亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Commutators ofLittlewood-PaleyOperatorsonHerz Spaces with Variable Exponent

        2016-10-24 02:18:09HongbinWangandYihongWu
        Analysis in Theory and Applications 2016年2期

        Hongbin Wangand Yihong Wu

        1School of Science,Shandong University of Technology,Zibo,Shandong 255049,China

        2Department of Recruitment and Employment,Zibo Normal College,Zibo,Shandong 255130,China

        ?

        Commutators ofLittlewood-PaleyOperatorsonHerz Spaces with Variable Exponent

        Hongbin Wang1,?and Yihong Wu2

        1School of Science,Shandong University of Technology,Zibo,Shandong 255049,China

        2Department of Recruitment and Employment,Zibo Normal College,Zibo,Shandong 255130,China

        .Let ?∈L2(Sn-1)be homogeneous function of degree zero and b be BMO functions.In this paper,we obtain some boundedness of the Littlewood-Paley Operators and their higher-order commutators on Herz spaces with variable exponent.

        Herz space,variable exponent,commutator,area integral,Littlewood-Paley gλ?function.

        AMS Subject Classifications:42B25,42B35,46E30

        1 Introduction

        The theory of function spaces with variable exponent has extensively studied by researchers since the work of Kov′aˇcik and R′akosn′?k[7]appeared in 1991.In[9]and[10],the authors proved the boundedness of some Littlewood-Paley operators on variable Lpspaces,respectively.

        Given anopenset E?Rn,and ameasurable function p(·):E-→[1,∞),Lp(·)(E)denotes the set of measurable functions f on E such that for some λ>0,

        This set becomes a Banach function space when equipped with the Luxemburg-Nakano norm

        Define P0(E)to be set of p(·):E-→(0,∞)such that

        Define P(E)to be set of p(·):E-→[1,∞)such that

        Denote p′(x)=p(x)/(p(x)-1).

        where Br(x)={y∈Rn:|x-y|<r}.Let B(Rn)be the set of p(·)∈P(Rn)such that the Hardy-Littlewood maximal operator M is bounded on Lp(·)(Rn).In addition,we denote the Lebesgue measure and the characteristic function of a measurable set A?Rnby|A| and χArespectively.The notation f≈g means that there exist constants C1,C2>0 such that C1g≤f≤C2g.

        In variable Lpspaces there are some important lemmas as follows.

        Lemma 1.1.If p(·)∈P(Rn)and satisfies

        and

        then p(·)∈B(Rn),that is the Hardy-Littlewood maximal operator M is bounded on Lp(·)(Rn).

        Lemma 1.2(see[7]).Let p(·)∈P(Rn).If f∈Lp(·)(Rn)and g∈Lp′(·)(Rn),then fg is integrable on Rnand

        where

        This inequality is named the generalized H¨older inequality with respect to the variable Lpspaces.

        Lemma 1.3(see[5]).Let q(·)∈B(Rn).Then there exists a positive constant C such that for all balls B in Rnand all measurable subsets S?B,

        where δ1,δ2are constants with 0<δ1,δ2<1.

        Throughout this paper δ1,δ2is the same as in Lemma 1.3.

        Lemma 1.4(see[5]).Suppose q(·)∈B(Rn).Then there exists a constant C>0 such that for all balls B in Rn,

        Next we recall the definition of the Herz-type spaces with variable exponent.Let Bk={x∈Rn:|x|≤2k}and Ak=BkBk-1for k∈Z.Denote Z+and N as the sets of all positive and non-negative integers,χk=χAkfor k∈Z,?χk=χkif k∈Z+and?χ0=χB0.

        where

        where

        Supposethat Sn-1is the unit sphereof Rn(n≥2)equipped with normalized Lebesgue measure.Let ?∈L1(Rn),be homogeneous function of degree zero and

        and

        Motivated by[8,9],we will study the boundedness for the Littlewood-Paley operators and their commutators on the Herz space with variable exponent,where ?∈L2(Sn-1).

