亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Densityfunctionalcalculationofphysicalpropertiesofg-C3N4/germaneneheterobilayer-theaffectionsofelectricfields

        2016-09-20 12:05:47,*,
        安徽大學學報(自然科學版) 2016年2期
        關鍵詞:方向影響

        , *,

        (1. College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China;2. Department of Chemistry and Molecular Engineering, East China University

        ?

        Densityfunctionalcalculationofphysicalpropertiesofg-C3N4/germaneneheterobilayer-theaffectionsofelectricfields

        RUANLinwei1,ZHUYujun1*,LUYunxiang2

        (1.CollegeofChemistryandChemicalEngineering,AnhuiUniversity,Hefei230601,China;2.DepartmentofChemistryandMolecularEngineering,EastChinaUniversity

        ofScienceandTechnology,Shanghai200237,China)

        Effectofelectricfieldintensityanddirectiononbindingenergy,densityofstates(DOS),andchargedensityofg-C3N4/germaneneheterobilayerwasinvestigatedbyfirstprinciplecalculations.Thecalculationresultsrevealthelargeimpactofelectricfieldonthephysicalparametersofg-C3N4/germaneneheterobilayer.ApplicationofupwardelectricfieldmovestheDOStowardsleft,whilethedownwardelectricfieldresultsintheright-shiftofDOSing-C3N4/germaneneheterobilayer.Inaddition,nochangesinworkfunctionofheterobilayeroccurunderelectricfields.

        g-C3N4;heterobilayer;germanene;electricfields

        0 Introduction

        Graphiticcarbonnitride(labeledasg-C3N4)hasrecentlyreceivedintensiveattentionsduetoitsgoodphotocatalyticperformanceforwatersplittingandorganicpollutantspurificationundervisiblelightirradiation.Likegraphite,g-C3N4hasatwo-dimensional(2D)planarπconjugationstructure,whichenablestheefficientelectrontransferwithintheπconjugationstructure.However,thephotocatalyticactivityofpristineg-C3N4isstilltoolowtopracticalapplications.Researchershavenowrecognizedthatthesingle-componentg-C3N4cannotachievethehigherphotocatalyticactivityduetotherapidrecombinationofphotogeneratedelectron-holepairs.Tosolvethisissue,formingheterostructuresbycouplingg-C3N4withothermaterialshavebeendemonstratedaseffectivestrategytoimprovethephotocatalyticefficiencyofg-C3N4.Forexample,Daietal.[1]fabricatedg-C3N4/TiO2nanosheethybridsforenhancedphotodegradationoforganiccontaminationsusingvisiblelight.Xingandco-workers[2]usedIn2S3/g-C3N4heterostructurestoimprovethephotocatalyticabilityofg-C3N4.Yangetal.[3]studiedtheinfluenceofpreparationmethodonphotocatalyticperformanceofg-C3N4/WO3compositephotocatalyst,andfoundthatthecompositespreparedthroughhydrothermalmethodexhibitedthehighestphotocatalyticactivity.Zhangetal.[4]designedBi2O3/g-C3N4hybridswithhighvisiblelightactivityformethyleneblueandrhodamineB.Huangetal.[5]studiedeffectofcontactinterfacebetweenTiO2andg-C3N4onthephotoreactivityofg-C3N4/TiO2photocatalyst,anddiscoveredthatthe(101)facethasbetterperformance.

