牛曉麗,胡田田,張富倉(cāng),王 麗,劉 杰,馮璞玉,楊碩歡,宋 雪
(西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院/旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室/中國(guó)旱區(qū)節(jié)水農(nóng)業(yè)研究院,陜西楊凌 712100)
局部恢復(fù)水氮供應(yīng)對(duì)玉米根系氮素吸收與分配的影響
牛曉麗,胡田田,張富倉(cāng),王 麗,劉 杰,馮璞玉,楊碩歡,宋 雪
(西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院/旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室/中國(guó)旱區(qū)節(jié)水農(nóng)業(yè)研究院,陜西楊凌 712100)
【目的】驗(yàn)證水分或養(yǎng)分脅迫后恢復(fù)供應(yīng)顯著提高根系吸收能力,且局部水分或氮素供應(yīng)有效刺激供應(yīng)區(qū)根系吸收的補(bǔ)償效應(yīng),為進(jìn)一步揭示水氮雙重脅迫后局部恢復(fù)供應(yīng)條件下影響根系氮素吸收能力的因素以及玉米各器官氮素分配狀況提供依據(jù)?!痉椒ā坎捎梅指夹g(shù),水培模擬局部根區(qū)水氮同時(shí)恢復(fù)供應(yīng),其中以聚乙二醇6000(PEG 6000)模擬營(yíng)養(yǎng)液的滲透勢(shì),并用相應(yīng)的供氮水平模擬氮素脅迫。試驗(yàn)設(shè)置4個(gè)水氮雙重脅迫(也即4個(gè)局部恢復(fù)供應(yīng))處理:正常供應(yīng)水氮、輕度水氮脅迫、中度水氮脅迫和重度水氮脅迫。雙重脅迫6 d后一半根區(qū)恢復(fù)正常供應(yīng),于處理后0、1、3、5、7、9 d連續(xù)動(dòng)態(tài)監(jiān)測(cè)各根區(qū)根系氮素吸收速率、含氮量以及氮素累積量。【結(jié)果】水氮雙重脅迫后局部恢復(fù)供應(yīng),持續(xù)脅迫區(qū)根系吸收速率、含氮量以及氮素累積量均顯著小于恢復(fù)供應(yīng)區(qū)(P<0.05)。1—3 d時(shí),輕度和中度脅迫處理持續(xù)脅迫區(qū)根系氮素吸收速率比恢復(fù)供應(yīng)區(qū)分別減小38.2% 和48.7%;7—9 d時(shí)分別減小84.9%和86.4%。對(duì)于恢復(fù)供應(yīng)區(qū),局部水氮同時(shí)恢復(fù)供應(yīng)1 d內(nèi),根系氮素吸收速率較前期脅迫明顯增大,且在0—1 d和7—9 d時(shí),經(jīng)中度及其以下脅迫程度時(shí),根系氮素吸收速率顯著大于對(duì)照(P<0.05),產(chǎn)生根系氮素吸收能力的補(bǔ)償效應(yīng),但 3—7 d 時(shí)消失。而且,恢復(fù)供應(yīng)區(qū)根系含氮量和氮素累積量分別于1 d和5 d后恢復(fù)到對(duì)照水平,導(dǎo)致植株氮素生產(chǎn)效率最終與對(duì)照無(wú)顯著差異。另外,各處理地上部氮素來(lái)自15N肥料的分配比例顯著小于對(duì)照(P<0.05),且隨脅迫程度而逐漸減小,恢復(fù)供應(yīng)區(qū)根系則有相反的規(guī)律,持續(xù)脅迫區(qū)根系表現(xiàn)為,輕度脅迫與對(duì)照無(wú)明顯差異(P>0.05),中度和重度脅迫顯著大于對(duì)照和輕度脅迫(P<0.05),且3—9 d時(shí),中度和重度脅迫間無(wú)明顯差異(P>0.05)?!窘Y(jié)論】前期中度以下程度(水分-0.4 MPa+氮素1 mmol·L-1)的水氮雙重脅迫后局部恢復(fù)供應(yīng),恢復(fù)供應(yīng)區(qū)根系氮素吸收速率在時(shí)間和空間上均可得到恢復(fù),產(chǎn)生根系氮素吸收的部分補(bǔ)償效應(yīng),但這種補(bǔ)償效應(yīng)與恢復(fù)供應(yīng)的時(shí)間有關(guān)(輕度脅迫為1 d,中度脅迫為7 d);玉米各器官氮素分配比例與脅迫程度和局部恢復(fù)供應(yīng)時(shí)間有關(guān)。該研究可為調(diào)節(jié)植物與土壤環(huán)境的相互作用,充分挖掘植物自身對(duì)環(huán)境變化的適應(yīng)潛力提供理論依據(jù)。
局部恢復(fù)水氮供應(yīng);脅迫程度;局部恢復(fù)供應(yīng)時(shí)間;根系氮素吸收速率;補(bǔ)償效應(yīng);玉米
【研究意義】在自然生態(tài)系統(tǒng)中,土壤養(yǎng)分的分布往往是不均一的,存在著空間和時(shí)間上的動(dòng)態(tài)變化[1-3]。植物根系系統(tǒng)在長(zhǎng)期進(jìn)化過(guò)程中對(duì)養(yǎng)分的非均勻分布形成了各種可塑性反應(yīng),包括形態(tài)可塑性和生理可塑性等[4-6],以獲取更多的土壤養(yǎng)分。另一方面,關(guān)于新近提出的作物根區(qū)局部灌溉高效節(jié)水技術(shù)的研究表明,局部灌溉可以有效提高灌溉區(qū)根系的吸收功能,刺激根系水分和養(yǎng)分吸收能力的補(bǔ)償效應(yīng)[7-8]。因此,在水分和養(yǎng)分同時(shí)局部供應(yīng)條件下,研究影響根系吸收能力的因素對(duì)進(jìn)一步調(diào)控植物和土壤環(huán)境的相互作用具有重要的理論意義?!厩叭搜芯窟M(jìn)展】研究表明,根系形態(tài)上的可塑性一般表現(xiàn)為根系在養(yǎng)分富集區(qū)的大量增殖,而生理上的表現(xiàn)主要有養(yǎng)分富集區(qū)內(nèi)根系養(yǎng)分吸收速率的增加[9-12]。在土壤養(yǎng)分發(fā)生變化時(shí),根系生理反應(yīng)通常發(fā)生在形態(tài)反應(yīng)之前[13-15],而且根系生理可塑性的變化程度與養(yǎng)分斑塊的分布、大小、濃度、持續(xù)時(shí)間以及植物本身的養(yǎng)分狀態(tài)密切相關(guān)[2,16-17]。而且,這種生理補(bǔ)償效應(yīng)還與水分脅迫的時(shí)期、脅迫歷時(shí)、脅迫程度和器官形成時(shí)期有關(guān)[7,18-20]。水分和養(yǎng)分是相互作用、相互影響、密不可分的一個(gè)整體,土壤水分的非均勻分布導(dǎo)致養(yǎng)分空間有效性的變化。而且,養(yǎng)分離子向根表面的質(zhì)流和擴(kuò)散也依賴(lài)于根系的水分吸收[21],提高根系水分吸收能力有利于植物從土壤中吸收養(yǎng)分[22]。有研究還發(fā)現(xiàn),前期水分或氮素虧缺的植物恢復(fù)水分或氮素供應(yīng)后,根系的吸收能力快速增加,甚至恢復(fù)到對(duì)照水平[18,23-24]。李瑞等[25-26]研究發(fā)現(xiàn)前期水分脅迫后局部恢復(fù)供應(yīng)能夠刺激恢復(fù)供應(yīng)區(qū)根系生長(zhǎng)和水分吸收產(chǎn)生補(bǔ)償效應(yīng)??梢?jiàn),影響根系吸收能力的因素不僅與脅迫程度、脅迫時(shí)間等有關(guān),還與脅迫前植物的水分或養(yǎng)分狀況有關(guān)。【本研究切入點(diǎn)】以往對(duì)根系養(yǎng)分吸收能力影響因素的研究多集中于水分或養(yǎng)分等單一指標(biāo)均勻脅迫條件下,在氮素非均勻供應(yīng)條件下養(yǎng)分吸收速率影響因素的研究雖取得了一些進(jìn)展[5,27-29],但局部灌溉條件下養(yǎng)分吸收速率的影響因素研究尚不多見(jiàn)[7],其不同根區(qū)氮素吸收分配方面的研究更少,且缺乏對(duì)水氮同時(shí)局部供應(yīng)的綜合考慮,因此難于進(jìn)一步調(diào)控局部供應(yīng)條件下植物與土壤環(huán)境的相互作用。【擬解決的關(guān)鍵問(wèn)題】基于以上考慮,本文以水培玉米進(jìn)行分根試驗(yàn),兩側(cè)根區(qū)經(jīng)受水氮雙重脅迫6 d后,一半根區(qū)恢復(fù)水氮供應(yīng),另一半根區(qū)維持原來(lái)的脅迫水平,采用同位素示蹤技術(shù)動(dòng)態(tài)監(jiān)測(cè)不同根區(qū)氮素吸收速率,研究水氮雙重脅迫程度和局部恢復(fù)供應(yīng)時(shí)間對(duì)根系氮素吸收與分配的影響,以期為充分挖掘作物自身對(duì)土壤環(huán)境的適應(yīng)潛力奠定理論基礎(chǔ)。
