An Hui-hui and Wang Zhi-chun
(School of Mathematics,Liaoning Normal University,Dalian,Liaoning,116029)
Communicated by Du Xian-kun
L-octo-algebras
An Hui-hui and Wang Zhi-chun
(School of Mathematics,Liaoning Normal University,Dalian,Liaoning,116029)
Communicated by Du Xian-kun
L-octo-algebra with 8 operations as the Lie algebraic analogue of octoalgebra such that the sum of 8 operations is a Lie algebra is discussed.Any octoalgebra is an L-octo-algebra.The relationships among L-octo-algebras,L-quadrialgebras,L-dendriform algebras,pre-Lie algebras and Lie algebras are given.The close relationships between L-octo-algebras and some interesting structures like Rota-Baxter operators,classical Yang-Baxter equations and some bilinear forms satisfying certain conditions are given also.
L-octo-algebra,L-quadri-algebra,bimodule
2010 MR subject classification:17A30,17B60
Document code:A
Article ID:1674-5647(2016)01-0057-13
10.13447/j.1674-5647.2016.01.04
Octo-algebras are a remarkable class of Loday algebras(see[1]).Loday algebras which include dendriform trialgebras(see[2]–[3]),NS-algebras(see[4]),octo-algebras(see[5]), ennea-algebras(see[6])and dendriform-Nijenhuis algebras(see[4])were first introduced by Loday[7]in 1995 with motivation from algebraic K-theory.At first,they introduced due to their own interesting motivations,then they developed as independent algebraic systems. Loday algebras are closely related to the study of CYBE,O-operator,operads and so on (see[8]–[10]).
In this paper,we introduce the notion of L-octo-algebra and discuss the relationships among Lie algebra,L-dendriform algebra,L-quadri-algebras and L-octo-algebras.This paper is organized as follows:In Section 2,we recall some basic facts on pre-Lie algebras, L-dendriform algebras and L-quadri-algebras;The definition of L-octo-algebras and the associated L-quadri-algebras,L-dendriform algebras and pre-Lie algebras on L-octo-algebras are given in Section 3;We give the bimodules on L-quadri-algebras and the bimodule of theassociated L-quadri-algebras,L-dendriform algebras,pre-Lie algebras on L-octo-algebras and the construction of L-octo-algebras on L-quadri-algebras by O-operators on L-quadrialgebras,2-cocycle on L-quadri-algebra in Sections 4 and 5,respectively;Finally,we give the bilinear forms on L-octo-algebras and the LO-equation on L-octo-algebras in Section 6. Throughout this paper,all algebras are finite dimensional and over a field F of characteristic zero.
Proposition 2.1[11]–[12]Let(A,?)be a pre-Lie algebra.Then the commutator
[x,y]=x?y?y?x,x,y∈A(2.1)
defines a Lie algebra g(A),which is called the sub-adjacent Lie algebra of A.
Proposition 2.2[11]Let(A,?,?)be an L-dendriform algebra.If we define
x?y=x?y+x?y,x,y∈A,(2.2)
x?y=x?y?y?x,x,y∈A,(2.3)
then(A,?)and(A,?)are pre-Lie algebras,which are called the associated horizontal and vertical pre-Lie algebras.
Proposition 2.3[12]Let(A,↘,↗,↖,↙)be an L-quadri-algebra.
(1)(A,?,?)and(A,∨,∧)are dendriform algebras.They are called the associated vertical and depth L-dendriform algebra of(A,↘,↗,↖,↙);
(2)If we define
x?y=x↘y?y↖x,x?y=x↗y?y↙x,x,y∈A,(2.4)
then(A,?,?)is a dendriform algebra,which is called the associated horizontal L-dendriform algebra of(A,↘,↗,↖,↙).