        Meanwhile,theoreticinvestigationon2-Dcarbon-basedmaterialhybridshasalsobeenintensivelystudied.Maetal.[6]examinedthebandstructureanddensityofstates(DOS)oftransition-metaldichalcogenideandmxenemonolayer.Medvedevaetal.[7]studiedtheAlN/GaN:Cr(0001)heterostructurebyusingfirstprincipalcalculationandfoundthattheheterobilayerdopedwithCrwidenedthebandgapofg-C3N4.RoomeandCarey[8]calculatedthestructuralstability,electronicandvibrationalpropertiesofdifferentmonolayerconfigurationsofsiliceneandgermaneneheterobilayer.Gaoetal.[9]simulatedthehybridgraphene/anataseTiO2(001)nanocompositesandfoundtheimprovedinterfacialelectrontransferwithgrapheneintroduction.Xuetal.[10]predictedtheimprovedphotocatalyticactivityoverAg3PO4/graphenenanocompositethroughfirstprinciplecalculation.Gengetal.[11]foundthattheelectronicpropertiesofZnOretainedunchangedwhencouplingwithgraphene.Gaoetal.[12]simulatedtheheterobilayersformedbysiliceneandMoS2,anddeducedthatitisacandidatematerialforlogiccircuitsandphotonicdevices.

        Itiswellknownthatthephotoelectricpropertiesofsemiconductorareaffectedgreatlybytheappliedexternalelectricfield.Wuetal.[13]foundtheopticalenergygapofg-C3N4bilayercanbeengineeredbytheexternalelectricfield.Zhangetal.[14]calculatedtheeffectsoftransverseelectricfieldonenergygapmodulationofBNribbonsandfoundtheenergygapsnarrowingcausedbythefield-inducedmotionofnearlyfreeelectronstates.Kangetal.[15]investigatedtheaffectionstobandgapsofgraphdiynenanoribbonsfromtransverseelectricfield.Kanetal.[16]verifiedthetransformationofconductivezigzaggraphenenanoribbonintohalfmetalunderelectricfield.Tothebestofourknowledge,thereisnoreportoftheeffectofelectricfieldonthephysicalpropertiesofg-C3N4heterobilayers.

        Herein,theauthorsreporttheeffectofappliedelectricfieldontheg-C3N4/Geheterobilayer.Itisrevealedthatthephysicalpropertiesofg-C3N4/Geheterobilayerareaffectedgreatlybytheappliedelectricfield.Theprincipledisclosedbythesimulationcanprovideusefulinformationforthesynthesisofheterobilayers.

        1 Methodology and calculation

        AllcalculationswereperformedbyDmol3module[17]inMaterialsstudio7.0software.The(001)surfaceofg-C3N4and(111)surfaceofgermaniumwerecleaved,thelatticeparametersofbothsurfacesare19.133 ?and20.155 ?.Wecanassumethatthetwosurfacescangenerateanewheterobilayerbecauseoftheapproximatelatticelength.Theheterobilayerwasbuiltthrough“buildlayer”tabfromthenanosheetsofC3N4andgermaneneobtainedbefore.Inordertogaintheoptimizedstructureofheterobilayer,allstructuresobtainedbeforeusedinthesimulationneedtominimizetheenergy.Generalgradientapproximation(GGA)andPerdew-Burke-Ernzerhof(PBE)[18]functionwereusedinthewholesimulation,andapragmaticmethodtodescribecorrectlyvanderWaalsinteractionsresultingfromdynamicalcorrelationsbetweenfluctuatingchargedistributionshasbeengivenbytheDFT-D2approachofGrimme.DFTsemi-corepseudopotsandDNPbasiswerealsousedinthewholeprocessofsimulation.Thecutoffenergyis900eVandkpointis6×6×3,simultaneously,thenumberofatomsoftotalsystemis96.

        TheultimatestructureofheterobilayerwasshowninFig.1,twolayersofstructuremaintainasawholethroughvanderWaalsinteractions.Afterenergyminimization,thegermanenelayercorrugatedcomparedtotheflatC3N4layercankeepthewholesystemstable.Theoriginalandultimatelatticeparametera,b,cofheterobilayeris19.721 7 ?, 19.721 7 ?, 20.000 0 ?and19.722 3 ?, 19.721 6 ?, 20.000 0 ?.Theoriginalandultimateinterlayerdistanceis3.578 ?and3.572 ?.