1.1供試材料
采用分根法于2014年3—6月進(jìn)行玉米水培試驗(yàn),供試品種為“奧玉3007”。玉米幼苗在沙盤(pán)中催芽和培養(yǎng),待第3片真葉長(zhǎng)出時(shí),選取長(zhǎng)勢(shì)基本一致的幼苗,剪掉種子根,將其余根系均等分為2部分,移栽至自制的分根裝置中。玉米幼苗培養(yǎng)條件、分根裝置具體參數(shù)以及營(yíng)養(yǎng)液的組成見(jiàn)參考文獻(xiàn)[19]。緩苗6 d(此時(shí)玉米幼苗5—6片真葉)后進(jìn)行試驗(yàn)處理。
1.2試驗(yàn)處理
試驗(yàn)處理分為兩個(gè)階段:兩側(cè)根系均水氮雙重脅迫的預(yù)處理階段和局部根系恢復(fù)水氮供應(yīng)的正式處理階段。預(yù)處理階段,采用PEG 6000模擬水分脅迫,并用相應(yīng)的供氮水平模擬氮素脅迫,設(shè)對(duì)照(兩側(cè)根系均正常供應(yīng)水氮,無(wú)PEG+4 mmol·L-1N)、輕度水氮脅迫(水分脅迫-0.2 MPa+氮素脅迫2 mmol·L-1)、中度水氮脅迫(水分脅迫-0.4 MPa+氮素脅迫 1 mmol·L-1)和重度水氮脅迫(水分脅迫-0.6 MPa+氮素脅迫0 mmol·L-1)4個(gè)水氮脅迫水平。預(yù)處理持續(xù)6 d后開(kāi)始正式處理:一側(cè)根系維持原來(lái)的水氮脅迫水平(持續(xù)脅迫區(qū));另一側(cè)根系恢復(fù)正常的水氮供應(yīng)(恢復(fù)供應(yīng)區(qū)),即不加PEG 6000,同時(shí)供應(yīng)4 mmol·L-1的同位素標(biāo)記的15N(15N豐富度為 10.14%)。設(shè)3次重復(fù)。
1.3測(cè)定項(xiàng)目和方法
在正式處理0,1,3,5,7,9 d時(shí),采集各處理的植株樣品,并將玉米植株分為地上部和兩側(cè)根系3部分,測(cè)定各部分的干物重、全氮含量和15N豐度。
干物重(g)測(cè)定:植物樣在105℃的烘箱中殺青30 min后在75℃下烘至恒重,用萬(wàn)分之一天平稱(chēng)量各部分的干物重。
全氮含量(%)和15N豐度(%)的測(cè)定:將經(jīng)殺青烘干制備的植物樣郵寄至美國(guó)加利福尼亞大學(xué)戴維斯分校穩(wěn)定性同位素分析室,用PDZ Europa 20-20型同位素質(zhì)譜儀(Sercon公司,英國(guó)柴郡)測(cè)定植物15N豐度,并用KJELTEC 2300型全自動(dòng)凱氏定氮儀(Foss公司,瑞典)測(cè)定植物含氮量。
1.4數(shù)據(jù)處理和分析
為了區(qū)分作物對(duì)不同根區(qū)氮素的吸收情況,采用15N同位素示蹤技術(shù)區(qū)分恢復(fù)供應(yīng)區(qū)和持續(xù)脅迫區(qū)根系氮素吸收速率。試驗(yàn)采用了15N-Ca(NO3)2進(jìn)行示蹤,15N肥料應(yīng)用在恢復(fù)供應(yīng)區(qū)。
正常供應(yīng)區(qū)根系的氮素吸收速率(Inon-stressed)計(jì)算:
式中,Mnon-stressed是恢復(fù)供應(yīng)區(qū)根系的總干重(RDM)(g),ΔNnon-stressed是恢復(fù)供應(yīng)區(qū)某時(shí)間段的吸氮量(mg),Δt是計(jì)算的時(shí)間段(h)。
C(mg)=植株某部位全氮含量(%)×植株某部位干物重(g)×1000
式中,Ndffshoot,Ndffnon-stressed,Ndffstressed分別代表地上部及正常供應(yīng)區(qū)和持續(xù)脅迫區(qū)根系吸收氮素中來(lái)自15N肥料的氮量;C代表植株相應(yīng)部分氮素累積量(mg);Ef和Es分別代表標(biāo)記肥料和植株相應(yīng)部分中15N原子百分超(%),由植株和肥料的15N豐度減去氮元素天然豐度(0.365%)。
持續(xù)脅迫區(qū)根系的氮素吸收速率(Istressed)計(jì)算:
式中,Mstressed是持續(xù)脅迫區(qū)根系的總干重(RDM)(g),ΔNstressed是持續(xù)脅迫區(qū)某時(shí)間段的吸氮量(mg),Δt是計(jì)算的時(shí)間段(h)。
式中,Cplant代表正式處理一定時(shí)間后整個(gè)植株氮素累積量,C0-plant代表正式處理以前整個(gè)植株氮素累積量。
用SPSS17.0統(tǒng)計(jì)分析軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行方差分析與多重比較。方差分析用單因素方差分析方法,多重比較用 Duncan法進(jìn)行。用 SigmaPlot10.0和Microsoft Excel 2010軟件進(jìn)行圖和表的制作。
2.1脅迫程度和局部恢復(fù)水氮供應(yīng)時(shí)間對(duì)根系氮素吸收的影響
2.1.1根系氮素吸收速率 從表1可以看出,不同處理玉米各根區(qū)根系氮素吸收速率的變化規(guī)律明顯不同。對(duì)照條件下,各處理階段兩側(cè)根區(qū)根系氮素吸收速率無(wú)明顯差異(P>0.05)。輕度和中度脅迫條件下有類(lèi)似的變化規(guī)律,0—1 d時(shí)兩側(cè)根系無(wú)顯著差異(P >0.05),表明前期水氮同時(shí)脅迫后恢復(fù)局部供應(yīng)1 d對(duì)同一處理的不同根區(qū)根系氮素吸收速率未產(chǎn)生明顯影響。局部恢復(fù)供應(yīng)1 d后,持續(xù)脅迫區(qū)根系吸收速率均顯著小于恢復(fù)供應(yīng)區(qū)(P<0.05),且減小程度隨脅迫程度和脅迫持續(xù)時(shí)間而增大,1—3 d時(shí),輕度和中度脅迫根系氮素吸收速率比恢復(fù)供應(yīng)區(qū)分別減小38.2%和48.7%;7—9 d時(shí)分別減小84.9%和86.4%。說(shuō)明同一處理不同根區(qū)的氮素吸收速率與水分和氮素的供應(yīng)狀況有關(guān),正常供應(yīng)水氮可明顯改善作物根系對(duì)氮素的吸收,增大水氮雙重脅迫程度或延長(zhǎng)局部恢復(fù)時(shí)間均顯著影響持續(xù)脅迫區(qū)根系氮素吸收能力。
