亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Densityfunctionalcalculationofphysicalpropertiesofg-C3N4/germaneneheterobilayer-theaffectionsofelectricfields

        2016-09-20 12:05:47,*,
        安徽大學學報(自然科學版) 2016年2期
        關鍵詞:方向影響

        , *,

        (1. College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China;2. Department of Chemistry and Molecular Engineering, East China University

        ?

        Densityfunctionalcalculationofphysicalpropertiesofg-C3N4/germaneneheterobilayer-theaffectionsofelectricfields

        RUANLinwei1,ZHUYujun1*,LUYunxiang2

        (1.CollegeofChemistryandChemicalEngineering,AnhuiUniversity,Hefei230601,China;2.DepartmentofChemistryandMolecularEngineering,EastChinaUniversity

        ofScienceandTechnology,Shanghai200237,China)

        Effectofelectricfieldintensityanddirectiononbindingenergy,densityofstates(DOS),andchargedensityofg-C3N4/germaneneheterobilayerwasinvestigatedbyfirstprinciplecalculations.Thecalculationresultsrevealthelargeimpactofelectricfieldonthephysicalparametersofg-C3N4/germaneneheterobilayer.ApplicationofupwardelectricfieldmovestheDOStowardsleft,whilethedownwardelectricfieldresultsintheright-shiftofDOSing-C3N4/germaneneheterobilayer.Inaddition,nochangesinworkfunctionofheterobilayeroccurunderelectricfields.

        g-C3N4;heterobilayer;germanene;electricfields

        0 Introduction

        Graphiticcarbonnitride(labeledasg-C3N4)hasrecentlyreceivedintensiveattentionsduetoitsgoodphotocatalyticperformanceforwatersplittingandorganicpollutantspurificationundervisiblelightirradiation.Likegraphite,g-C3N4hasatwo-dimensional(2D)planarπconjugationstructure,whichenablestheefficientelectrontransferwithintheπconjugationstructure.However,thephotocatalyticactivityofpristineg-C3N4isstilltoolowtopracticalapplications.Researchershavenowrecognizedthatthesingle-componentg-C3N4cannotachievethehigherphotocatalyticactivityduetotherapidrecombinationofphotogeneratedelectron-holepairs.Tosolvethisissue,formingheterostructuresbycouplingg-C3N4withothermaterialshavebeendemonstratedaseffectivestrategytoimprovethephotocatalyticefficiencyofg-C3N4.Forexample,Daietal.[1]fabricatedg-C3N4/TiO2nanosheethybridsforenhancedphotodegradationoforganiccontaminationsusingvisiblelight.Xingandco-workers[2]usedIn2S3/g-C3N4heterostructurestoimprovethephotocatalyticabilityofg-C3N4.Yangetal.[3]studiedtheinfluenceofpreparationmethodonphotocatalyticperformanceofg-C3N4/WO3compositephotocatalyst,andfoundthatthecompositespreparedthroughhydrothermalmethodexhibitedthehighestphotocatalyticactivity.Zhangetal.[4]designedBi2O3/g-C3N4hybridswithhighvisiblelightactivityformethyleneblueandrhodamineB.Huangetal.[5]studiedeffectofcontactinterfacebetweenTiO2andg-C3N4onthephotoreactivityofg-C3N4/TiO2photocatalyst,anddiscoveredthatthe(101)facethasbetterperformance.

