亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Bergman-Sobolev空間上Toeplitz算子的本性范數(shù)

        2016-10-20 03:40:48曹廣福
        關(guān)鍵詞:數(shù)學(xué)

        何 莉, 曹廣福

        (廣州大學(xué) 數(shù)學(xué)與信息科學(xué)學(xué)院, 廣東 廣州 510006)

        ?

        Bergman-Sobolev空間上Toeplitz算子的本性范數(shù)

        何莉, 曹廣福

        (廣州大學(xué) 數(shù)學(xué)與信息科學(xué)學(xué)院, 廣東 廣州510006)

        文章研究了Bergman-Sobolev上Toeplitz算子的某些性質(zhì),主要通過該類算子的符號(hào)函數(shù)在邊界處的行為計(jì)算了它們的本性范數(shù).

        Bergman-Sobolev空間; Toeplitz算子; 本性范數(shù)

        0 Introduction

        Denote by R the real number set, N the natural number set and N*the positive integer set.

        Forβ∈R and 1≤p<+∞, the Sobolev space Lβ,pis the completion of all functionsf∈() for which

        Forp=2, the space Lβ,2is a Hilbert space with the inner product

        ?f∈Lβ,2,g∈Lβ,2.

        Here,L2denotes the usual Lebesgue spaceL2(,dA) and the notation·,·L2denotes the standard inner product inL2.

        Whenp=+∞, the corresponding Sobolev space is written as

        Lβ,∞={f:→

        with ‖f‖Lβ,∞=‖βf‖L∞+‖f‖L∞.SinceeachfunctioninLβ,∞can be extended to a continuous function on the closed unit disc} by Sobolev’s embedding theorem (see Theorem 5.4 of Ref.[1]), we will use the same notation between a function in Lβ,∞and its continuous extension onin this paper.

        Tuf=P(uf)

        In this paper, we calculate the essential norm of Toeplitz operators on Bergman-Sobolev space with positive integer derivative in terms of the boundary value of the corresponding symbol.

        1 Essential norm of Toeplitz operators

        Lemma 1For eachλ∈

        Proof. See Proposition 3.2 of the paper given in footnote*HE L, CAO G F. Toeplitz operators on Bergman-Sobolev space with positive integer derivative[J]. Sci China Math Ser A, 2016, preprint..

        Proof. See Lemma 3.3 of the paper given in footnote①.

        Proof. See Lemma 3.4 of the paper given in footnote①.

        Lemma 4Letu,v∈Lβ,∞andζ∈. Then, limλ→ζ).

        Proof. See Lemma 3.5 of the paper given in footnote①.

        Theorem 1Letu∈Lβ,∞,β∈N*. Then, ‖Tu‖e=maxζ∈}|u(ζ)|.

        Proof. Setρ=maxζ∈|u(ζ)| for simplicity. Choose some pointη∈so thatu(η)=ρ. For anyK∈,

        byLemma4withv=1, this indicates ‖Tu‖e≥maxζ∈|u(ζ)|.

        ②LEE Y J. Compact sums of Toeplitz products and Toeplitz algebra on the Dirichlet space[J]. Tohoku Math J, preprint,2016.

        for everyj>j0.

        Moreover, sinceuis continuous on, we can choose somer∈(0,1) such that |u(z)|≤ρ+εfor everyr<|z|<1.

        asj→∞. Since

        for eachj∈N*, it is not difficult to get that

        ∫|z|≤r|βfj|2dA<ε

        for everyj>jβ. Notice that

        for eachj∈N*, where

        asj→∞, we have

        Direct calculation follows that

        (1)

        by Minkowski inequality. Since

        by Cauchy-Schwarz inequality, where

        is a positive number, there exists an integerj*≥0 such that

        (2)

        whenj>j*because ‖kfj‖A2→0 for each integer 0≤k≤β-1 asj→∞ by Lemma 3. Furthermore, for everyj>jβ,

        (3)

        Then, by combining the inequalities (1), (2) and (3), we have

        ‖β(ufj)‖L2≤‖

        asj>max{jβ,j*}. This implies that

        2 Main result

        The main result is the calculation of the essential norm of the Toeplitz operators in terms of the boundary value of their corresponding symbols. That is

        Theorem 2Letu∈Lβ,∞,β∈N*. Then,

        ‖Tu‖e=maxζ∈|u(ζ)|.

        AcknowledgmentsThe authors would like to thank professor YOUNG J L in Korea for helpful discussions.

        [1]ADAMS R A. Sobolev spaces[M]∥A subsidiary of Harcourt Brace Jovanovich, Pure and applied mathematics. New York-London: Academic Press, 1975:65.

        [2]COHN W S, VERBITSKY I E. On the trace inequalities for Hardy-Sobolev functions in the unit ball ofn[J]. Indian Univ Math J, 1994, 43(4): 1079-1097.