局部水氮雙重恢復(fù)供應(yīng)能有效提高恢復(fù)供應(yīng)區(qū)根系氮素吸收能力,但與脅迫程度和恢復(fù)供應(yīng)時(shí)間有關(guān)(表1)。輕度和中度脅迫處理在0—1 d時(shí),恢復(fù)供應(yīng)區(qū)和持續(xù)脅迫區(qū)根系氮素吸收速率分別為 1.425、1.613和1.064、0.978 μgN·mg-1RDM·h-1,達(dá)到甚至高于對(duì)照(P<0.05);重度脅迫較對(duì)照減小 36.4%(P <0.05),說(shuō)明水氮脅迫程度≤中度脅迫水平(水分脅迫-0.4 MPa+氮素脅迫1 mmol·L-1)時(shí),局部恢復(fù)供應(yīng)能提高恢復(fù)供應(yīng)區(qū)根系氮素吸收速率,有效刺激恢復(fù)供應(yīng)區(qū)根系氮素吸收的補(bǔ)償效應(yīng)。隨著恢復(fù)供應(yīng)時(shí)間的延長(zhǎng),輕度和中度脅迫處理恢復(fù)供應(yīng)區(qū)根系氮素吸收速率較對(duì)照顯著降低(輕度脅迫1—5 d和中度脅迫1—7 d)(P<0.05),甚至低于重度脅迫處理(3 —5 d)(P<0.05)。說(shuō)明局部水氮同時(shí)恢復(fù)供應(yīng)條件下,恢復(fù)供應(yīng)時(shí)間為1 d時(shí)有利于提高兩側(cè)根系氮素吸收能力,刺激補(bǔ)償效應(yīng)的發(fā)生,超過(guò)1 d補(bǔ)償效應(yīng)消失。然而,在7—9 d時(shí),輕度和中度脅迫處理恢復(fù)供應(yīng)區(qū)根系氮素吸收速率較對(duì)照顯著增大(P<0.05),而持續(xù)脅迫區(qū)分別僅占對(duì)照的44.4%和22.3%,說(shuō)明延長(zhǎng)局部恢復(fù)供應(yīng)時(shí)間可使玉米根系對(duì)局部水氮恢復(fù)供應(yīng)產(chǎn)生明顯的適應(yīng)性,但不利于持續(xù)脅迫區(qū)根系吸收氮素。
表1 局部水氮恢復(fù)供應(yīng)條件下玉米不同根區(qū)根系的氮素吸收速率Table 1 Root N inflow rates in both sub-roots under partial water and nitrogen resupplies (μgN·mg-1RDM·h-1)
2.1.2根系氮素含量 圖1表明,水氮雙重脅迫6 d使根系氮素含量顯著降低(P<0.05),且3個(gè)脅迫處理之間無(wú)顯著差異。在監(jiān)測(cè)時(shí)間內(nèi),各處理持續(xù)脅迫區(qū)根系氮素含量均明顯小于對(duì)照(P<0.05),3個(gè)脅迫程度較對(duì)照分別減少38.9%—51.9%,35.3%—52.0% 和26.4%—50.5%。處理1 d直至9 d,輕度、中度和重度脅迫處理持續(xù)脅迫區(qū)根系含氮量之間無(wú)顯著差異(P>0.05);除處理1 d時(shí)重度脅迫兩根區(qū)無(wú)明顯差異(P>0.05)外,其它均表現(xiàn)為,持續(xù)脅迫區(qū)根系氮素含量較恢復(fù)供應(yīng)區(qū)顯著減?。≒<0.05)。表明水氮雙重脅迫會(huì)使根系氮素含量明顯降低,局部恢復(fù)水氮供應(yīng)明顯增大恢復(fù)供應(yīng)區(qū)根系氮素含量,但持續(xù)脅迫區(qū)則未隨脅迫程度而變。
局部水氮同時(shí)恢復(fù)供應(yīng)能顯著提高恢復(fù)供應(yīng)區(qū)氮素含量,但與水氮雙重脅迫程度和恢復(fù)供應(yīng)時(shí)間有關(guān)(圖1)。局部恢復(fù)供應(yīng)開(kāi)始(0 DAT)時(shí),各處理兩側(cè)根系氮素含量均較對(duì)照顯著降低(P<0.05)?;謴?fù)供應(yīng)1 d時(shí),各處理恢復(fù)供應(yīng)區(qū)根系氮素含量較對(duì)照分別降低 11.6%、16.8%和 32.2%(圖1-B);輕度脅迫處理恢復(fù)供應(yīng)3—7 d(圖1-C)、中度和重度脅迫恢復(fù)供應(yīng)5—7 d(圖1-D),恢復(fù)供應(yīng)區(qū)根系含氮量與對(duì)照無(wú)顯著差異(P>0.05);9 d時(shí),輕度和重度脅迫處理根系氮素含量顯著高于對(duì)照(P<0.05),增幅分別為 25.0%和 25.3%(圖1-F)。說(shuō)明恢復(fù)供應(yīng)區(qū)根系氮素含量達(dá)到對(duì)照水平的時(shí)間隨水氮雙重脅迫程度增大而推遲,延長(zhǎng)局部恢復(fù)供應(yīng)時(shí)間明顯增大恢復(fù)供應(yīng)區(qū)根系氮素含量。
圖1 局部水氮同時(shí)恢復(fù)供應(yīng)對(duì)不同根區(qū)根系含氮量的影響Fig.1 Effect of partial water and nitrogen resupplies on N content in each sub-root
2.1.3根系氮素累積量 局部水氮恢復(fù)供應(yīng)條件下,持續(xù)脅迫區(qū)根系氮素累積量隨脅迫程度和恢復(fù)供應(yīng)時(shí)間的變化規(guī)律與根系氮素含量類(lèi)似,顯著小于對(duì)照(P <0.05),且3個(gè)脅迫處理之間無(wú)顯著差異(P>0.05)(圖2)。
圖2 局部水氮同時(shí)恢復(fù)供應(yīng)條件下不同根區(qū)根系氮素累積量的動(dòng)態(tài)變化Fig.2 Time courses of N accumulation in each sub-root under partial water and nitrogen resupplies
局部水氮恢復(fù)供應(yīng)顯著提高恢復(fù)供應(yīng)區(qū)根系氮素累積量,但受脅迫程度影響(圖2)?;謴?fù)供應(yīng) 1 d時(shí),輕度脅迫處理恢復(fù)供應(yīng)區(qū)根系氮素累積量與對(duì)照無(wú)顯著差異(P>0.05);中度和重度脅迫處理較對(duì)照顯著減?。≒<0.05),分別占對(duì)照的69.9%和56.5%?;謴?fù)供應(yīng)3 d時(shí),輕度脅迫處理較對(duì)照顯著增大57.9% (P<0.05);重度脅迫處理恢復(fù)到對(duì)照水平;中度脅迫處理較對(duì)照減小29.5%(P<0.05),5 d后恢復(fù)到對(duì)照水平。表明水氮雙重脅迫后恢復(fù)局部供應(yīng)能夠維持甚至增大根系的氮素累積量,即使前期持續(xù)6 d重度脅迫后局部恢復(fù)充分供應(yīng)仍能使根系氮素累積量完全恢復(fù)。
局部恢復(fù)供應(yīng)時(shí)間顯著影響恢復(fù)供應(yīng)區(qū)根系氮素累積量的變化(圖2)。對(duì)照隨恢復(fù)供應(yīng)時(shí)間平穩(wěn)增大;輕度脅迫從恢復(fù)供應(yīng)開(kāi)始增幅明顯增大,1 d時(shí)的絕對(duì)值達(dá)到對(duì)照水平,3 d后顯著大于對(duì)照(P<0.05);中度脅迫,局部恢復(fù)供應(yīng)后,氮素累積量明顯增大,但增幅小于輕度脅迫(P<0.05),5 d后有所減小,7 d后持續(xù)增大,9 d時(shí)與對(duì)照持平;重度脅迫,局部恢復(fù)供應(yīng)1 d后快速增大,3 d時(shí)絕對(duì)值恢復(fù)到對(duì)照水平,且顯著大于中度脅迫(P<0.05),之后有所減小,5 d后又繼續(xù)增大,顯著大于對(duì)照(P<0.05),在7和9 d時(shí),分別較對(duì)照增大20.7%和49.7%。
2.2局部水氮同時(shí)恢復(fù)供應(yīng)對(duì)玉米地上部干重和氮素累積量的影響