        Meanwhile,theoreticinvestigationon2-Dcarbon-basedmaterialhybridshasalsobeenintensivelystudied.Maetal.[6]examinedthebandstructureanddensityofstates(DOS)oftransition-metaldichalcogenideandmxenemonolayer.Medvedevaetal.[7]studiedtheAlN/GaN:Cr(0001)heterostructurebyusingfirstprincipalcalculationandfoundthattheheterobilayerdopedwithCrwidenedthebandgapofg-C3N4.RoomeandCarey[8]calculatedthestructuralstability,electronicandvibrationalpropertiesofdifferentmonolayerconfigurationsofsiliceneandgermaneneheterobilayer.Gaoetal.[9]simulatedthehybridgraphene/anataseTiO2(001)nanocompositesandfoundtheimprovedinterfacialelectrontransferwithgrapheneintroduction.Xuetal.[10]predictedtheimprovedphotocatalyticactivityoverAg3PO4/graphenenanocompositethroughfirstprinciplecalculation.Gengetal.[11]foundthattheelectronicpropertiesofZnOretainedunchangedwhencouplingwithgraphene.Gaoetal.[12]simulatedtheheterobilayersformedbysiliceneandMoS2,anddeducedthatitisacandidatematerialforlogiccircuitsandphotonicdevices.

        Itiswellknownthatthephotoelectricpropertiesofsemiconductorareaffectedgreatlybytheappliedexternalelectricfield.Wuetal.[13]foundtheopticalenergygapofg-C3N4bilayercanbeengineeredbytheexternalelectricfield.Zhangetal.[14]calculatedtheeffectsoftransverseelectricfieldonenergygapmodulationofBNribbonsandfoundtheenergygapsnarrowingcausedbythefield-inducedmotionofnearlyfreeelectronstates.Kangetal.[15]investigatedtheaffectionstobandgapsofgraphdiynenanoribbonsfromtransverseelectricfield.Kanetal.[16]verifiedthetransformationofconductivezigzaggraphenenanoribbonintohalfmetalunderelectricfield.Tothebestofourknowledge,thereisnoreportoftheeffectofelectricfieldonthephysicalpropertiesofg-C3N4heterobilayers.

        Herein,theauthorsreporttheeffectofappliedelectricfieldontheg-C3N4/Geheterobilayer.Itisrevealedthatthephysicalpropertiesofg-C3N4/Geheterobilayerareaffectedgreatlybytheappliedelectricfield.Theprincipledisclosedbythesimulationcanprovideusefulinformationforthesynthesisofheterobilayers.

        1 Methodology and calculation

        AllcalculationswereperformedbyDmol3module[17]inMaterialsstudio7.0software.The(001)surfaceofg-C3N4and(111)surfaceofgermaniumwerecleaved,thelatticeparametersofbothsurfacesare19.133 ?and20.155 ?.Wecanassumethatthetwosurfacescangenerateanewheterobilayerbecauseoftheapproximatelatticelength.Theheterobilayerwasbuiltthrough“buildlayer”tabfromthenanosheetsofC3N4andgermaneneobtainedbefore.Inordertogaintheoptimizedstructureofheterobilayer,allstructuresobtainedbeforeusedinthesimulationneedtominimizetheenergy.Generalgradientapproximation(GGA)andPerdew-Burke-Ernzerhof(PBE)[18]functionwereusedinthewholesimulation,andapragmaticmethodtodescribecorrectlyvanderWaalsinteractionsresultingfromdynamicalcorrelationsbetweenfluctuatingchargedistributionshasbeengivenbytheDFT-D2approachofGrimme.DFTsemi-corepseudopotsandDNPbasiswerealsousedinthewholeprocessofsimulation.Thecutoffenergyis900eVandkpointis6×6×3,simultaneously,thenumberofatomsoftotalsystemis96.

        TheultimatestructureofheterobilayerwasshowninFig.1,twolayersofstructuremaintainasawholethroughvanderWaalsinteractions.Afterenergyminimization,thegermanenelayercorrugatedcomparedtotheflatC3N4layercankeepthewholesystemstable.Theoriginalandultimatelatticeparametera,b,cofheterobilayeris19.721 7 ?, 19.721 7 ?, 20.000 0 ?and19.722 3 ?, 19.721 6 ?, 20.000 0 ?.Theoriginalandultimateinterlayerdistanceis3.578 ?and3.572 ?.