Definition 3.1[12]Let A be a vector space with eight bilinear products denoted by↘1,↘2,↗1,↗2,↖1,↖2,↙1↙2:A?A→A.(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)is called an L-octo-algebra if for any x,y,z∈A,
x↘2(y↘2z)?(x?12y)↘2z=y↘2(x↘2z)?(y?12x)↘2z,
x↘2(y↗2z)?(x∨12y)↗2z=y↗2(x?2z)?(y∧12x)↗2z,
x↘2(y↗1z)?(x∨2y)↗1z=y↗1(x?12z)?(y∧1x)↗1z,
x↗2(y?1z)?(x∧2y)↗1z=y↘1(x↗12z)?(y∨1x)↗1z,
x↘2(y↘1z)?(x?2y)↘1z=y↘1(x↘12z)?(y?1x)↘1z,
x↘2(y↖1z)?(x↘2y)↖1z=y↖1(x?12z)?(y↖1x)↖1z,
x↗2(y?1z)?(x↗2y)↖1z=y↙1(x∧12z)?(y↙1x)↖1z,
x↗1(y?12z)?(x↗1y)↖1z=y↙2(x∧1z)?(y↙2x)↖1z,
x↘1(y↙12z)?(x?1y)↙1z=y↙2(x∨1z)?(y?2x)↙1z,
x↘1(y↖12z)?(x↘1y)↖1z=y↖2(x?1z)?(y↖2x)↖1z,
x↘2(y↙1z)?(x?2y)↙1z=y↙1(x∨12z)?(y?1x)↙1z,
x↘2(y↙2z)?(x?12y)↙2z=y↙2(x∨2z)?(y?12x)↙2z,
x↗2(y?2z)?(x↗12y)↖2z=y↙2(x∧2z)?(y↙12x)↖2z,
x↘2(y↖2z)?(x↘12y)↖2z=y↖2(x?2z)?(y↖12x)↖2z,
where
x∨iy=x↘iy+x↙iy,x∧iy=x↗iy+x↖iy,i=1,2,
x?iy=x↘iy+x↗iy,x?iy=x↖iy+x↙iy,i=1,2,
x↘12y=x↘1y+x↘2y,x↗12y=x↗1y+x↗2y,
x↖12y=x↖1y+x↖2y,x↙12y=x↙1y+x↙2y,
x∨12y=x∨1y+x∨2y,x∧12y=x∧1y+x∧2y,
x?12y=x?1y+x?2y,x?12y=x?1y+x?2y,
x?1y=x↘1y+x↗1y+x↖1y+x↙1y,
x?2y=x↘2y+x↗2y+x↖2y+x↙2y,
x?12y=x?1y+x?2y.
Proposition 3.1[12]Let(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)be an L-octo-algebra.
Then(A,∨2,∧2,∧1,∨1),(A,?2,?1,?1,?2),(A,↘12,↗12,↖12,↙12)are L-quadri-algebras.If we define
Proposition 3.2For an L-octo-algebra(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2),define
x?1y=x?2y,x?1y=x?1y,
x?2y=x∨12y,x?2y=x∧12y,
x?3y=x∨2y?y∧1x,x?3y=x∧2y?y∨1x,
x?4y=x?12y,x?4y=x?12y,
x?5y=x?2y?y?1x,x?5y=x?1y?y?2x,
x?6y=x↘12y?y↖12x,x?6y=x↗12y?y↙12x.
Then(A,?i,?i)(i=1,2,3,4,5,6)are L-dendriform algebras.(A,?1,?1)is the associated vertical L-dendriform algebra of(A,∨2,∧2,∧1,∨1)and the associated depth L-dendriform algebra of(A,?2,?1,?1,?2);(A,?2,?2)is the associated depth L-dendriform algebra of(A,∨2,∧2,∧1,∨1)and the associated depth L-dendriform algebra of(A,↘12,↗12,↖12,↙12);(A,?3,?3)is the associated horizontal L-dendriform algebra of(A,∨2,∧2,∧1,∨1) and the associated horizontal L-dendriform algebra of(A,?4,?4)is the associated vertical L-dendriform algebra of(A,?2,?1,?1,?2)and the associated vertical L-dendriform algebra of(A,↘12,↗12,↖12,↙12);(A,?5,?5)is the associated horizontal L-dendriform algebra of(A,?2,?1,?1,?2)and the associated vertical L-dendriform algebra of(A,?6,?6)is the associated horizontal L-dendriform algebra of(A,↘12,↗12,↖12,↙12)and the associated depth L-dendriform algebra of
Proof.It follows straightly from Propositions 2.3 and 3.1.