圖3-A表明,前期脅迫6 d(局部水氮恢復(fù)供應(yīng)0 d)時(shí),各處理地上部干重均較對(duì)照顯著減?。≒<0.05),且減小幅度隨脅迫程度而增大。局部水氮恢復(fù)供應(yīng)后,各處理地上部干重不斷增大,但增大幅度因脅迫程度而變,恢復(fù)供應(yīng)0—3 d時(shí),中度和重度脅迫增大幅度顯著大于輕度脅迫(P<0.05),但三者均顯著小于對(duì)照(P<0.05),3 d后,輕度脅迫快速增大,且顯著大于中度和重度脅迫(P<0.05),5 d后,其增大幅度甚至超過(guò)對(duì)照水平,但9 d時(shí)其絕對(duì)值仍顯著小于對(duì)照(P<0.05)??梢?jiàn),前期水氮脅迫明顯影響地上部干物質(zhì)累積,即使局部水氮恢復(fù)供應(yīng)仍不能恢復(fù)到對(duì)照水平。
從圖3-B可以看出,前期脅迫6 d后,各處理地上部氮素累積量均顯著小于對(duì)照(P<0.05)。局部水氮恢復(fù)供應(yīng)后,輕度脅迫快速增大,5 d后增大幅度顯著大于對(duì)照和其他處理(P<0.05),但其絕對(duì)值顯著小于對(duì)照(P<0.05)。0—5 d時(shí),中度和重度脅迫均較對(duì)照和輕度脅迫明顯減?。≒<0.05),但二者之間無(wú)明顯差異(P>0.05),7 d后,中度脅迫顯著大于重度脅迫(P<0.05)。
2.3局部水氮同時(shí)恢復(fù)供應(yīng)下氮素累積量在玉米各器官中的分配
表2可以看出,各處理玉米地上部氮素累積量分配比例遠(yuǎn)大于根系,且隨處理時(shí)間的延長(zhǎng),對(duì)照各器官氮素累積量分配比例相對(duì)穩(wěn)定,而其他處理表現(xiàn)為地上部氮素累積量分配比例逐漸減小,恢復(fù)供應(yīng)區(qū)根系顯著增大,輕度和中度脅迫處理的持續(xù)脅迫區(qū)根系變化幅度相對(duì)較小,且遠(yuǎn)小于恢復(fù)供應(yīng)區(qū)根系(P<0.05),重度脅迫處理的持續(xù)脅迫區(qū)根系隨處理時(shí)間推移有明顯增大的趨勢(shì)。
表2表明處理時(shí)間為0 d(前期水氮雙重脅迫6 d)時(shí),輕度脅迫條件下,各器官氮素累積量的分配比例與對(duì)照無(wú)明顯差異(P>0.05),中度和重度脅迫地上部顯著小于對(duì)照(P<0.05),恢復(fù)供應(yīng)區(qū)和持續(xù)脅迫區(qū)根系則顯著大于對(duì)照(P<0.05),說(shuō)明水氮雙重脅迫程度大于輕度脅迫水平(水分脅迫-0.2 MPa+氮素脅迫2 mmol·L-1)時(shí)明顯影響地上部氮素累積量分配比例,有效促進(jìn)根系氮素吸收。1 d、5 d和9 d時(shí)一致表現(xiàn)為,輕度、中度和重度脅迫處理的地上部氮素累積量的分配比例顯著小于對(duì)照(P<0.05);恢復(fù)供應(yīng)區(qū)根系顯著大于對(duì)照(P<0.05),且在9 d時(shí),恢復(fù)供應(yīng)區(qū)根系氮素累積量分配比例隨脅迫程度而增大;輕度脅迫處理的持續(xù)脅迫區(qū)根系顯著小于對(duì)照(P<0.05),中度和重度脅迫較對(duì)照明顯增大(P<0.05),且重度脅迫顯著大于中度脅迫(P<0.05)。說(shuō)明水氮雙重脅迫后局部恢復(fù)供應(yīng)條件下,各器官氮素累積量分配比例與水氮雙重脅迫程度有關(guān),脅迫程度越大,地上部分配越小,根系分配增大。
圖3 各處理玉米地上部干物質(zhì)(A)以及氮素累積量(B)的動(dòng)態(tài)變化Fig.3 Dynamics of shoot dry mass and N accumulation in maize in all treatments
表2 局部水氮同時(shí)恢復(fù)供應(yīng)條件下,各處理玉米氮素累積量在不同器官的分配百分?jǐn)?shù)Table 2 Percentage of N accumulation in different organs in all treatments under partial water and nitrogen resupplies (%)
2.4局部水氮同時(shí)恢復(fù)供應(yīng)下玉米氮素來(lái)自15N肥料的積累量在各器官中的分配
2.4.1玉米各器官原子百分超的動(dòng)態(tài)變化 從圖 4可以看出,各處理15N原子百分超均表現(xiàn)為恢復(fù)供應(yīng)區(qū)根系(應(yīng)用15N的根區(qū))>地上部>持續(xù)脅迫區(qū)根系(P<0.05),說(shuō)明恢復(fù)供應(yīng)區(qū)將吸收的氮素優(yōu)先留給自己,其次才向地上部及持續(xù)脅迫區(qū)根系運(yùn)輸;也說(shuō)明不同根區(qū)根系之間通過(guò)地上部進(jìn)行氮素的遷移交換。
玉米各部位的15N原子百分超與脅迫程度和局部恢復(fù)供應(yīng)時(shí)間有關(guān)(圖4)。恢復(fù)供應(yīng)區(qū)根系15N原子百分超表現(xiàn)為輕度和中度脅迫從處理開(kāi)始即顯著大于對(duì)照(P<0.05),重度脅迫1 d后也較對(duì)照明顯增大(P<0.05),且增加幅度與脅迫程度和處理時(shí)間有關(guān),5 d時(shí),輕度、中度和重度脅迫分別較對(duì)照增大55.2%,36.7%和25.2%,9 d時(shí)分別增大34.9%,18.2% 和33.2%。輕度、中度和重度脅迫處理持續(xù)脅迫區(qū)根系15N原子百分超均顯著大于對(duì)照(P<0.05),且隨處理時(shí)間延長(zhǎng),與對(duì)照差異逐漸增大;9 d時(shí)重度脅迫處理的持續(xù)脅迫區(qū)根系15N原子百分超增加幅度(295.4%)顯著大于輕度和中度脅迫(254.9%和246.0%)(P<0.05),地上部15N原子百分超隨脅迫程度而減小。說(shuō)明增加局部根區(qū)脅迫程度和延長(zhǎng)脅迫持續(xù)時(shí)間明顯促進(jìn)植物體內(nèi)氮素的再分配。
圖4 各處理玉米各部位15N原子百分超的動(dòng)態(tài)變化Fig.4 Dynamics of15N enriched in different maize parts in all treatments
2.4.2玉米氮素來(lái)自15N肥料的積累量在各器官中的分配 同一處理下,玉米各器官間的氮素來(lái)自15N肥料的分配比例差異顯著(表3),地上部遠(yuǎn)大于恢復(fù)供應(yīng)區(qū)(P<0.05),后者又顯著大于持續(xù)脅迫區(qū)根系(P<0.05),說(shuō)明玉米吸收的絕大部分氮素分配在地上部,根系分配的氮素較小,其中恢復(fù)供應(yīng)區(qū)根系分配更多。
表3 局部水氮同時(shí)恢復(fù)供應(yīng)條件下,各處理不同器官氮素來(lái)自15N肥料分配比例(%)Table 3 Percentage of15N-fertilizer-N allocation in different organs for all treatments under partial water and nitrogen resupplies