        Fig.1 Schematic diagram of heterobilayer formed by g-C3N4 and germanene

        2 Results and discussion

        Bindingenergycanbeusedtorevealthedifficultiesofheterobilayerformation.Thereforethebindingenergywasfirstcalculatedtostudytheformationofg-C3N4/Geheterobilayer,asshowninFig.2.Bindingenergyinpresentsystemwasdefinedas

        Eb= E(heterobilayer)-E(g-C3N4)-E(germanene).

        Itwasfoundthatthebindingenergyofg-C3N4/Geheterobilayervarieswiththedirectionofappliedelectricfield.Theupwardelectricfield(+z)causestheincreasedbindingenergy,whilethedownwardelectricfield(-z)resultsinthedecreasedbindingenergy,asshowninFig.2.Thisisbecausethe+zdirectionisthesameasthedirectionofinduceddipole,onthecontrary,the-zdirectioniscontradicttothedirectionoftheinduceddipole.

        Fig.2 Binding energies of heterobilayer as function of electric field

        Thebandgapofg-C3N4/Geheterobilayerisalsoaffectedbytheappliedelectricfielddirection,asillustratedinFig.3.Despitetheelectricfielddirection,thebandgapbecomesnarrowedwhenexternalelectricfieldwasapplied.Thisphenomenonisdifferentfromthechangetendencyinbindingenergy,asdiscussedabove.Thedecreaseinbandgapcanbeattributedtothesmallerelectronenergybarriercausedbytheappliedelectricfield[15].Thedifferenceinbandgapchangewiththeelectricfielddirectioncouldbecausedbythedirectionalflowofelectronsfromg-C3N4togermaneneastheupwardelectricfieldcanpromotethemovementofelectronsfromg-C3N4togermanene.Thisresultisverysimilartheauthors’previousresult[19]thatthebandgapdecreaseswithincreasedexternalpressure,butthedeclinedrangewasnarrowercomparedwiththepreviousresult.

        Fig.3 The directions of electric fields (a) and the relation between band gap and electric field (b)

        ThecalculatedbandgapEgofg-C3N4/germaneneheterobilayeris0.735eV.Suchsmallbandgapindicatesthatg-C3N4/germaneneheterobilayercanabsorbthefullvisiblelightregion[10].Despitetheelectricfielddirection,theconductionbandedgelinearlydecreaseswiththeappliedelectricfield(Fig.4).Notably,thevalencebandedgeincreaseswiththeincreaseofelectricfieldundertheirradiationofupwardelectricfield(+z).Interestingly,adecreasedvalencebandedgeoccurswhenthedownwardelectricfieldgraduallyincreases.

        Fig.4 Valence band edge and conduction band edge of heterobilayer

        Fig.5shownthedensityofstatesofheterobilayerwithoutexternalelectricfieldapplied.Thedensityofstates(DOS)ofg-C3N4/manganeneheterobilayerwasalsocalculated,asshowninFig.5andFig.6.TheDOSbetween-25and-15eVwasmainlycomposedofC2sorbitals.TheGeporbitalscontributeddominantlytotheDOSfromtheenergyof-12.5eVtotheFermienergy.Inaddition,thetopofthevalencebandwasalsomainlyconstructedbytheGePDOS.

        Fig.5 The DOS of heterobilayer without electric field

        Fig.6 The s, p, d PDOS and sum DOS of carbon atoms

        NotethattheelectricfieldalsoaffectstheDOSoftheg-C3N4/germaneneheterobilayer,asshowninFig.7.TheDOSmovestothelowerenergysidewithincreaseofupwardelectricfieldintensity.Thisresultisconsistentwiththephenomenonthattheelectricfieldcannarrowtheenergyofg-C3N4/germaneneheterobilayer[13].Comparatively,thedownwardelectricfieldpushestheDOStothehighenergylevelwiththeincreaseofelectricfieldintensity.