        [3]BRUNA J, ORTEGA J M. Interpolation along manifolds in Hardy-Sobolev spaces[J]. J Geom Anal, 1997, 7(1): 17-45.

        [5]CASCANTE C, ORTEGA J M. Carleson measures for weighted Hardy-Sobolev spaces[J]. Nagoya Math J, 2007, 186: 29-68.

        [6]TCHOUNDJA E. Carleson measures for the generalized Bergman spaces via aT(1)-type theorem[J]. Ark Mat, 2008, 46(2): 377-406.

        [7]CHO H R, ZHU K H. Holomorphic mean Lipschitz spaces and Hardy-Sobolev spaces on the unit ball[J]. Complex Var Elliptic Equ, 2012, 57(9): 995-1024.

        [8]CAO G F, HE L. Fredholmness of Multipliers on Hardy-Sobolev spaces[J]. J Math Anal Appl, 2014, 418(1): 1-10.

        [9]CAO G F, HE L. Hardy-Sobolev spaces and their multipliers[J]. Sci China Math Ser A, 2014, 57(11): 2361-2368.

        [10]HE L, CAO G F. Composition operators on Hardy-sobolev spaces[J]. Indian J Pure Appl Math, 2015, 46(3): 255-267.

        [11]HE L, CAO G F. Toeplitz operators with unbounded symbols on Segal-Bargmann space[J]. J Math Res Appl, 2015, 35(3): 237-255.

        [12]HONG C K. On the essential maximal numerical range[J]. Acta Sci Math, 1979, 41: 307-315.

        【責(zé)任編輯: 周全】

        date: 2016-01-05;Revised date: 2016-04-18

        s: National Natural Science Foundation of China (11501136); The key discipline construction project of subject groups focus on Mathematics and information science in the construction project of the high-level university of Guangdong Province (4601-2015); Guangzhou University (HL02-1517) and (HL02-2001)

        Essential norm of Toeplitz operators on Bergman-Sobolev space

        HE Li, CAO Guang-fu

        (School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, China)

        In this paper, we study some properties of Toeplitz operators on the Bergman-Sobolev space. Mainly, we calculate the essential norm of these operators in terms of the boundary value of their corresponding symbols.

        Bergman-Sobolev space; Toeplitz operator; essential norm

        O 177.1Document code: A

        1671- 4229(2016)04-0018-04

        O 177.1

        A

        Biography: HE Li(1986-), female, Doctor of science. E-mail: helichangsha1986@163.com.

        猜你喜歡
        數(shù)學(xué)
        中等數(shù)學(xué)
        中等數(shù)學(xué)
        中等數(shù)學(xué)
        中等數(shù)學(xué)
        中等數(shù)學(xué)
        我們愛數(shù)學(xué)
        我為什么怕數(shù)學(xué)
        新民周刊(2016年15期)2016-04-19 18:12:04
        數(shù)學(xué)到底有什么用?
        新民周刊(2016年15期)2016-04-19 15:47:52
        我難過,因?yàn)槲铱吹綌?shù)學(xué)就難過
        錯(cuò)在哪里
        亚洲一区二区三区av资源| 91在线在线啪永久地址| 久久青草亚洲AV无码麻豆| 亚洲国产成人久久精品美女av| 无码专区一ⅴa亚洲v天堂| 又爽又黄又无遮挡网站动态图| 一级呦女专区毛片| 玖玖资源网站最新网站| 色狠狠一区二区三区中文| 男女爽爽无遮挡午夜视频| 纯肉无遮挡H肉动漫在线观看国产| 精品自拍偷拍一区二区三区| 国产免费三级av在线| 婷婷亚洲久悠悠色悠在线播放| 欧美日韩国产在线观看免费| 国产av精品久久一区二区| 午夜天堂一区人妻| 男女一边摸一边做爽爽的免费阅读| 久久精品亚洲中文无东京热| 国产午夜精品综合久久久| 2018天天躁夜夜躁狠狠躁| 国产中老年妇女精品| 亚洲精品国产二区三区在线| 久久伊人精品色婷婷国产| 成人亚洲精品777777| 国偷自产av一区二区三区| 国产三级黄色的在线观看 | 国产无套一区二区三区久久| 日本乱偷人妻中文字幕| 国产久视频国内精品999| 亚洲视一区二区三区四区| 在线精品亚洲一区二区动态图| 国产一区二区三区影院| 大胸美女吃奶爽死视频| 国产一区二区黄色的网站| 日韩欧美亚洲综合久久影院ds| 狠狠躁狠狠躁东京热无码专区| 亚洲蜜臀av一区二区三区漫画| 久久久噜噜噜久久中文福利| 中文字幕亚洲乱码熟女一区二区 | 老头巨大挺进莹莹的体内免费视频|