表3表明,玉米各器官氮素來(lái)自15N肥料的分配比例與局部恢復(fù)供應(yīng)時(shí)間有關(guān)。對(duì)照條件下,處理1 —9 d,各器官氮素來(lái)自15N肥料的分配比例基本穩(wěn)定,地上部、恢復(fù)供應(yīng)區(qū)和持續(xù)脅迫根系分別為87.0%—90.6%、10.5%—7.8%和 1.5%—2.5%。隨處理時(shí)間推移,輕度和中度脅迫處理地上部氮素來(lái)自15N肥料的分配比例逐漸增大,恢復(fù)供應(yīng)區(qū)根系持續(xù)減小,但顯著大于持續(xù)脅迫區(qū)根系(P<0.05),持續(xù)脅迫區(qū)根系在處理1—3 d明顯減小,3 d以后基本穩(wěn)定;重度脅迫處理表現(xiàn)為,處理1—5 d,地上部氮素來(lái)自15N肥料的分配比例逐漸增大,恢復(fù)供應(yīng)區(qū)根系持續(xù)減小,5 d后地上部逐漸減小,恢復(fù)供應(yīng)區(qū)根系有增大的趨勢(shì),持續(xù)脅迫區(qū)根系變化規(guī)律與輕度和中度脅迫處理類(lèi)似。輕度、中度和重度脅迫處理相比,增減幅度較大的時(shí)間段有明顯差異。輕度脅迫條件下,與處理5 d時(shí)相比,處理9 d時(shí)地上部氮素來(lái)自15N肥料的分配比例大幅度增大;中度脅迫條件下,處理5 d時(shí)明顯增大;重度脅迫條件下,處理3 d時(shí)有較大的增長(zhǎng)幅度,但明顯小于輕度和中度脅迫處理(P<0.05)。各處理恢復(fù)供應(yīng)區(qū)根系大幅度減小的時(shí)間段與地上部大幅度增大的時(shí)間段相同。說(shuō)明隨局部恢復(fù)供應(yīng)時(shí)間的延長(zhǎng),玉米氮素分配重心向地上部轉(zhuǎn)移,脅迫程度不同其向地上部分配程度以及開(kāi)始向地上部大量轉(zhuǎn)移的時(shí)間不同。隨脅迫程度增大,氮素分配重心向地上部轉(zhuǎn)移的時(shí)間提前,且與持續(xù)脅迫區(qū)根系相比,氮素分配重心更多的轉(zhuǎn)向恢復(fù)供應(yīng)區(qū)根系,局部恢復(fù)供應(yīng)3 d后持續(xù)脅迫區(qū)氮素分配比例基本穩(wěn)定。
表3還可以看出,玉米各器官氮素來(lái)自15N肥料的分配比例與水氮雙重脅迫程度有關(guān)。輕度、中度和重度脅迫地上部氮素來(lái)自15N肥料的分配比例顯著小于對(duì)照(P<0.05),且隨脅迫程度而逐漸減小,恢復(fù)供應(yīng)區(qū)根系則有相反的規(guī)律。持續(xù)脅迫區(qū)根系表現(xiàn)為輕度脅迫與對(duì)照無(wú)明顯差異(P>0.05),中度和重度脅迫顯著大于對(duì)照和輕度脅迫(P<0.05),且 3—9 d時(shí),中度和重度脅迫間無(wú)明顯差異(P>0.05)。可見(jiàn),與對(duì)照相比,各脅迫處理?xiàng)l件下,玉米各器官氮素來(lái)自15N肥料的分配比例均是根系明顯增大,地上部明顯減小,增大水氮雙重脅迫程度可使地上部氮素向根系再分配,且分配到恢復(fù)供應(yīng)區(qū)根系的氮素始終大于持續(xù)脅迫區(qū)根系,且水氮雙重脅迫程度大于輕度脅迫水平時(shí),持續(xù)脅迫區(qū)根系分配比例趨于穩(wěn)定。
2.5局部水氮同時(shí)恢復(fù)供應(yīng)對(duì)玉米氮素生產(chǎn)效率的影響
表4表明,前期水氮雙重脅迫6 d局部恢復(fù)供應(yīng)9 d后,輕度、中度和重度脅迫處理的地上部干物重較對(duì)照均表現(xiàn)出減小的規(guī)律;根系干物重達(dá)到甚至大于對(duì)照水平;地上部和根系含氮量與對(duì)照無(wú)顯著差異(P>0.05),并且地上部和整株氮素生產(chǎn)效率也達(dá)到對(duì)照水平。說(shuō)明前期輕度、中度、重度3種水氮雙重脅迫程度下局部恢復(fù)正常供應(yīng)一定時(shí)間時(shí)不會(huì)影響植株氮素生產(chǎn)效率,但增加脅迫程度會(huì)顯著降低地上部干物質(zhì)積累。
表4 局部水氮同時(shí)恢復(fù)供應(yīng)對(duì)玉米氮素吸收和利用的影響Table 4 Effect of partial water and nitrogen resupplies on accumulation and use of nitrogen by maize
本研究表明,局部水氮恢復(fù)供應(yīng)條件下,持續(xù)脅迫區(qū)根系氮素吸收速率、含氮量以及氮素累積量均顯著低于恢復(fù)供應(yīng)區(qū),根系氮素吸收速率的降低程度隨脅迫程度和恢復(fù)供應(yīng)時(shí)間而增大,但根系含氮量和氮素累積量不受水氮雙重脅迫程度和恢復(fù)供應(yīng)時(shí)間影響(表1,圖1,2)。在局部水分或養(yǎng)分脅迫條件下,脅迫區(qū)根系水分吸收能力和根系生長(zhǎng)均顯著低于供應(yīng)區(qū)[19,30-32],這可能是造成脅迫區(qū)根系氮素吸收能力減小的一個(gè)重要原因。持續(xù)脅迫區(qū)根系氮素吸收速率隨水氮雙重脅迫程度而逐漸減小,這可能是由脅迫程度影響水分和氮素有效性引起的,輕度脅迫條件下,較高的蒸騰作用促使氮素從木質(zhì)部導(dǎo)管向地上部運(yùn)輸,進(jìn)而維持根系養(yǎng)分吸收速率[33];重度脅迫嚴(yán)重影響植物的蒸騰作用、光合作用、干物質(zhì)累積以及養(yǎng)分離子向根表遷移的質(zhì)流和擴(kuò)散過(guò)程,降低根系吸收面積和能力[34]。然而,持續(xù)脅迫區(qū)根系含氮量以及累積量不隨脅迫程度而變化,且隨恢復(fù)供應(yīng)時(shí)間變化幅度也較小。造成這種情況的原因可能在于:首先,恢復(fù)正常供應(yīng)區(qū)增大了的根系氮素吸收速率可以維持一定的氮素吸收(表1)。其次,氮素是植物體內(nèi)轉(zhuǎn)移性很強(qiáng)的元素,可以根據(jù)生長(zhǎng)生理需要發(fā)生轉(zhuǎn)移與再分配(表3)[35],從而維持脅迫區(qū)域根系中一定的含氮量。另外,增大脅迫程度會(huì)大大降低地上部生長(zhǎng)而相對(duì)促進(jìn)根系生長(zhǎng)(表4),導(dǎo)致重度脅迫下地上部對(duì)氮素的總需求量減少,從而使其根系維持較高的氮素含量與累積量。本研究發(fā)現(xiàn),局部恢復(fù)供應(yīng)條件下,持續(xù)脅迫區(qū)根系氮素累積量所占的百分?jǐn)?shù)隨脅迫程度顯著增加(表2),從植物氮素吸收分配的角度進(jìn)一步解釋了脅迫條件下根系生長(zhǎng)增大,這是植物對(duì)水氮脅迫的一種適應(yīng)機(jī)制。
不同生境下植物產(chǎn)生一系列的適應(yīng)性機(jī)制,表現(xiàn)在根系上的明顯特征是其生長(zhǎng)、吸收和代謝呈現(xiàn)出“補(bǔ)償效應(yīng)”,這是植物對(duì)非均一、多變環(huán)境適應(yīng)的結(jié)果,也是作物抵御水分或養(yǎng)分脅迫、維持一定產(chǎn)量的生理基礎(chǔ)[36-38]。前人研究指出,根系能從局部水分或養(yǎng)分有效區(qū)域吸收水分或養(yǎng)分,而且其吸收速率大大超過(guò)全部根區(qū)供應(yīng)水分或養(yǎng)分時(shí)的速率,刺激供應(yīng)區(qū)根系生長(zhǎng)和吸收能力,從而產(chǎn)生補(bǔ)償效應(yīng)[7,9,19,30,41],且水分或養(yǎng)分脅迫后恢復(fù)供應(yīng),根系吸收能力也較恢復(fù)供應(yīng)前明顯增大[23-24,39-40],但并未考慮產(chǎn)生這種根系吸氮補(bǔ)償效應(yīng)的影響因素。本研究發(fā)現(xiàn),水氮雙重脅迫程度為輕度(水分脅迫-0.2 MPa+氮素脅迫 2 mmol·L-1)和中度(水分脅迫-0.4 MPa+氮素脅迫 1 mmol·L-1)脅迫水平,局部恢復(fù)供應(yīng)1 d或7 d時(shí)才產(chǎn)生根系氮素吸收能力的補(bǔ)償效應(yīng),增大脅迫程度和延長(zhǎng)局部恢復(fù)供應(yīng)時(shí)間補(bǔ)償效應(yīng)均消失(表1)。這說(shuō)明玉米根系經(jīng)受一定程度的水分和養(yǎng)分脅迫后恢復(fù)供應(yīng),對(duì)根系的吸收能力起到了刺激作用,引起根系氮素吸收的補(bǔ)償效應(yīng),使得恢復(fù)供應(yīng)區(qū)根系含氮量和氮素累積量達(dá)到甚至超過(guò)對(duì)照水平(圖1,2)。