        Fig.7 DOS of heterobilayer with different value of electric field (a) and different direction of electric field (b)

        Fig.8    Electron density of heterobilayers without electric field (a), with the value 0.1 and -z direction    electric field (b), with the value 0.1 and z direction electric field (c)

        Fig.8showstheelectrondensityofg-C3N4andGelayer,respectively.Electrondensityatg-C3N4layerishigherthanthatofGelayerwithoutexternalelectricfield.Interestingly,thedirectionofelectricfieldaffectsthegapofg-C3N4layerandGelayer.Theupwardelectricfield(+z)widensthegapbetweeng-C3N4andGelayer,whilethedownwardelectricfield(-z)narrowsthegapbetweeng-C3N4andGelayer.Inaddition,Gelayerownshighelectrondensityincomparisontog-C3N4layerwiththevalue0.1of-zelectricfieldshowninFig.8.Notably,thechemicalbondsbetweeng-C3N4andGelayerformedwhendownwardelectricfieldintensityof0.1wasapplied.Ge-C3N4layerhas-2.515emullikenchargeandGelayerhas2.52emullikenchargeatthissituation.Comparatively,g-C3N4layerpossesses0.95emullikenchargeandGermanenelayerowns-0.95emullikenchargewhenupwardelectricfieldintensityof0.1wasaddedtotheg-C3N4/Geheterobilayer.Althoughthemullikenpopulationanalysisistoocoarsetorevealthecharges’spatialdistribution,themullikenchargeing-C3N4andGelayersverifiestheelectrondensityplotandtheasymmetrybetweenthetwolayers.Thechargeredistributionoflayersoccurredinthiskindofhybridheterobilayerwilldemonstratetheconclusionisrightornot.AfurtherchargeanalysisrevealsthateachGeatomtransferes0.05etog-C3N4,whileeachCatomloses0.338eandNatomobtaines0.292einpresentheterobilayer.ThechargeredistributioninpresentheterobilayerisdifferentfromthatinTiO2/GR[20-23],ZnO/GR[24],TiO2/carbonnanotube[25],C60/TiO2[26]etc,inwhichthechargemerelytransfersfromonecomponenttoanother.Thisresultcouldbeascribedtothevariationofelectrondensitycausedbytheelectricfield,asrevealedbyXu’swork[10],hencechemicalbondformedbetweenatomsbelongtodifferentlayers.Thecorrespondingbondlengthofbetweeng-C3N4andGelayerisillustratedinFig.9.Underelectricfieldirradiation,thelengthofN—GeandC—Gebondvariesfrom2.0to2.2 ?,whichislargerthanthatofC—Cbondlength.Thisresultrevealsthattheinteractionbetweeng-C3N4andGelayersisweakerthanthatofcovalentg-C3N4layer.

        Fig.9 Lengths of chemical bonds formed in 0.1 electric field of -z direction

        WorkfunctionistheenergythatcanbeprovidedfortheelectronwithFermienergyescapingfromtheinnermetaltovacuumlevel.Thesimulatedworkfunctionoftwolayersalmostmaintainsunchangedwhentheelectricfieldintensityincreasesfrom0to0.1,thisresultmaybecausedbythesmallexternalelectricfield,whichcannotaffecttheelectronescape.

        For(001)surfaceofg-C3N4,theworkfunctionwascalculatedtobe4.5eV[27]inagreementwiththispaper.Electronscanflowfromthelayerwithhighworkfunctiontothelayerwithlowworkfunctionwhentherewasnoelectricfieldapplied.Hence,electronscanmovetog-C3N4layerbecausetheg-C3N4layerownslowerworkfunction.Theelectronflowdirectioncanbechangedunderelectricfieldirradiation.Fig.10illustratestheworkfunctionofg-C3N4/Geheterobilayerwithelectricfielddirection.Aslightlydecreasedworkfunctionof4.425eVofg-C3N4wasobtainedunderelectricfieldirradiationwhencomparedwiththevalueof4.3eVwithoutelectricfieldirradiation[28].