        Fig.1 Schematic diagram of heterobilayer formed by g-C3N4 and germanene

        2 Results and discussion

        Bindingenergycanbeusedtorevealthedifficultiesofheterobilayerformation.Thereforethebindingenergywasfirstcalculatedtostudytheformationofg-C3N4/Geheterobilayer,asshowninFig.2.Bindingenergyinpresentsystemwasdefinedas

        Eb= E(heterobilayer)-E(g-C3N4)-E(germanene).

        Itwasfoundthatthebindingenergyofg-C3N4/Geheterobilayervarieswiththedirectionofappliedelectricfield.Theupwardelectricfield(+z)causestheincreasedbindingenergy,whilethedownwardelectricfield(-z)resultsinthedecreasedbindingenergy,asshowninFig.2.Thisisbecausethe+zdirectionisthesameasthedirectionofinduceddipole,onthecontrary,the-zdirectioniscontradicttothedirectionoftheinduceddipole.

        Fig.2 Binding energies of heterobilayer as function of electric field

        Thebandgapofg-C3N4/Geheterobilayerisalsoaffectedbytheappliedelectricfielddirection,asillustratedinFig.3.Despitetheelectricfielddirection,thebandgapbecomesnarrowedwhenexternalelectricfieldwasapplied.Thisphenomenonisdifferentfromthechangetendencyinbindingenergy,asdiscussedabove.Thedecreaseinbandgapcanbeattributedtothesmallerelectronenergybarriercausedbytheappliedelectricfield[15].Thedifferenceinbandgapchangewiththeelectricfielddirectioncouldbecausedbythedirectionalflowofelectronsfromg-C3N4togermaneneastheupwardelectricfieldcanpromotethemovementofelectronsfromg-C3N4togermanene.Thisresultisverysimilartheauthors’previousresult[19]thatthebandgapdecreaseswithincreasedexternalpressure,butthedeclinedrangewasnarrowercomparedwiththepreviousresult.

        Fig.3 The directions of electric fields (a) and the relation between band gap and electric field (b)

        ThecalculatedbandgapEgofg-C3N4/germaneneheterobilayeris0.735eV.Suchsmallbandgapindicatesthatg-C3N4/germaneneheterobilayercanabsorbthefullvisiblelightregion[10].Despitetheelectricfielddirection,theconductionbandedgelinearlydecreaseswiththeappliedelectricfield(Fig.4).Notably,thevalencebandedgeincreaseswiththeincreaseofelectricfieldundertheirradiationofupwardelectricfield(+z).Interestingly,adecreasedvalencebandedgeoccurswhenthedownwardelectricfieldgraduallyincreases.

        Fig.4 Valence band edge and conduction band edge of heterobilayer

        Fig.5shownthedensityofstatesofheterobilayerwithoutexternalelectricfieldapplied.Thedensityofstates(DOS)ofg-C3N4/manganeneheterobilayerwasalsocalculated,asshowninFig.5andFig.6.TheDOSbetween-25and-15eVwasmainlycomposedofC2sorbitals.TheGeporbitalscontributeddominantlytotheDOSfromtheenergyof-12.5eVtotheFermienergy.Inaddition,thetopofthevalencebandwasalsomainlyconstructedbytheGePDOS.

        Fig.5 The DOS of heterobilayer without electric field

        Fig.6 The s, p, d PDOS and sum DOS of carbon atoms

        NotethattheelectricfieldalsoaffectstheDOSoftheg-C3N4/germaneneheterobilayer,asshowninFig.7.TheDOSmovestothelowerenergysidewithincreaseofupwardelectricfieldintensity.Thisresultisconsistentwiththephenomenonthattheelectricfieldcannarrowtheenergyofg-C3N4/germaneneheterobilayer[13].Comparatively,thedownwardelectricfieldpushestheDOStothehighenergylevelwiththeincreaseofelectricfieldintensity.