本研究中水、氮協(xié)同作用強(qiáng)化了這種植物對(duì)環(huán)境變化的適應(yīng)機(jī)制。然而,增大水氮同時(shí)脅迫程度(重度脅迫處理),補(bǔ)償效應(yīng)不復(fù)存在(表1)。筆者之前的研究表明,-0.6 MPa局部水分脅迫處理嚴(yán)重影響了根系的長(zhǎng)度、面積以及水分吸收能力[19,30]。在-0.6 MPa脅迫的基礎(chǔ)上,同時(shí)施加氮素脅迫,根系吸收能力仍舊無(wú)法恢復(fù)到對(duì)照水平。進(jìn)一步研究發(fā)現(xiàn),輕度(水分脅迫-0.2 MPa+氮素脅迫 2 mmol·L-1)和中度(水分脅迫-0.4 MPa+氮素脅迫1 mmol·L-1)脅迫雖能有效刺激恢復(fù)供應(yīng)區(qū)根系產(chǎn)生氮素吸收能力的補(bǔ)償效應(yīng),增加恢復(fù)供應(yīng)區(qū)根系氮素累積量(表1,圖2),但處理1—9 d時(shí)地上部干物重與氮素累積量始終較對(duì)照明顯減?。▓D3),試驗(yàn)結(jié)束時(shí)均無(wú)法恢復(fù)到對(duì)照水平;在試驗(yàn)期間,輕度脅迫處理地上部干重和氮素累積量增長(zhǎng)幅度明顯大于中度脅迫(P<0.05),甚至在 5—9 d時(shí)較對(duì)照也明顯增大(P<0.05)。可見(jiàn),一定的水氮脅迫后恢復(fù)局部供應(yīng)仍無(wú)法完全補(bǔ)償水氮雙重脅迫對(duì)作物生長(zhǎng)以及養(yǎng)分吸收的影響,前期水氮雙重脅迫后局部恢復(fù)供應(yīng)僅起到部分補(bǔ)償作用,但適度降低脅迫程度有利于補(bǔ)償效應(yīng)的發(fā)揮。
本研究表明,局部水氮同時(shí)恢復(fù)供應(yīng)對(duì)恢復(fù)供應(yīng)區(qū)根系氮素吸收能力的刺激作用與恢復(fù)供應(yīng)時(shí)間有關(guān)。局部水氮同時(shí)恢復(fù)供應(yīng)后,恢復(fù)供應(yīng)區(qū)根系氮素吸收速率1 d內(nèi)即可恢復(fù)甚至超過(guò)對(duì)照水平,但是,隨著恢復(fù)供應(yīng)時(shí)間延長(zhǎng),恢復(fù)供應(yīng)區(qū)根系氮素吸收速率較對(duì)照顯著降低(表1)。局部供應(yīng)條件下,根系生長(zhǎng)和水分吸收的時(shí)效性決定了根系養(yǎng)分吸收能力隨時(shí)間而變化[19,30]。可能是因?yàn)樵诨謴?fù)供應(yīng)的早期階段,生理反應(yīng)較形態(tài)反應(yīng)更敏感[13-14],從而使得恢復(fù)供應(yīng)區(qū)根系氮素吸收能力迅速增加。延長(zhǎng)恢復(fù)供應(yīng)時(shí)間,其生理、解剖和形態(tài)變化共同決定了根系對(duì)養(yǎng)分的吸收[42]。另一方面,可能與植物本身養(yǎng)分狀態(tài)有關(guān)[6,43-44]。LAINé等[45]研究發(fā)現(xiàn),植物氮素含量與根系氮素吸收速率存在負(fù)相關(guān)關(guān)系。本試驗(yàn)處理3 d后根系氮素含量和累積量達(dá)到和超過(guò)對(duì)照水平,明顯改善了植物的氮素營(yíng)養(yǎng)狀況,這也可能是引起根系氮素吸收速率降低的原因。其生理機(jī)制需進(jìn)一步研究。
本研究表明,作物體內(nèi)的氮素分配情況與水氮雙重脅迫程度以及局部恢復(fù)供應(yīng)時(shí)間有關(guān)。與對(duì)照相比,輕度、中度和重度脅迫處理根系氮素分配比例明顯增大(P<0.05),地上部明顯減?。≒<0.05)?;謴?fù)供應(yīng)區(qū)根系較持續(xù)脅迫區(qū)根系明顯增大,其增加幅度隨水氮雙重脅迫程度而逐漸增大。其原因可能在于,水氮雙重脅迫明顯影響地上部與根系以及兩個(gè)1/2根區(qū)根系間的干物質(zhì)分配比例,為了維持作物體內(nèi)一定的碳氮平衡,各器官的氮素分配比例需與干物質(zhì)分配相匹配[46]。局部供應(yīng)條件下,作物處于水氮非充分供應(yīng)狀態(tài),而一定的水氮脅迫會(huì)促使干物質(zhì)向根系的分配比例增大,脅迫程度越大分配比例也越大(表2,表3)。水分脅迫持續(xù)增加明顯抑制脅迫區(qū)根系生長(zhǎng),供應(yīng)區(qū)根系長(zhǎng)度和面積相對(duì)促進(jìn),這就增大了兩個(gè)根區(qū)氮素分配比例的差距[30]。
(1)局部水氮同時(shí)恢復(fù)供應(yīng)條件下,持續(xù)脅迫區(qū)根系吸收速率、含氮量以及氮素累積量均較恢復(fù)供應(yīng)區(qū)顯著降低,且根系氮素吸收速率降低程度隨脅迫程度和恢復(fù)供應(yīng)時(shí)間而增大,但根系含氮量和氮素累積量未受影響;
(2)前期水氮雙重脅迫后局部恢復(fù)水氮供應(yīng)可有效刺激恢復(fù)供應(yīng)區(qū)產(chǎn)生根系吸氮能力的補(bǔ)償效應(yīng),且與脅迫程度以及局部恢復(fù)供應(yīng)時(shí)間有關(guān),臨界脅迫程度為≦水分-0.4 MPa+氮素1 mmol·L-1,局部恢復(fù)供應(yīng)的時(shí)間應(yīng)為1 d或7 d,但該補(bǔ)償效應(yīng)并不能使地上部干物質(zhì)以及氮素累積量恢復(fù)到對(duì)照水平,僅起到部分補(bǔ)償效果,適度降低脅迫程度(即輕度脅迫水平:水分脅迫-0.2 MPa+氮素脅迫2 mmol·L-1)更有利于補(bǔ)償效應(yīng)的發(fā)揮,增加脅迫程度或延長(zhǎng)恢復(fù)供應(yīng)時(shí)間補(bǔ)償效應(yīng)均消失,但根系含氮量和氮素累積量均能達(dá)到甚至超過(guò)對(duì)照水平;
(3)與對(duì)照相比,局部恢復(fù)水氮供應(yīng)的根系氮素分配比例明顯增大,地上部明顯減小,且增減幅度隨脅迫程度而增大;同時(shí)恢復(fù)供應(yīng)區(qū)根系分配比例顯著大于持續(xù)脅迫區(qū)根系,且增加幅度隨局部恢復(fù)供應(yīng)時(shí)間延長(zhǎng)而增大;
(4)前期水氮同時(shí)脅迫后恢復(fù)局部供應(yīng),植株氮素生產(chǎn)效率達(dá)到對(duì)照水平,增強(qiáng)水氮同時(shí)脅迫程度對(duì)植株氮素生產(chǎn)效率無(wú)影響,但顯著降低地上部干物重,可見(jiàn),局部恢復(fù)供應(yīng)前水氮脅迫程度對(duì)作物生長(zhǎng)有明顯的影響。因此,在實(shí)際應(yīng)用水分和養(yǎng)分局部供應(yīng)時(shí)應(yīng)充分考慮局部供應(yīng)前土壤的水分和養(yǎng)分狀況。
本試驗(yàn)為分根水培試驗(yàn)所得到的結(jié)果,可能與田間條件不完全一致,在大田條件下影響根系氮素吸收能力的因素還需進(jìn)一步研究,而且,關(guān)于局部恢復(fù)水氮供應(yīng)提高恢復(fù)供應(yīng)區(qū)根系氮素吸收速率的內(nèi)在機(jī)制以及作物對(duì)水氮脅迫的忍耐程度與時(shí)間,還需進(jìn)一步深入探索。
References
[1] CAIN M L,SUBLER S,EVANS J P,F(xiàn)ORTIN M J. Sampling spatial and temporal variation in soil nitrogen availability. Oecologia,1999,118(4): 397-404.