Proposition 3.3Let(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)be an L-octo-algebra.
(1)If we define x?1y=x?12y,then(A,?1)is a pre-Lie algebra.It is the horizontal pre-Lie algebra of the L-dendriform algebra(A,?1,?1),the horizontal pre-Lie algebra of the L-dendriform algebra(A,?2,?2)and the horizontal pre-Lie of(A,?4,?4)of the L-octoalgebra(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2);
(2)If we define x?2y=x?2y?y?1x,then(A,?2)is a pre-Lie algebra.It is the vertical pre-Lie algebra of the L-dendriform algebra(A,?1,?1),the horizontal pre-Lie algebra of the L-dendriform algebra(A,?3,?3)and the vertical pre-Lie algebra of the L-dendriform algebra (A,?5,?5)of the L-octo-algebra(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2);
(3)If we define x?3y=x∨12y?y∧12x,then(A,?3)is a pre-Lie algebra.It is the vertical pre-Lie algebra of the L-dendriform algebra(A,?2,?2),the vertical pre-Lie algebra of the L-dendriform algebra(A,?3,?3)and the vertical pre-Lie algebra of the L-dendriform algebra(A,?6,?6)of the L-octo-algebra(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2);
(4)If we define x?4y=x?12y?y?12x,then(A,?4)is a pre-Lie algebra.It is the vertical pre-Lie algebra of the L-dendriform algebra(A,?4,?4),the horizontal pre-Lie algebra of the L-dendriform algebra(A,?5,?5)and the horizontal pre-Lie algebra of the L-dendriform algebra(A,?6,?6)of the L-octo-algebra(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2);
(5)Define[x,y]=x?12y?y?12x.Then(A,[·,·])is a Lie algebra on the L-octo-algebra (A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2).It is also the Lie algebra of the L-quadri-algebra (A,∨2,∧2,∧1,∨1),(A,?2,?1,?1,?2),(A,↘12,↗12,↖12,↙12)andProof.It follows straightly from Propositions 2.1,2.2,3.1 and 3.2.
Definition 4.1Let(A,↘,↗,↖,↙)be an L-quadri-algebra and V be a vector space. Let l↘,r↘,l↗,r↗,l↖,r↖,l↙,r↙:A→gl(V)be eight linear maps.(l↘,r↘,l↗,r↗,l↖, r↖,l↙,r↙,V)is called a bimodule of(A,↘,↗,↖,↙)if the following fourteen equations hold(for any x,y∈A)
[l↘(x),l↘(y)]=l↘(x?y)?l↘(y?x),(4.1)
r↘(x↘y)?r↘(y)r?(x)=l↘(x)r↘(y)?r↘(y)l?(x),(4.2)
r↘(y↗x)?r↗(x)r∨(y)=l↗(y)r?(x)?r↗(x)l∧(y),(4.3)
r↗(x?y)?r↗(y)r∧(x)=l↘(x)r↗(y)?r↗(y)l∨(x),(4.4)
l↘(x)l↗(y)?l↗(y)l↘(x)=l↗(x∨y)?l↗(y∧x)+l↗(y)l↗(x),(4.5)
r↘(x↖y)?r↖(y)r↘(x)=l↖(x)r?(y)?r↖(y)l↖(x),(4.6)
r↖(x?y)?r↖(y)r↖(x)=[l↘(x),r↖(y)],(4.7)
l↘(x)l↖(y)?l↖(x↘y)=l↖(y)l?(x)?l↖(y↖x),(4.8)
r↗(x?y)?r↖(y)r↗(x)=l↙(x)r↗(y)+l↙(x)r↖(y)?r↖(y)l↙(x),(4.9)
l↗(x)r?(y)?r↖(y)l↗(x)=r↙(x∧y)?r↖(y)r↙(x),(4.10)
l↗(x)l?(y)?l↖(x↗y)=l↙(y)l∧(x)?l↖(y↙x),(4.11)
r↘(x↙y)?r↙(y)r?(x)=l↙(x)r∨(y)?r↙(y)l?(x),(4.12)
l↘(x)r↙(y)?r↙(y)l?(x)=?r↙(y)r?(x)+r↙(x∨y),(4.13)
l↘(x)l↙(y)?l↙(x?y)=l↙(y)l∨(x)?l↙(y?x),(4.14)
where
r?(x)=r↘(x)+r↗(x)+r↖(x)+r↙(x),l?(x)=l↘(x)+l↗(x)+l↖(x)+l↙(x),
r?(x)=r↘(x)+r↗(x),l?(x)=l↘(x)+l↗(x),r?(x)=r↖(x)+r↙(x),
l?(x)=l↖(x)+l↙(x),r∨(x)=r↘(x)+r↙(x),l∨(x)=l↘(x)+l↙(x),
r∧(x)=r↗(x)+r↖(x),l∧(x)=l↗(x)+l↖(x).