        2 Estimate for the Littlewood-Paley operators

        A nonnegative locally integrable function ω on Rnis said to belong to Ap(1<p<∞),if there is a constant C>0 such that

        where p′=p/(p-1),Q denotes a cube in Rnwith its sides parallel to the coordinate axes and|Q|denotes the Lebesgue measure of Q.

        Lemma2.1(see[3]).Suppose that ?∈Ls(Sn-1)(s>1)satisfying(1.3).Ifω∈Ap/β,max{s′,2}= β<p<∞,then there is a constant C,independent of f,such that

        Now we give the main theorem in this section.

        we have

        Now we estimate I1.By the Minkowski inequality we have

        Note that z∈Ajand|y-z|<t.So we know that|y-z|~|y|,then for ?∈L2(Sn-1)we have

        For λ>2,we take 0<θ<(λ-2)n.Since|x-z|≤|x-y|+|y-z|≤|x-y|+t,by(2.4)we have

        Similarly,noting that|y-z|~|y|,by(2.4)we have

        Note that x∈Ak,z∈Ajand j≤k-2.By(2.5),(2.6)and the generalized H¨older inequality we have

        By Lemma 1.3 and Lemma 1.4,we have

        Thus we obtain

        If 1<p<∞,take 1/p+1/p′=1.Since nδ2-α>0,by the H¨older inequality we have

        If 0<p≤1,then we have

        Let us now estimate I3.Note that x∈Ak,y∈Ajand j≥k+2,so we have|y-z|~|y|. By(2.3)-(2.6)and the generalized H¨older inequality we have

        By Lemma 1.3 and Lemma 1.4,we have

        Thus we obtain

        If 1<p<∞,take 1/p+1/p′=1.Since nδ1+α>0,by the H¨older inequality we have

        If 0<p≤1,then we have

        Therefore,by(2.1),(2.2),(2.8),(2.9),(2.11)and(2.12),we complete the proof of Theorem 2.1.

        3 BMO estimate for the commutators of Littlewood-Paley operators

        Let us first recall that the space BMO(Rn)consists of all locally integrable functions f such that

        where fQ=|Q|-1RQf(y)dy,the supremum is taken over all cubes Q?Rnwith sides parallel to the coordinate axes and|Q|denotes the Lebesgue measure of Q.

        Let b∈BMO(Rn).The weighted(Lp,Lp)boundedness of[b,μ?]have been proved by Ding,Lu and Yabuta[4].

        Lemma 3.1(see[4]).Suppose that ?∈Ls(Sn-1)(s>1)satisfying(1.3).For an integer m≥1,if b∈BMO(Rn)and ω∈Ap/β,max{s′,2}=β<p<∞,then there is a constant C,independent of f,such thatZ

        and

        By Lemma 3.1 and Lemma 2.2,it is easy to get the(Lp(·)(Rn),Lp(·)(Rn))-boundedness of the commutators[bm,μ?,S]and[bm,μ??,λ].

        Next,we will give the corresponding result about the commutator[b,μ?]on Herztype Hardy spaces with variable exponent.

        In the proof of Theorem 3.1,we also need the following lemma.

        Lemma 3.2(see[6]).Let p(·)∈B(Rn),m be a positive integer and B be a ball in Rn.Then we have that for all b∈BMO(Rn)and all j,i∈Z with j>i,

        where Bi={x∈Rn:|x|≤2i}and Bj={x∈Rn:|x|≤2j}.

        Then we have

        Now we estimate J1.By the Minkowski inequality we have

        Note that x∈Ak,z∈Ajand j≤k-2.By(2.5),(2.6)and the generalized H¨older inequality we have

        By Lemma 1.3,Lemma 1.4 and Lemma 3.2 we have

        Thus we obtain

        If 1<p<∞,take 1/p+1/p′=1.Since nδ2-α>0,by the H¨older inequality we have

        If 0<p≤1,then we have

        Let us now estimate J3.Note that x∈Ak,y∈Ajand j≥k+2,so we have|y-z|~|y|.

