統(tǒng)不可避免受到環(huán)境隨機波動的影響[9-11].為此考慮環(huán)境中的白噪聲對生物增長率的影響, 即bi→bi+σi,i=1,2,3.可得到下列系統(tǒng):
(1)
2.1存在正解
定理1對任意給定的初值條件x0>0,y0>0,z0>0,當t∈[0,τe)時,模型(1)存在唯一正的局部解.
證明考慮下列系統(tǒng):
(2)
定理1僅表示系統(tǒng)(1)存在唯一的正局部解,下面要證這個解是全局的.
定理2對任意給定的初值條件x0>0,y0>0,z0>0,存在φ1,φ11,φ2,φ22,φ3,φ33,使t≥0,φ1(t)≥x(t)≥φ11(t),φ2(t)≥y(t)≥φ22(t),φ3(t)≥z(t)≥φ33(t).
證明當t∈[0,τe),x(t),y(t),z(t)為正值時,有下面等式成立,
(3)
由隨機微分方程的比較原理可知下列不等式成立:
x(t)≤φ1(t),t∈[0,τe).
(4)
(5)
φ11(t)是下列方程唯一的解,
由隨機微分方程的比較原理可知
x(t)≥φ11(t),t∈[0,τe),
(6)
(7)
這里φ2(t)是下列方程唯一的解,
由隨機微分方程的比較原理可知
y(t)≤φ2(t),t∈[0,τe).
(8)
(9)
φ22(t)是下列方程唯一的解,
由隨機微分方程的比較原理可知
y(t)≥φ22(t),t∈[0,τe).
(10)
(11)
φ33(t)是下列方程唯一的解,
由隨機微分方程的比較原理可知
z(t)≥φ33(t),t∈[0,τe).
(12)
(13)
這里φ3(t)是下列方程唯一的解,
由隨機微分方程的比較原理可知
z(t)≤φ3(t),t∈[0,τe).
(14)
綜上所述,結論成立.
2.2滅亡與持久性
由式(7)得到
其中:
因此
(15)
(16)
從0到t積分并用積分中值定理得
當t→,時,.
得t→,當時,
綜上所述,結論成立.
Milstein方法[15]模擬上述具有的修改Leslie-Cower類型隨機三物種捕食-被捕食模型所得到的結果.
其中ζk,ξk,ζk(k=1,2,…n)是服從N(0,1)的Gauss隨機變量.
圖1 系統(tǒng)(1) 的解趨于確定的常數(shù)Fig.1 The solution of system (1) tends to certain constant
圖2 有噪聲干擾系統(tǒng)(1)的解Fig.2 Under the given parameters,system(1) is affected by white noise interference
圖3 系統(tǒng)(1) 的解趨于確定的常數(shù)Fig.3 The solution of system (1) tends to certain constant
圖4 有噪聲干擾系統(tǒng)(1)的解Fig.4 Under the given parameters, system (1) is affected by white noise interference
通過對具有的修改Leslie-Cower類型隨機三物種捕食-被捕食模型進行分析得到了,在沒有白噪聲干擾時,種群個數(shù)隨著時間的推移會趨于一個常數(shù);當環(huán)境出現(xiàn)白噪聲且超過某個范圍,物種的個數(shù)不再穩(wěn)定還趨于滅亡.然而,如果能把環(huán)境的白噪聲和捕獲能力控制在某個范圍內(nèi),物種不但不會滅亡而且還會持久存在. 為了使物種持久的存在,應該減少環(huán)境中的隨機因素,合理捕獲物種.
[1]UPADHYAY R K, NAJI R K. Dynamics of a three species food chain model with Crowley-Martin type functional response[J]. Chaos, solitons & fractals,2009,42 (3) : 1337-1346.
[2]SHI X Y,ZOU X Y,SONG X Y.Analysis of a stage-structured predator-prey model with Crowley-Martin function[J].Applied mathematics and computation,2011,36(1): 459-472.
[3]MENG X Y,HUO H F,XIANG H, et al. Stability in a predator-prey model with Crowley-Martin function and stage structure for prey[J]. Applied mathematics and computation,2014,232(3): 810-819.