        Fig.7 DOS of heterobilayer with different value of electric field (a) and different direction of electric field (b)

        Fig.8    Electron density of heterobilayers without electric field (a), with the value 0.1 and -z direction    electric field (b), with the value 0.1 and z direction electric field (c)

        Fig.8showstheelectrondensityofg-C3N4andGelayer,respectively.Electrondensityatg-C3N4layerishigherthanthatofGelayerwithoutexternalelectricfield.Interestingly,thedirectionofelectricfieldaffectsthegapofg-C3N4layerandGelayer.Theupwardelectricfield(+z)widensthegapbetweeng-C3N4andGelayer,whilethedownwardelectricfield(-z)narrowsthegapbetweeng-C3N4andGelayer.Inaddition,Gelayerownshighelectrondensityincomparisontog-C3N4layerwiththevalue0.1of-zelectricfieldshowninFig.8.Notably,thechemicalbondsbetweeng-C3N4andGelayerformedwhendownwardelectricfieldintensityof0.1wasapplied.Ge-C3N4layerhas-2.515emullikenchargeandGelayerhas2.52emullikenchargeatthissituation.Comparatively,g-C3N4layerpossesses0.95emullikenchargeandGermanenelayerowns-0.95emullikenchargewhenupwardelectricfieldintensityof0.1wasaddedtotheg-C3N4/Geheterobilayer.Althoughthemullikenpopulationanalysisistoocoarsetorevealthecharges’spatialdistribution,themullikenchargeing-C3N4andGelayersverifiestheelectrondensityplotandtheasymmetrybetweenthetwolayers.Thechargeredistributionoflayersoccurredinthiskindofhybridheterobilayerwilldemonstratetheconclusionisrightornot.AfurtherchargeanalysisrevealsthateachGeatomtransferes0.05etog-C3N4,whileeachCatomloses0.338eandNatomobtaines0.292einpresentheterobilayer.ThechargeredistributioninpresentheterobilayerisdifferentfromthatinTiO2/GR[20-23],ZnO/GR[24],TiO2/carbonnanotube[25],C60/TiO2[26]etc,inwhichthechargemerelytransfersfromonecomponenttoanother.Thisresultcouldbeascribedtothevariationofelectrondensitycausedbytheelectricfield,asrevealedbyXu’swork[10],hencechemicalbondformedbetweenatomsbelongtodifferentlayers.Thecorrespondingbondlengthofbetweeng-C3N4andGelayerisillustratedinFig.9.Underelectricfieldirradiation,thelengthofN—GeandC—Gebondvariesfrom2.0to2.2 ?,whichislargerthanthatofC—Cbondlength.Thisresultrevealsthattheinteractionbetweeng-C3N4andGelayersisweakerthanthatofcovalentg-C3N4layer.

        Fig.9 Lengths of chemical bonds formed in 0.1 electric field of -z direction

        WorkfunctionistheenergythatcanbeprovidedfortheelectronwithFermienergyescapingfromtheinnermetaltovacuumlevel.Thesimulatedworkfunctionoftwolayersalmostmaintainsunchangedwhentheelectricfieldintensityincreasesfrom0to0.1,thisresultmaybecausedbythesmallexternalelectricfield,whichcannotaffecttheelectronescape.

        For(001)surfaceofg-C3N4,theworkfunctionwascalculatedtobe4.5eV[27]inagreementwiththispaper.Electronscanflowfromthelayerwithhighworkfunctiontothelayerwithlowworkfunctionwhentherewasnoelectricfieldapplied.Hence,electronscanmovetog-C3N4layerbecausetheg-C3N4layerownslowerworkfunction.Theelectronflowdirectioncanbechangedunderelectricfieldirradiation.Fig.10illustratestheworkfunctionofg-C3N4/Geheterobilayerwithelectricfielddirection.Aslightlydecreasedworkfunctionof4.425eVofg-C3N4wasobtainedunderelectricfieldirradiationwhencomparedwiththevalueof4.3eVwithoutelectricfieldirradiation[28].