        Similar to(3.4),we get

        By Lemma 1.3,Lemma 1.4 and Lemma 3.2,we have

        Thus we obtain

        If 1<p<∞,take 1/p+1/p′=1.Since nδ1+α>0,by the H¨older inequality we have

        If 0<p≤1,then we have

        Therefore,by(3.1),(3.2),(3.5),(3.6),(3.8),(3.9),we complete the proof of Theorem 3.1.

        Since[bm,μ?,S](f)(x)≤Cλ[bm,μ??,λ](f)(x),we easily obtain the following theorem.

        Acknowledgments

        The authors are very grateful to the referees for their valuable comments.

        [1]C.Capone,D.Cruz-Uribe and A.Fiorenza,The fractional maximal operator and fractional integrals on variable Lpspaces,Rev.Mat.Iberoamericana,23(2007),743-770.

        [2]D.Cruz-Uribe,A.Fiorenza,J.M.Martell and C.P′erez,The boundedness of classical operators on variable Lpspaces,Ann.Acad.Sci.Fen.Math.,31(2006),239-264.

        [3]Y.Ding,D.Fan and Y.Pan,Weighted boundedness for a class of rough Marcinkiewicz integral,Indiana Univ.Math.J.,48(1999),1037-1055.

        [4]Y.Ding,S.Luand K.Yabuta,On commutators of Marcinkiewiczintegrals with rough kernel,J.Math.Anal.Appl.,275(2002),60-68.

        [5]M.Izuki,Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization,Anal.Math.,36(2010),33-50.

        [6]M.Izuki,Boundedness of commutators on Herz spaces with variable exponent,Rend.del Circolo Mate.di Palermo,59(2010),199-213.

        [7]O.Kov′aˇcik and J.R′akosn′?k,On spaces Lp(x)and Wk,p(x),Czechoslovak Math.J.,41(1991),592-618.

        [8]Z.Liu and H.Wang,Boundedness of Marcinkiewicz integrals on Herz spaces with variable exponent,Jordan J.Math.Stat.,5(2012),223-239.

        [9]H.Wang,Z.Fu and Z.Liu,Higher-order commutators of Marcinkiewicz integrals and fractional integrals on variable Lebesgue spaces,Acta Math.Sci.Ser.A China Ed.,32(2012),1092-1101.

        [10]L.Wang and S.Tao,Parameterized Littlewood-Paley operators and their commutators on Lebesgue space with variable exponent,Anal.Theory Appl.,31(2015),13-24.

        .Email addresses:wanghb@sdut.edu.cn(H.Wang),wfapple123456@163.com(Y.Wu)

        11 December 2015;Accepted(in revised version)11 April 2016

        亚欧国产女人天堂Av在线播放 | 久久亚洲午夜牛牛影视| 中文字幕一区二区三区亚洲| 人妖一区二区三区四区| 丰满人妻熟妇乱又伦精品软件 | 55夜色66夜色国产精品视频| 91天堂素人精品系列全集亚洲| 亚洲av永久综合网站美女| 一区二区三区天堂在线| 337p西西人体大胆瓣开下部| 色欲国产精品一区成人精品| 一区二区三区少妇熟女高潮| 久久精品中文字幕女同免费| 野狼第一精品社区| 国产国拍亚洲精品午夜不卡17| 精品人妻av区二区三区| 摸丰满大乳奶水www免费| 亚洲国产成人va在线观看天堂 | 亚洲中文字幕人妻诱惑| 日本久久精品中文字幕| 精品日产卡一卡二卡国色天香 | 午夜免费啪视频| 男女真实有遮挡xx00动态图| 日本一区二区三区的免费视频观看| 国产精品对白一区二区三区| 国产免费人成视频在线观看| 337p日本欧洲亚洲大胆色噜噜| 日本女优禁断视频中文字幕| 国产婷婷色一区二区三区| 99re久久精品国产| 国产人成在线成免费视频| 国产三级久久精品三级91| 国产成人精品电影在线观看| 免费av片在线观看网站| 午夜视频免费观看一区二区| 亚洲中文字幕久久精品一区| v一区无码内射国产| 亚洲国产一区二区三区最新| 亚洲中文字幕一区精品| 国模雨珍浓密毛大尺度150p| 国产高级黄区18勿进一区二区|