In fact,according to the definition of the bimodule of an L-quadri-algebra,we can check straightly that(l↘,r↘,l↗,r↗,l↖,r↖,l↙,r↙,V)is a bimodule of an L-quadri-algebra (A,↘,↗,↖,↙)if and only if the direct sum A⊕V of the underlying vector spaces of A and V is turned into an L-quadri-algebra by defining multiplications in A⊕V by
(x+u)↘(y+v)=x↘y+l↘(x)v+r↘(y)u,
(x+u)↗(y+v)=x↗y+l↗(x)v+r↗(y)u,
(x+u)↖(y+v)=x↖y+l↖(x)v+r↖(y)u,
(x+u)↙(y+v)=x↙y+l↙(x)v+r↙(y)u,
where x,y∈A,u,v∈V.We denote it by A nl↘,r↘,l↗,r↗,l↖,r↖,l↙,r↙V.
Proposition 4.1Let(l↘,r↘,l↗,r↗,l↖,r↖,l↙,r↙,V)be a bimodule of an L-quadrialgebra(A,↘,↗,↖,↙).Thenis a bimodule of(A,↘,↗,↖,↙).
Proof.It can be checked straightly by the definition of the bimodule of L-quadri-algebra.
Proposition 4.2Let(A,↘,↗,↖,↙)be an L-quadri-algebra.Then
Proof.We can check it by the Definition 4.1 and Proposition 4.1.
Proposition 4.3Let A be a vector space with eight bilinear products denoted by↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2:A?A→A.Then
(1)(↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2,A)is an L-octo-algebra if and only if(A,∨2,∧2,∧1,∨1)is an L-quadri-algebra and(L↘2,R↙2,L↗2,R↖2,L↗1,R↖1,L↘1,R↙1,A) is a bimodule;
(2)(↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2,A)is an L-octo-algebra if and only if(A,?2,?1,?1,?2)is an L-quadri-algebra and(L↘2,R↗2,L↘1,R↗1,L↙1,R↖1,L↙2,R↖2,A) is a bimodule;
(3)(↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2,A)is an L-octo-algebra if and only if(A,↘12,↗12,↖12,↙12)is an L-quadri-algebra and(L↘2,R↘1,L↗2,R↗1,L↖2,R↖1,L↙2,R↙1, A)is a bimodule.
Proof.It follows from Definitions 4.1 and 3.1.
Proposition 4.4Let(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)be an L-octo-algebra and (A,∨2,∧2,∧1,∨1),(A,?2,?1,?1,?2),(A,↘12,↗12,↖12,↙12)be the associated L-quadri-algebra.Then
Proof.It follows from Propositions 4.1 and 4.3.