        Fig.10 Work function of heterobilayer when electric field from +z and -z direction with value 0.1

        3 Conclusion

        Thephysicalpropertiesofg-C3N4/Geheterobilayerwerestudiedbyfirstprinciplecalculations.Itwasfoundthatthebindingenergy,bandgapenergy,anddensityofstatesaregreatlydependentontheappliedelectricfielddirection.Despitetheelectricfielddirection,thebandgapwasdecreasedwiththeincreaseofelectricfieldintensity.TheDOSmovestothelowerenergysideunderupwardelectricfieldirradiation,andmovesbacktothehighenergysideunderdownwardelectricfield.Interestingly,workfunctionofheterobilayerchangedalittleincomparisonwiththepristineg-C3N4.Thepresentresultdemonstratesthegreateffectonexternalelectricfieldonthephysicalpropertiesofg-C3N4heterobilayer.

        References:

        [1]DAIK,LULH,LIANGCH,etal.Heterojunctionoffacetcoupledg-C3N4/surface-fluorinatedTiO2nanosheetsfororganicpollutantsdegradationundervisibleLEDlightirradiation[J].ApplCatalB-Environ, 2014, 156/157: 331-340.

        [2]XINGCS,WUZD,JIANGDL,etal.HydrothermalsynthesisofIn2S3/g-C3N4heterojunctionswithenhancedphotocatalyticactivity[J].JColloidInterfaceSci, 2014, 433: 9-15.

        [3]YANGM,HUSZ,LIFY,etal.Theinfluenceofpreparationmethodonthephotocatalyticperformanceofg-C3N4/WO3compositephotocatalyst[J].CeramInt, 2014, 40: 11963-11969.

        [4]ZHANGJF,HUYF,JIANGXL,etal.DesignofadirectZ-schemephotocatalyst:preparationandcharacterizationofBi2O3/g-C3N4withhighvisiblelightactivity[J].JHazardMater, 2014, 280: 713-722.

        [5]HUANGZA,SUNQ,LVKL,etal.EffectofcontactinterfacebetweenTiO2andg-C3N4onthephotoreactivityofg-C3N4/TiO2photocatalyst:(001)vs(101)facetsofTiO2[J].ApplCatalB-Environ, 2015, 164: 420-427.

        [6]MAZN,HUZP,ZHAOXD,etal.Tunablebandstructuresofheterostructuredbilayerswithtransition-metaldichalcogenideandMXenemonolayer[J].JPhysChemC, 2014, 118: 5593-5599.

        [7]MEDVEDEVAJE,FREEMANAJ,CUIXY,etal.Half-metallicityandefficientspininjectioninAlN/GaN:Cr(0001)heterostructure[J].PhysRevLett, 2005, 94: 146602.

        [8]ROOMENJ,CAREYJD.Beyondgraphene:stableelementalmonolayersofsiliceneandgermanene[J].ACSAppMaterInterfaces, 2014, 6: 7743-7750.

        [9]GAOHT,LIXH,LVJ,etal.Interfacialchargetransferandenhancedphotocatalyticmechanismsforthehybridgraphene/anataseTiO2(001)nanocomposites[J].JPhysChemC, 2013, 117: 16022-16027.

        [10]XUL,HUANGWQ,WANGLL,etal.Mechanismofsuperiorvisible-lightphotocatalyticactivityandstabilityofhybridAg3PO4/graphenenanocomposite[J].JPhysChemC, 2014, 118: 12972-12979.

        [11]GENGW,ZHAOXF,LIUHX,etal.InfluenceofinterfacestructureonthepropertiesofZnO/graphenecomposites:atheoreticalstudybydensityfunctionaltheorycalculations[J].JPhysChemC, 2013, 117: 10536-10544.