[4]LI H X. Asymptotic behavior and multiplicity for a diffusive Leslie-Gower predator-prey system with Crowley-Martin functional response[J]. Applied mathematics and computation,2014,68(7): 693-705.
[5]LIU M, WANG K. Stochastic Lotka-Volterra systems with Lévy noise[J]. Jourmal of mathematical analysis and application,2014,410(2):750-763.
[6]LIU M, BAI C Z. Global asymptotic stability of a stochastic delayed predator-prey model with Beddington-DeAngelis functional response[J]. Applied mathematics and computation,2014,226(1):581-588.
[7]KUNAL C, KUNAL D, YU H G. Modeling and analysis of a modified leslie-Gower type three species food chain model with an impulsive control strategy[J].Nonlinear analysis: hybrid systems,2015,(15):171-184.
[8]AZIZ-ALAOUI M A. Study of Leslie-Gower-type tritrophic population model[J]. Chaos solitons fractals 2002,14(8):1275-1293.
[9]HALDARS, CHAKRABORTYK, DAS K. Bifurcation and control of an eco-epidemiolnical system with environmental fluctuations: a stochastic approach[J].Nonlinear dynamics,2015,80(3):1187-1207.
[10]QIU H,LIU M,WANG K, et al. Dynamics of a stochastic predator prey system with Beddington-DeAngelis functional response[J]. Mathematics and computation,2012,219(4): 2303-2312.
[11]LIU X Q, ZHONG S M, TIAN B D. Asymptotic properties of a stochastic predator prey model with Crowley-Martin functional response[J]. Applied mathematics and computation,2013,43(1/2):479-490.
[12]OKSENDAL B. Stochastic Differential Equations and Applications[M].Horwood Publishing:Avadem,c Press,1997.
[13]JI C Y,JIANG D Q, SHI N Z. Analysis of a predator-prey model with Modified Leslie-Gower and Holling-type II schemes with stochastic perturbation[J]. Mathematical analysis and applications,2009,359(2):482-498.
[14]MAO X R, SOTIRIES S, ERIC R. Asymptotic behavior of stochastic Lotka-Volterra, model [J]. Mathematical analysis and applications.2003,287(1):141-156.
[15]HIGHAM D. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. SIAM review. 2001, 43(3): 525-546.
(責任編輯:方惠敏)
A Delayed Three Species Food Chain Predator-prey Model with Stochastic Perturbatiion
NIE Wenjing, WANG Hui, HU Zhixing, LIAO Fucheng
(SchoolofMathematicsandPhysics,UniversityofScienceandTechnolnyBeijing,Beijing100083,China)
The environment of white noise and Beddington-DeAngelis type functional response function was combined with the containing modified Leslie-Cower types of population system. The a modified Leslie-Gower type three species food chain model with stochastic perturbation. It was mainly used for modeling of three trophic food chain. Firstly, for the arbitrarily positive initial conditions, there was a unique positive global solution which was based on the stochastic comparison theorem of differential equation.Then, by using the stochastic comparison theorem of differential equation and differential mean value theorem, the result showed that the three species with Leslie-Gower type function were random strong average persistence under certain conditions. And when white noise exceeded a certain range, the three species would perish.
Leslie-Cower type function; Beddington-DeAngelis type function; stochastic comparison equation; Gauss white noise
2016-02-11
國家自然科學基金資助項目(11471034, 61174209); 北京科技大學冶金工程研究院基礎研究基金項目(YJ2012-001).
聶文靜(1992—),女,河南滑縣人,碩士研究生,主要從事生物數(shù)學的研究,E-mail: 1634111564@qq.com;通訊作者:王輝(1965—),女,山西榆次人,副教授,主要從事數(shù)論和微分方程的研究,E-mail: bkdhzhx@163.com.
O211.6
A
1671-6841(2016)03-0001-09
10.13705/j.issn.1671-6841.2016035
引用本文:聶文靜,王輝,胡志興,等.一類具有隨機項的三物種捕食-被捕食模型[J] .鄭州大學學報(理學版),2016,48(3):1-9.