Proposition 4.5Let(l↘,r↘,l↗,r↗,l↖,r↖,l↙,r↙,V)be the bimodule of an L-quadrialgebra(A,↘,↗,↖,↙).Then
(1)(l↘,r↗,l↙,r↖,V)is a bimodule of the associated vertical L-dendriform algebra (A,?,?)of(A,↘,↗,↖,↙);
(2)(l↘,r↙,l↗,r↖,V)is a bimodule of the associated depth L-dendriform algebra (A,∨,∧)of(A,↘,↗,↖,↙);
(3)(l↘,?l↖,l↗,?l↙,V)is a bimodule of the associated depth L-dendriform algebra (A,?,?)of(A,↘,↗,↖,↙).
Proof.This conclusion can be proved straightly by Definition 4.1.
Corollary 4.1Let(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)be an L-octo-algebra.Then
(1)(L↘2,R↖2,L↘1,R↖1,A)is a bimodule of the associated L-dendriform algebra (A,?1,?1);
(2)(L↘2,R↙1,L↗2,R↖1,A)is a bimodule of the associated L-dendriform algebra (A,?2,?2);
(3)(L↘2,?L↗1,L↗2,?L↘1,A)is a bimodule of the associated L-dendriform algebra (A,?3,?3);
(4)(L↘2,R↗1,L↙2,R↖1,A)is a bimodule of the associated L-dendriform algebra (A,?4,?4);
(5)(L↘2,?L↙1,L↘1,?L↙2,A)is a bimodule of the associated L-dendriform algebra (A,?5,?5);
(6)(L↘2,?L↖2,L↗2,?L↙2,A)is a bimodule of the associated L-dendriform algebra (A,?6,?6).
Proof.It follows from Definition 3.1.
Corollary 4.2Let(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)be an L-octo-algebra.Then
(1)(L↘2,R↖1,A)is a bimodule of the associated pre-Lie algebra(A,?1);
(2)(L↘2,?L↘1,A)is a bimodule of the associated pre-Lie algebra(A,?2);
(3)(L↘2,?L↗2,A)is a bimodule of the associated pre-Lie algebra(A,?3);
(4)(L↘2,?L↙2,A)is a bimodule of the associated pre-Lie algebra(A,?4);
(5)(L↘2,A)is a representation of the associated Lie algebra(A,[·,·]).
Proof.It follows from Definition 3.1.
Definition 5.1Let(A,↘,↗,↖,↙)be an L-quadri-algebra,(l↘,r↘,l↗,r↗,l↖,r↖, l↙,r↙,V)be a bimodule of(A,↘,↗,↖,↙).A linear map T:V→ A is called an O-operator of(A,↘,↗,↖,↙)associated to(l↘,r↘,l↗,r↗,l↖,r↖,l↙,r↙,V)if T satisfies
In particular,an O-operator of an L-quadri-algebra(A,↘,↗,↖,↙)associated to(L↘, R↘,L↗,R↗,L↖,R↖,L↙,R↙,A)is called a Rota-Baxter operator of weight zero on(A,↘,↗,↖,↙).
Proposition 5.1Let(l↘,r↘,l↗,r↗,l↖,r↖,l↙,r↙,V)be a bimodule of an L-quadrialgebra(A,↘,↗,↖,↙).If T is an O-operator of(A,↘,↗,↖,↙)associated to(l↘, r↘,l↗,r↗,l↖,r↖,l↙,r↙,V),then there exists an L-octo-algebra structure on V defined by
Therefore,there exists an L-quadri-algebra structure on V defined by(3.1)as the associated L-quadri-algebra of(V,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)and T is the homomorphism of L-quadri-algebras.Furthermore,T(V)={T(v)|v∈V}?A is an L-quadri subalgebra of(A,↘,↗,↖,↙)and there is an induced L-octo-algebra structure on A given by
Moreover,the corresponding associated L-quadri-algebra structure on T(V)is just the L-quadri-algebra structure of(A,↘,↗,↖,↙)and T is an homomorphism of L-quadrialgebras.
Proof.For any u,v,w∈V,we have
u↘2(v↘2w)?v↘2(u↘2w)=l↘(T(u))l↘(T(v))w?l↘(T(v))l↘(T(u))w.
On the other hand,
Similarly we can prove the other identities in the definition of L-octo-algebra.The rest of this proposition follows immediately.