        [12]GAON,LIJC,JIANGQ.Tunablebandgapsinsilicene-MoS2heterobilayers[J].PhysChemChemPhys, 2014, 16: 11673-11678.

        [13]WUF,LIUYF,YUGX,etal.Visible-light-absorptioningraphiticC3N4bilayer:enhancedbyinterlayercoupling[J].JPhysChemLett, 2012, 3: 3330-3334.

        [14]ZHANGZH,GUOWL.Energy-gapmodulationofBNribbonsbytransverseelectricfields:first-principlescalculations[J].PhysRevB, 2008, 77: 075403.

        [15]KANGJ,WUFM,LIJB.Modulatingthebandgapsofgraphdiynenanoribbonsbytransverseelectricfields[J].JPhysCondensMatter, 2012, 24: 165301.

        [16]KANEJ,LIZ,YANGJ,etal.Willzigzaggraphenenanoribbonturntohalfmetalunderelectricfield?[J].ApplPhysLett, 2007, 91: 243116.

        [17]DELLEYB.Anall-electronnumericalmethodforsolvingthelocaldensityfunctionalforpolyatomicmolecules[J].JChemPhys, 1990, 92 (1): 508-517.

        [18]PERDEWJP,BURKEK,ERNZERHOFM.Generalizedgradientapproximationmadesimple[J].PhysRevLett, 1996, 77 (18): 3865-3868.

        [19]RUANLW,ZHUYJ,QIULG,etal.Firstprinciplescalculationsofthepressureaffectiontog-C3N4[J].CompMaterSci, 2014, 91: 258-265.

        [20]DUA,NGYH,BELLNJ,etal.Hybridgraphene/titaniananocomposite:interfacechargetransfer,holedoping,andsensitizationforvisiblelightresponse[J].JPhysChemLett, 2011, 2: 894-899.

        [21]LIXH,GAOHT,LIUGJ.ALDA+Ustudyofthehybridgraphene/anataseTiO2nanocomposites:interfacialpropertiesandvisiblelightresponse[J].ComputationalandTheoreticalChemistry, 2013, 1025: 30-34.

        [22]LIULC,LIUZ,LIUAN,etal.EngineeringtheTiO2-grapheneinterfacetoenhancephotocatalyticH2production[J].ChemSusChem, 2014, 7: 618-626.

        [23]LIUXY,CONGRD,CAOLF,etal.Thestructure,morphologyandphotocatalyticactivityofgraphene-TiO2multilayerfilmsandchargetransferattheinterface[J].NewJChem, 2014, 38: 2362-2367.

        [24]XUPT,TANGQ,ZHOUZ.Structuralandelectronicpropertiesofgraphene-ZnOinterfaces:dispersion-correcteddensityfunctionaltheoryinvestigations[J].Nanotechnology, 2013, 24: 305401.

        [25]LONGR.ElectronicstructureofsemiconductingandmetallictubesinTiO2/carbonnanotubeheterojunctions:densityfunctionaltheorycalculations[J].JPhysChemLett, 2013, 4: 1340-1346.

        [26]LONGR,DAIY,HUANGBB.FullereneinterfacedwithaTiO2(110)surfacemaynotformanefficientphotovoltaicheterojunction:first-principlesinvestigationofelectronicstructures[J].JPhysChemLett, 2013, 4: 2223-2229.

        [27]SUNL,QIY,JIACJ,etal.Enhancedvisible-lightphotocatalyticactivityofg-C3N4/Zn2GeO4heterojunctionswitheffectiveinterfacesbasedonbandmatch[J].Nanoscale, 2014, 6: 2649-2659.

        [28]YANGF,KUZNIETSOVV,LUBLOWM,etal.Solarhydrogenevolutionusingmetal-freephotocatalyticpolymericcarbonnitride/CuInS2compositesasphotocathodes[J].JMaterChemA, 2013, 1: 6407-6415.