[2] FRANSEN B,BLIJJENBERG J,DE KROON H. Root morphological and physiological plasticity of perennial grass species and the exploitation of spatial and temporal heterogeneous nutrient patches. Plant and Soil,1999,211(2): 179-189.
[3] PRASOLOVA N V,XU Z H,SAFFIGNA P G,DIETERS M J. Spatial-temporal variability of soil moisture,nitrogen availability indices and other chemical properties in hoop pine (Araucaria cunninghamii) plantations of subtropical Australia. Forest Ecology and Management,2000,136(1/3): 1-10.
[4] CAHILL JR JF,MCNICKLE G G. The behavioral ecology of nutrient foraging by plants. Annual Review of Ecology,Evolution,and Systematics,2011,42: 289-311.
[5] WANG L,MOU P P,JONES R H. Nutrient foraging via physiological and morphological plasticity in three plant species. Canadian Journal of Forest Research,2006,36(1): 164-173.
[6] MOU P,JONES R,TAN Z,BAO Z,CHEN H. Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous. Plant and Soil,2013,364(1/2): 373-384.
[7] HU T T,KANG S Z,LI F S,ZHANG J H. Effects of partial root-zone irrigation on the nitrogen absorption and utilization of maize. Agricultural Water Management,2009,96(2): 208-214.
[8] 胡田田,康紹忠. 局部灌水方式對(duì)玉米不同根區(qū)土-根系統(tǒng)水分傳導(dǎo)的影響. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(2): 11-16. HU T T,KANG S Z. Effects of localized irrigation model on hydraulic conductivity in soil-root system for different root-zones of maize. Transactions of the Chinese Society of Agricultural Engineering,2007,23(2): 11-16. (in Chinese)
[9] HODGE A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytologist,2004,162(1): 9-24.
[10] ROBINSON D. The responses of plants to non-uniform supplies of nutrients. New Phytologist,1994,127(4): 635-674.
[11] YANO K,KUME T. Root morphological plasticity for heterogeneous phosphorus supply in Zea mays L. Plant Production Science,2005,8(4): 427-432.
[12] LI H,MA Q,LI H,ZHANG F,RENGEL Z,SHEN J. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant and Soil,2014,376(1/2): 151-163.
[13] BURNS I G. Short- and long-term effects of a change in the spatial distribution of nitrate in the root zone on N uptake,growth and root development of young lettuce plants. Plant,Cell & Environment,1991,14(1): 21-33.
[14] VAN VUUREN M,ROBINSON D,GRIFFITHS B. Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant and Soil,1996,178(2): 185-192.
[15] 王慶成,程云環(huán). 土壤養(yǎng)分空間異質(zhì)性與植物根系的覓食反應(yīng). 應(yīng)用生態(tài)學(xué)報(bào),2004,15(6): 1063-1068. WANG Q C,CHENG Y H. Response of fine roots to soil nutrient spatial heterogeneity. Chinese Journal of Applied Ecology,2004,15(6): 1063-1068. (in Chinese)
[16] FITTER A H. Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity//Caldwell M M,Pearcy R W. Exploitation of Environmental Heterogeneity by Plants. Academic,San Diego,1994,305-323.
[17] HODGE A,ROBINSON D,GRIFFITHS B S,F(xiàn)ITTER A H. Nitrogen capture by plants grown in N-rich organic patches of contrasting size and strength. Journal of Experimental Botany,1999,50(336): 1243-1252.
[18] 劉展鵬. 模擬干旱脅迫及復(fù)水條件下玉米生長(zhǎng)補(bǔ)償效應(yīng)[D]. 南京:河海大學(xué),2007. LIU Z P. Research on compensatory effects of growth under simulated water stress and rewatering on maize[D]. Nanjing: Hohai University,2007. (in Chinese)
[19] 牛曉麗,胡田田,劉亭亭,吳雪,馮璞玉,劉杰,李康,張富倉(cāng). 適度局部水分脅迫提高玉米根系吸水能力. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(22): 80-86. NIU X L,HU T T,LIU T T,WU X,F(xiàn)ENG P Y,LIU J,ZHANG F C. Appropriate partial water stress improves maize root absorbing capacity. Transactions of the Chinese Society of Agricultural Engineering,2014,30(22): 80-86. (in Chinese)
[20] SAMPATHKUMAR T,PANDIAN B J,MAHIMAIRAJA S. Soil moisture distribution and root characters as influenced by deficit irrigation through drip system in cotton-maize cropping sequence. Agricultural Water Management,2012,103(103): 43-53.
[21] BARBER S A,WALKER J M,VASEY E H. Mechanisms for the movement of plant nutrients from the soil & fertilizer to the plant root. Journal of Agricultural and Food Chemistry,1963,11(3): 204-207.
[22] GLOSER V,ZWIENIECKI M A,ORIANS C M,HOLBROOK N M. Dynamic changes in root hydraulic properties in response to nitrate availability. Journal of Experimental Botany,2007,58(10): 2409-2415.
[23] WIJESINGHE D,HUTCHINGS M. The effects of spatial scale of environmental heterogeneity on the growth of a clonal plant: An experimental study with Glechoma hederacea. Journal of Ecology,1997,85(1): 17-28.
[24] JACKSON R B,CALDWELL M M. Kinetic responses of Pseudoroegneria roots to localized soil enrichment. Plant and Soil,1991,138(2): 231-238.
[25] KEMBEL S W,KROON H D,CAHILL J F,MOMMER L. Improving the scale and precision of hypotheses to explain root foraging ability. Annals of Botany,2008,101(9): 1295-1301.
[26] DE LA ROCHA C L,TERBRüGGEN A,HOHN S,V?LKER C. Response to and recovery from nitrogen and silicon starvation in Thalassiosira weissflogii: Growth rates,nutrient uptake and C,Si and N content per cell. Marine Ecology Progress Series,2010,412: 57-68.
[27] NIWA K,HARADA K. Physiological responses to nitrogen deficiency and resupply in different blade portions of Pyropia yezoensis f. narawaensis (Bangiales,Rhodophyta). Journal of Experimental Marine Biology and Ecology,2013,439(439): 113-118.
[28] 李瑞,胡田田,牛曉麗,代順冬,王旭東. 局部水分脅迫對(duì)玉米根系生長(zhǎng)的影響. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2013,21(11): 1371-1376. LI R,HU T T,NIU X L,DAI S D,WANG X D. Effect of partial root-zone drought stress on root growth of maize. Chinese Jounal of Eco-Agriculture,2013,21(11): 1371-1376. (in Chinese)
[29] 李瑞,胡田田,牛曉麗,代順冬,王旭東. 局部水分脅迫對(duì)玉米根系導(dǎo)水率的影響. 西北農(nóng)林科技大學(xué)學(xué)報(bào): 自然科學(xué)版,2014,42(2): 61-64. LI R,HU T T,NIU X L,DAI S D,WANG X D. Effect of partial water stress on root hydraulic conductivity of maize. Journal of Northwest A&F University: Nature Science Edition,2014,42(2): 61-64. (in Chinese)
[30] NIU X L,HU T T,ZHANG F C,F(xiàn)ENG P Y. Severity and duration of osmotic stress on partial root system: Effects on root hydraulic conductance and root growth. Plant Growth Regulation,2016: 79(2): 177-186.