Theorem 5.1Let(A,↘,↗,↖,↙)be an L-quadri-algebra.Then there exists an L-octo-algebra structure on A such that(A,↘,↗,↖,↙)is the associated L-octo-algebra if and only if there exists an invertible O-operator of(A,↘,↗,↖,↙).
Proof.Let T be an invertible O-operator of(A,↘,↗,↖,↙)associated to the bimodule (l↘,r↘,l↗,r↗,l↖,r↖,l↙,r↙,V).By Proposition 5.1,there exists an L-octo-algebrastructure on V given by(5.1).Therefore,we define an L-octo-algebra structure on A defined by(5.2)such that T is an isomorphism of L-octo-algebras,that is
Moreover,the associated L-quadri-algebra defined by(3.1)is(A,↘,↗,↖,↙)since
x↘y=T(T?1(x))↘T(T?1(y))=T(l↘(x)T?1(y)+r↘(y)T?1(x))=x↘2y?y↖1x,
x↗y=T(T?1(x))↗T(T?1(y))=T(l↗(x)T?1(y)+r↗(y)T?1(x))=x↗2y?y↙1x,
x↖y=T(T?1(x))↖T(T?1(y))=T(l↖(x)T?1(y)+r↖(y)T?1(x))=x↖2y?y↘1x,
x↙y=T(T?1(x))↙T(T?1(y))=T(l↙(x)T?1(y)+r↙(y)T?1(x))=x↙2y?y↗1x.
Conversely,let(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)be an L-octo-algebra and(A,↘,↗,↖,↙)be the associated L-quadri-algebra(A,?21,?21,?12,?12).Then the identity map id:A→ A is an invertible O-operator of(A,↘,↗,↖,↙)associated to the bimodule (L↘2,?L↖1,L↗2,?L↙1,L↘2,?L↖1,L↙2,?L↙1,A).
Moreover,if r is invertible,then r satisfies(5.3)–(5.4)if and only if the nondegenerate bilinear form B induced by r satisfies
Proof.Let Fr:A?→A be the O-operator defined by r.Then
Similarly,by the definition of O-operator,we can get
Let σ be any element in the permutation group Σ3acting on{1,2,3}.Then σ induces a linear map from A?A?A to A?A?A by
By the action of Σ and combining these equations we can get the conclusion.
Definition 5.2Let(A,↘,↗,↖,↙)be an L-quadri-algebra and r∈A?A be symmetric.(5.3)–(5.4)is called LQ-equation in(A,↘,↗,↖,↙).On the other hand,a symmetric bilinear form B on A satisfying(5.5)–(5.6)is called a 2-cocycle of(A,↘,↗,↖,↙).
Proposition 5.3Let(A,↘,↗,↖,↙)be an L-quadri-algebra with a nondegenerate 2-cocycle B.Then there exists an L-octo-algebra structure(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)on A defined by
Proof.By Proposition 5.2,the invertible linear map T:A?→ A is an invertible O-operator associated to the bimoduleAs a result,there is an L-octo-algebra structure on A defined by
Similarly,by a direct computation we can get the other identities in(5.7).
Corollary 5.1Let(A,↘,↗,↖,↙)be an L-quadri-algebra with a nondegenerate 2-cocycle B.Then the corresponding L-quadri-algebra(A,∨2,∧2,∧1,∨1),(A,?2,?1,?1,?2), (A,↘12,↗12,↖12,↙12)of the L-octo-algebra(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)is given by
Proposition 5.4Let(A,↘,↗,↖,↙)be an L-quadri-algebra and(l↘,r↘,l↗,r↗,l↖, r↖,l↙,r↙,V)be a bimodule.Letbe the bimodule of A.Let T:V→A be a linear map which can be identified as an element in the vector space(A⊕V)?(A⊕V).Then r=T?σ(T)is a symmetric solution of LQ-equation in the L-quadrialgebraif and only if T is an O-operator of(A,↘,↗,↖,↙)associate to
Proof.It follows straightly by a direct computation.