        (責任編輯于敏)

        10.3969/j.issn.1000-2162.2016.02.016

        g-C3N4/germanene異質結物理性質的密度泛函計算-電場的影響

        阮林偉1,朱玉俊1*,盧運祥2

        (1.安徽大學 化學化工學院,安徽 合肥230601;2.華東理工大學 化學與分子工程學院,上海200237)

        通過第一性原理計算研究電場強度和方向對于g-C3N4/germanene雙層的結合能、態(tài)密度以及電荷的影響.計算結果顯示,電場對于雙層的物理性質影響很大,方向朝上的電場使得態(tài)密度曲線向左移動,同時方向朝下的電場使得態(tài)密度曲線朝右移動.并且在電場的影響下,功函數(shù)的變化不大.

        g-C3N4; 異質結;germanene; 電場

        date:2015-03-26

        SupportedbytheNationalNaturalScienceFoundationofChina(51002001);theAnhuiUniversityDoctoralScientificResearchFoundation(02303319)

        Author’sbrief:RUANLinwei(1990-),male,borninTaihuofAnhuiprovince,masterdegreecandidateofAnhuiUniversity; *ZHUYujun(correspondingauthor):lecturerofAnhuiUniversity,Ph.D,E-mail:zyj8119@sina.cn.

        O641Documentcode:AArticleID:1000-2162(2016)02-0093-08

        猜你喜歡
        方向影響
        是什么影響了滑動摩擦力的大小
        2022年組稿方向
        計算機應用(2022年2期)2022-03-01 12:33:42
        2022年組稿方向
        計算機應用(2022年1期)2022-02-26 06:57:42
        2021年組稿方向
        計算機應用(2021年4期)2021-04-20 14:06:36
        哪些顧慮影響擔當?
        當代陜西(2021年2期)2021-03-29 07:41:24
        2021年組稿方向
        計算機應用(2021年3期)2021-03-18 13:44:48
        2021年組稿方向
        計算機應用(2021年1期)2021-01-21 03:22:38
        沒錯,痛經(jīng)有時也會影響懷孕
        媽媽寶寶(2017年3期)2017-02-21 01:22:28
        擴鏈劑聯(lián)用對PETG擴鏈反應與流變性能的影響
        中國塑料(2016年3期)2016-06-15 20:30:00
        基于Simulink的跟蹤干擾對跳頻通信的影響
        日本精品人妻在线观看| 少妇人妻字幕精品毛片专区| 国产一区二区三区视频网| 久久无码专区国产精品| 全免费a级毛片免费看视频| 国产成人AⅤ| 日本久久精品视频免费| 成人影院yy111111在线| 国内精品视频一区二区三区| 国产精品无码久久AⅤ人妖| 偷拍韩国美女洗澡一区二区三区 | 亚洲欧美日韩精品久久| 亚洲av色无码乱码在线观看| 自慰高潮网站在线观看| 国产91精品一区二区麻豆亚洲| 欧美综合天天夜夜久久| 人禽无码视频在线观看| 亚洲一区二区三区免费av在线| 国产高清精品一区二区| 国产精品www夜色视频| 四虎影永久在线观看精品| 亚洲一区极品美女写真在线看| 我要看免费久久99片黄色| 国产农村妇女毛片精品久久| 2021年国产精品每日更新| 国产精品午夜福利亚洲综合网| 风韵丰满熟妇啪啪区老老熟妇| 欧美天欧美天堂aⅴ在线| 亚洲无码视频一区:| 性感美女脱内裤无遮挡| av 日韩 人妻 黑人 综合 无码| 久久88综合| 国产情侣自拍偷拍精品| 国产精品麻豆va在线播放| 亚洲精品久久久久久| 精品人妻一区二区三区蜜桃 | 大伊香蕉精品视频一区| 日本人妻精品有码字幕| 日本老熟妇乱| 亚洲人成人一区二区三区| 一区二区三区极品少妇|