[31] CARVAJAL M,COOKE D T,CLARKSON D T. Responses of wheat plants to nutrient deprivation may involve the regulation of water-channel function. Planta,1996,199(3): 372-381.
[32] LI H B,ZHANG F S,SHEN J B. Contribution of root proliferation in nutrient-rich soil patches to nutrient uptake and growth of maize. Pedosphere,2012,22(6): 776-784.
[33] HOOYMANS J. The influence of the transpiration rate on uptake and transport of potassium ions in barley plants. Planta,1969,88(4): 369-371.
[34] GREENWAY H,KLEPPER B. Phosphorus transport to the xylem and its regulation by water flow. Planta,1968,83(2): 119-136.
[35] 胡田田,康紹忠,李志軍,張富倉(cāng). 局部濕潤(rùn)方式下玉米對(duì)不同根區(qū)氮素的吸收與分配. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2009(1): 105-113. HU T T,KANG S Z,LI Z J,ZHANG F C. Uptake and allocation of nitrogen from different root zones of maize under local irrigation. Plant Nutrition and Fertilizer Science,2009(1): 105-113. (in Chinese)
[36] 梁愛(ài)華,馬富裕,梁宗鎖,慕自新. 旱后復(fù)水激發(fā)玉米根系功能補(bǔ)償效應(yīng)的生理學(xué)機(jī)制研究. 西北農(nóng)林科技大學(xué)學(xué)報(bào): 自然科學(xué)版,2008,36(4): 58-64. LIANG A H,MA F Y,LIANG Z S,MU Z X. Studies on the physiological mechanism of functional compensation effect in maize root system induced by rewatering after draught stress. Journal of Northwest A&F University: Nature Science Edition,2008,36(4): 58-64. (in Chinese)
[37] YOUNG E B,BERGES J A,DRING M J. Physiological responses of intertidal marine brown algae to nitrogen deprivation and resupply of nitrate and ammonium. Plant Physiology,2009,135(4): 400-411.
[38] RICHARD-MOLARD C,KRAPP A,BRUN F,NEY B,DANIELVEDELE F,CHAILLOU S. Plant response to nitrate starvation is determined by N storage capacity matched by nitrate uptake capacity in two Arabidopsis genotypes. Journal of Experimental Botany,2008,59(4): 779-791.
[39] ASSENG S,RITCHIE J,SMUCKER A,ROBERTSON M. Root growth and water uptake during water deficit and recovering in wheat. Plant and Soil,1998,201(2): 265-273.
[40] SIEMENS J A,ZWIAZEK J J. Effects of water deficit stress and recovery on the root water relations of trembling aspen (Populus tremuloides) seedlings. Plant Science,2003,165(1): 113-120.
[41] PONI S,TAGLIAVINI M,NERI D,SCUDELLARI D,TOSELLI M. Influence of root pruning and water stress on growth and physiological factors of potted apple,grape,peach and pear trees. Scientia Horticulturae,1992,52(3): 223-236.
[42] FERNANDES A M,SORATTO R P,GONSALES J R. Root morphology and phosphorus uptake by potato cultivars grown under deficient and sufficient phosphorus supply. Scientia Horticulturae,2014,180: 190-198.
[43] BASSIRIRAD H,CALDWELL M M,BILBROUGH C. Effects of soil temperature and nitrogen status on kinetics of15NO3-uptake by roots of field-grown Agropyron desertorum (Fisch. ex Link) Schult. New Phytologist,1993,123(3): 485-489.
[44] GROSSMAN J D,RICE K J. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evolutionary Applications,2012,5(8): 850-857.
[45] LAINé P,OURRY A,BOUCAUD J. Shoot control of nitrate uptake rates by roots of Brassica napus L.: Effects of localized nitrate supply. Planta,1995,196(1): 77-83.
[46] AGRELL D,OSCARSON P,LARSSON C M. Translocation of N to and from barley roots: Its dependence on local nitrate supply in split-root culture. Physiologia Plantarum,1994,(3): 467-474.
(責(zé)任編輯 楊鑫浩)
Effects of Partial Water and Nitrogen Resupplies on Maize Root Nitrogen Absorbing Capacity and Distribution
NIU Xiao-li,HU Tian-tian,ZHANG Fu-cang,WANG Li,LIU Jie,F(xiàn)ENG Pu-yu,YANG Shuo-huan,SONG Xue
(College of Water Resources and Architectural Engineering/Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education/Institute of Water-saving Agriculture in Arid Areas of China,Northwest A&F University,Yangling 712100,Shaanxi)
【Objective】Water and nitrogen (N) resupplies can significantly enhance root absorbing capacity. Partial water and N supplies can stimulate the compensation effect of root absorbing capacity at the non-stressed sub-root zone. The objective of this study is to identify the dynamics and influencing factors of the compensation effect of maize roots (Zea mays L. hybrid cv. Aoyu No.3007) N absorbing capacity under partial resupply after previous water and N stresses.【Method】With the split-root technology,a hydroponic experiment was conducted to analyze the root zone water and N stresses,where the water stress was stimulated by the osmotic potential of a nutrient solution (PEG 6000) and N stress was stimulated by different N levels. There were three water and N stress levels,i.e.,mild,moderate,severe water and N stresses and a control treatment (CK,both sides of the root zone supplied with sufficient water and N). The root N inflow rate,N content and accumulation of each root zone were measured at 0,1,3,5,7 and 9 d of resupplying water and N in half of root-zone 6 d after water and N stresses.【Result】Compared with non-stressed sub-root,the root N inflow rate,N content and accumulation in stressed sub-root were significantly decreased under partial resupply after water and N stresses. During 1-3 days after treatment (DAT),the root N inflow rate in stressed sub-root reduced by 38.2% and 48.7%,respectively,and was 84.9% and 86.4% lower than that in non-stressed sub-root. For non-stressed sub-root,partial water and N resupplies significantly enhanced the root N inflow rate compared with previous water and N stresses during 0-1 DAT. When water and N stresses did not exceed moderate stress level,partial water and N resupplies significantly increased root N inflow rate compared with control treatment during 0-1 and 7-9 DAT. However,during 3-7 DAT,the root N inflow rate was similar to or lowers than control treatment. The root N content and accumulation in mild and moderate stress treatments returned to control level at 1 and 5 DAT,respectively,which resulted in similar plant N use efficiency to control treatment. Moreover,partial water and N resupplies significantly increased the percentage of15N-fertilizer-N allocation in shoot compared with control treatment,and the increment reduced with the severity of water and N stresses. For non-stressed sub-root,the percentage of15N-fertilizer-N allocation showed a reverse trend. For mild stress treatment,the percentage of15N-fertilizer-N allocation of stressed sub-root had no significant difference compared with that of control treatment. The percentage of15N-fertilizer-N allocation of stressed sub-root at moderate and severe stress treatments was significantly higher than that of control treatment,at 3-9 DAT,although there was no significant difference between moderate and severe stress treatments.【Conclusion】When previous water and N stresses did not exceed moderate stress level,the compensation effect of root N absorbing capacity in the non-stressed sub-root can be effectively stimulated by partial water and N resupplies. The compensation effect was affected by the severity and duration of the water and N stresses. Percentage of15N-fertilizer-N allocation in different organs is closely related to the severity and duration of the water an N stresses. Thus,the above conclusion provides theoretical supports for regulating the interaction between plants and soil environment and making use of the potential plant response to soil water and nutrient stresses.
partial water and nitrogen resupplies; stress severity; duration of partial resupply; root N inflow rate; root compensatory effect; maize
2016-01-22;接受日期:2016-06-03
國(guó)家自然科學(xué)基金(51079124)、國(guó)家“863”計(jì)劃(2011AA100504)、中央高校基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)(QN2011067)、教育部高等學(xué)校創(chuàng)新引智計(jì)劃(B12007)
聯(lián)系方式:牛曉麗,Email:niuxiaoli88@126.com。通信作者胡田田,Email:hutiant@nwsuaf.edu.cn。通信作者張富倉(cāng),Email:zhangfc@nwsuaf.edu.cn