Corollary 5.2Let(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)be an L-octo-algebra and (A,∨2,∧2,∧1,∨1),(A,?2,?1,?1,?2),(A,↘12,↗12,↖12,↙12)be the associated L-quadri-algebra.Let{e1,e2,···,en}be a basis of A and{e?1,e?2,···,e?n}be a basis of A?. Then
is a skew symmetric solution of LD-equation in the L-quadri-algebras
respectively.Moreover,there is a natural 2-cocycle B of this L-quadri-algebras induced by r which is given by
Proof.This is because id is an O-operator of(A,∨2,∧2,∧1,∨1),(A,?2,?1,?1,?2), (A,↘12,↗12,↖12,↙12).
Theorem 6.1Let(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)be an L-octo-algebra and r∈A?A be skew-symmetric.Let(A,∨2,∧2,∧1,∨1),(A,?2,?1,?1,?2),(A,↘12,↗12,↖12,↙12)be the associated L-quadri-algebra.Then the following statements are equivalent:
(1)r is the O-operator of(A,∨2,∧2,∧1,∨1)associated to the bimodule
(4)r satisfies
Proof.We just prove the equivalence between(1)and(4).Let{e1,e2,···,en}be a basis of A andbe the dual basis.Suppose that
and
Since r is an O-operator,we have
So we can get
This is the coefficient of ei?ej?etin
Similarly,we can compute the other identities in(4).Hence this conclusion holds.
Theorem 6.2Let(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)be an L-octo-algebra and r∈A?A be skew-symmetric.Suppose that r is invertible.Then r satisfies(6.1)–(6.4)if and only if the nondegenerate bilinear form B induced by r satisfies
Similarly,we can compute?r13∨2r23,w??u??v??,?r12?12r23,w??u??v??,?r23?12r12, w??u??v??.As a result,we have
Similarly,we can get the other identities in(6.5)–(6.8).
Definition 6.1Let(A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2)be an L-octo-algebra and r∈A?A be skew-symmetric.(6.1)–(6.4)are called LO-equations(a set of equations)in (A,↘1,↘2,↗1,↗2,↖1,↖2,↙1,↙2).On the other hand,a skew symmetric bilinear form B on A is called a 2-cocycle if B satisfies(6.5)–(6.8).
[1]Vallette B.Manin products,Koszul duality,Loday algebras and Deligne conjecture.J.Reine Angew.Math.,2008,620:105–164.
[2]Ebrahimi-Fard K.Loday-type and Rota-Baxter relation.Lett.Math.Phys.,2002,61:139–147.
[3]Loday J L,Ronco M.Trialgebras and Families of Polytopes.in:Homotopy Theory:Relation with Algebraic Geometry,Group Cohomology,and Algebraic K-theory.Contemp.Math.,2004, 346:369–398.
[4]Leroux P.Construction of Nijenhuis operators and dendriform trialgebras.Int.J.Math.Sci., 2004,49:2595–2615.
[5]Leroux P.On some remarkable operads constructed from Rota-Baxter operators.arXiv: math/0311214[math.QA].Submitted on 13 Nov.2013.
[6]Leroux P.Ennea-algebras.J.Algebra,2004,281:287–302.
[7]Loday J L.Dialgebras,in Dialgebras and related operads.Lecture Notes in Math.,2002,1763: 7–66.
[8]Bai C M.A unified algebraic approach to the classical Yang-Baxter equation.J.Phys.A,2007, 40:11073–11082.
[9]Bai C M.Left symmetric bialgebras and an analogy of the classical Yang-Baxter equation. Commun.Contemp.Math.,2008,10:221–260.
[10]Bai C M.O-operators of Loday algebras and annalogues of the classical Yang-Baxter equation. Comm.Algebra,2010,38:4277–4321.
[11]Bai C M,Liu L G,Ni X.Some results on L-dendriform algebras.J.Geom.Phys.,2010,60: 940–950.
[12]Liu L G,Ni X,Bai C M.L-quadri-algebras.Sci.China Ser.A,2011,41(2):105–124.
date:Jan.26,2014.
The NSF(11071106 and 11471151)of China.
E-mail address:finsler@126.com(An H H).
Communications in Mathematical Research2016年1期