        Fig.10 Work function of heterobilayer when electric field from +z and -z direction with value 0.1

        3 Conclusion

        Thephysicalpropertiesofg-C3N4/Geheterobilayerwerestudiedbyfirstprinciplecalculations.Itwasfoundthatthebindingenergy,bandgapenergy,anddensityofstatesaregreatlydependentontheappliedelectricfielddirection.Despitetheelectricfielddirection,thebandgapwasdecreasedwiththeincreaseofelectricfieldintensity.TheDOSmovestothelowerenergysideunderupwardelectricfieldirradiation,andmovesbacktothehighenergysideunderdownwardelectricfield.Interestingly,workfunctionofheterobilayerchangedalittleincomparisonwiththepristineg-C3N4.Thepresentresultdemonstratesthegreateffectonexternalelectricfieldonthephysicalpropertiesofg-C3N4heterobilayer.

        References:

        [1]DAIK,LULH,LIANGCH,etal.Heterojunctionoffacetcoupledg-C3N4/surface-fluorinatedTiO2nanosheetsfororganicpollutantsdegradationundervisibleLEDlightirradiation[J].ApplCatalB-Environ, 2014, 156/157: 331-340.

        [2]XINGCS,WUZD,JIANGDL,etal.HydrothermalsynthesisofIn2S3/g-C3N4heterojunctionswithenhancedphotocatalyticactivity[J].JColloidInterfaceSci, 2014, 433: 9-15.

        [3]YANGM,HUSZ,LIFY,etal.Theinfluenceofpreparationmethodonthephotocatalyticperformanceofg-C3N4/WO3compositephotocatalyst[J].CeramInt, 2014, 40: 11963-11969.

        [4]ZHANGJF,HUYF,JIANGXL,etal.DesignofadirectZ-schemephotocatalyst:preparationandcharacterizationofBi2O3/g-C3N4withhighvisiblelightactivity[J].JHazardMater, 2014, 280: 713-722.

        [5]HUANGZA,SUNQ,LVKL,etal.EffectofcontactinterfacebetweenTiO2andg-C3N4onthephotoreactivityofg-C3N4/TiO2photocatalyst:(001)vs(101)facetsofTiO2[J].ApplCatalB-Environ, 2015, 164: 420-427.

        [6]MAZN,HUZP,ZHAOXD,etal.Tunablebandstructuresofheterostructuredbilayerswithtransition-metaldichalcogenideandMXenemonolayer[J].JPhysChemC, 2014, 118: 5593-5599.

        [7]MEDVEDEVAJE,FREEMANAJ,CUIXY,etal.Half-metallicityandefficientspininjectioninAlN/GaN:Cr(0001)heterostructure[J].PhysRevLett, 2005, 94: 146602.

        [8]ROOMENJ,CAREYJD.Beyondgraphene:stableelementalmonolayersofsiliceneandgermanene[J].ACSAppMaterInterfaces, 2014, 6: 7743-7750.

        [9]GAOHT,LIXH,LVJ,etal.Interfacialchargetransferandenhancedphotocatalyticmechanismsforthehybridgraphene/anataseTiO2(001)nanocomposites[J].JPhysChemC, 2013, 117: 16022-16027.

        [10]XUL,HUANGWQ,WANGLL,etal.Mechanismofsuperiorvisible-lightphotocatalyticactivityandstabilityofhybridAg3PO4/graphenenanocomposite[J].JPhysChemC, 2014, 118: 12972-12979.

        [11]GENGW,ZHAOXF,LIUHX,etal.InfluenceofinterfacestructureonthepropertiesofZnO/graphenecomposites:atheoreticalstudybydensityfunctionaltheorycalculations[J].JPhysChemC, 2013, 117: 10536-10544.

        [12]GAON,LIJC,JIANGQ.Tunablebandgapsinsilicene-MoS2heterobilayers[J].PhysChemChemPhys, 2014, 16: 11673-11678.

        [13]WUF,LIUYF,YUGX,etal.Visible-light-absorptioningraphiticC3N4bilayer:enhancedbyinterlayercoupling[J].JPhysChemLett, 2012, 3: 3330-3334.

        [14]ZHANGZH,GUOWL.Energy-gapmodulationofBNribbonsbytransverseelectricfields:first-principlescalculations[J].PhysRevB, 2008, 77: 075403.

        [15]KANGJ,WUFM,LIJB.Modulatingthebandgapsofgraphdiynenanoribbonsbytransverseelectricfields[J].JPhysCondensMatter, 2012, 24: 165301.

        [16]KANEJ,LIZ,YANGJ,etal.Willzigzaggraphenenanoribbonturntohalfmetalunderelectricfield?[J].ApplPhysLett, 2007, 91: 243116.

        [17]DELLEYB.Anall-electronnumericalmethodforsolvingthelocaldensityfunctionalforpolyatomicmolecules[J].JChemPhys, 1990, 92 (1): 508-517.

        [18]PERDEWJP,BURKEK,ERNZERHOFM.Generalizedgradientapproximationmadesimple[J].PhysRevLett, 1996, 77 (18): 3865-3868.

        [19]RUANLW,ZHUYJ,QIULG,etal.Firstprinciplescalculationsofthepressureaffectiontog-C3N4[J].CompMaterSci, 2014, 91: 258-265.

        [20]DUA,NGYH,BELLNJ,etal.Hybridgraphene/titaniananocomposite:interfacechargetransfer,holedoping,andsensitizationforvisiblelightresponse[J].JPhysChemLett, 2011, 2: 894-899.

        [21]LIXH,GAOHT,LIUGJ.ALDA+Ustudyofthehybridgraphene/anataseTiO2nanocomposites:interfacialpropertiesandvisiblelightresponse[J].ComputationalandTheoreticalChemistry, 2013, 1025: 30-34.

        [22]LIULC,LIUZ,LIUAN,etal.EngineeringtheTiO2-grapheneinterfacetoenhancephotocatalyticH2production[J].ChemSusChem, 2014, 7: 618-626.

        [23]LIUXY,CONGRD,CAOLF,etal.Thestructure,morphologyandphotocatalyticactivityofgraphene-TiO2multilayerfilmsandchargetransferattheinterface[J].NewJChem, 2014, 38: 2362-2367.

        [24]XUPT,TANGQ,ZHOUZ.Structuralandelectronicpropertiesofgraphene-ZnOinterfaces:dispersion-correcteddensityfunctionaltheoryinvestigations[J].Nanotechnology, 2013, 24: 305401.

        [25]LONGR.ElectronicstructureofsemiconductingandmetallictubesinTiO2/carbonnanotubeheterojunctions:densityfunctionaltheorycalculations[J].JPhysChemLett, 2013, 4: 1340-1346.

        [26]LONGR,DAIY,HUANGBB.FullereneinterfacedwithaTiO2(110)surfacemaynotformanefficientphotovoltaicheterojunction:first-principlesinvestigationofelectronicstructures[J].JPhysChemLett, 2013, 4: 2223-2229.

        [27]SUNL,QIY,JIACJ,etal.Enhancedvisible-lightphotocatalyticactivityofg-C3N4/Zn2GeO4heterojunctionswitheffectiveinterfacesbasedonbandmatch[J].Nanoscale, 2014, 6: 2649-2659.

        [28]YANGF,KUZNIETSOVV,LUBLOWM,etal.Solarhydrogenevolutionusingmetal-freephotocatalyticpolymericcarbonnitride/CuInS2compositesasphotocathodes[J].JMaterChemA, 2013, 1: 6407-6415.

        (責任編輯于敏)

        10.3969/j.issn.1000-2162.2016.02.016

        g-C3N4/germanene異質結物理性質的密度泛函計算-電場的影響

        阮林偉1,朱玉俊1*,盧運祥2

        (1.安徽大學 化學化工學院,安徽 合肥230601;2.華東理工大學 化學與分子工程學院,上海200237)

        通過第一性原理計算研究電場強度和方向對于g-C3N4/germanene雙層的結合能、態(tài)密度以及電荷的影響.計算結果顯示,電場對于雙層的物理性質影響很大,方向朝上的電場使得態(tài)密度曲線向左移動,同時方向朝下的電場使得態(tài)密度曲線朝右移動.并且在電場的影響下,功函數(shù)的變化不大.

        g-C3N4; 異質結;germanene; 電場

        date:2015-03-26

        SupportedbytheNationalNaturalScienceFoundationofChina(51002001);theAnhuiUniversityDoctoralScientificResearchFoundation(02303319)

        Author’sbrief:RUANLinwei(1990-),male,borninTaihuofAnhuiprovince,masterdegreecandidateofAnhuiUniversity; *ZHUYujun(correspondingauthor):lecturerofAnhuiUniversity,Ph.D,E-mail:zyj8119@sina.cn.

        O641Documentcode:AArticleID:1000-2162(2016)02-0093-08

        猜你喜歡
        方向影響
        是什么影響了滑動摩擦力的大小
        2022年組稿方向
        計算機應用(2022年2期)2022-03-01 12:33:42
        2022年組稿方向
        計算機應用(2022年1期)2022-02-26 06:57:42
        2021年組稿方向
        計算機應用(2021年4期)2021-04-20 14:06:36
        哪些顧慮影響擔當?
        當代陜西(2021年2期)2021-03-29 07:41:24
        2021年組稿方向
        計算機應用(2021年3期)2021-03-18 13:44:48
        2021年組稿方向
        計算機應用(2021年1期)2021-01-21 03:22:38
        沒錯,痛經(jīng)有時也會影響懷孕
        媽媽寶寶(2017年3期)2017-02-21 01:22:28
        擴鏈劑聯(lián)用對PETG擴鏈反應與流變性能的影響
        中國塑料(2016年3期)2016-06-15 20:30:00
        基于Simulink的跟蹤干擾對跳頻通信的影響
        国产午夜视频高清在线观看| 日本一区二区在线免费视频| 久久国产精品一国产精品金尊| 麻豆国产精品久久人妻| 亚洲欧美国产国产综合一区| 亚洲 欧美 国产 日韩 精品| 99热门精品一区二区三区无码| 久久久亚洲精品一区二区| 日本一区二区三区高清视| 日本熟妇人妻xxxx| 国产人妻人伦精品1国产盗摄| 国产精品美女久久久久久久久| 91福利国产在线观一区二区| 最新日本免费一区二区三区| 国产av无码专区亚洲av男同| 国产丝袜无码一区二区三区视频 | 男人无码视频在线观看| 亚洲综合色婷婷七月丁香| 六月婷婷亚洲性色av蜜桃| 女人和拘做受全程看视频 | 日本岛国一区二区三区四区| 欧美精品国产综合久久| 精品久久久久久久无码| 精品久久久亚洲中文字幕| 亚洲美女毛片在线视频| 亚洲色爱免费观看视频| 青春草国产视频| 亚洲av熟女天堂久久天堂| 很黄很色很污18禁免费| 又粗又大又黄又爽的免费视频| 无码久久精品蜜桃| 97超碰国产成人在线| 国产肥熟女视频一区二区三区| 91久久精品无码人妻系列| 在线亚洲精品中文字幕美乳色| 国产后入清纯学生妹| 欧洲熟妇乱xxxxx大屁股7| 亚洲av一二三又爽又爽又色| 国产精品一区二区久久国产| 日产国产精品亚洲系列| 亚洲成A人A∨久在线观看|