亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Unilateral global bifurcation for fourth-order boundaryvalue problem with non-asymptotic nonlinearity at 0

        2016-09-16 03:00:34SHENWenguo
        浙江大學學報(理學版) 2016年5期
        關鍵詞:基礎學科四階邊值問題

        SHEN Wenguo

        (Department of Basic Courses, Lanzhou Institute of Technology, Lanzhou 730050, China)

        ?

        Unilateral global bifurcation for fourth-order boundaryvalue problem with non-asymptotic nonlinearity at 0

        SHEN Wenguo

        (Department of Basic Courses, Lanzhou Institute of Technology, Lanzhou 730050, China)

        fourth-orderproblems;unilateralglobalbifurcation;nodalsolutions;non-asymptoticnon-linearityat0

        浙江大學學報(理學版),2016,43(5):525-531

        0 Introduction

        LetEbearealBanachspacewiththenorm‖·‖.Considertheoperatorequation

        u=λBu+H(λ, u),

        (1)

        whereBisacompactlinearoperatorandH:R×E→EiscompactwithH=o(‖u‖)atu=0uniformlyonboundedλintervals.

        Rabinowitz’sglobalbifurcationtheorem[1]hasshownthatifthecharacteristicvalueμofBisofoddmultiplicityand

        thenthereexistsacomponentCμofSthatcontains(μ, 0),whichsatisfies:

        Recently,SHEN[3-4]studiedtheexistenceofnodalsolutionsofthefollowingboundaryvalueproblem:

        (2)

        whereris a positive parameter, under the assumptions:

        (A1) One of the following conditions holds:

        (A2) h(t) ∈C([0, 1], [0, ∞))withh(t)?0onanysubintervalof[0, 1].

        Lemma3[3-4](i)Thelineareigenvalueproblem

        (3)

        hasauniqueinfinitenumberofpositiveeigenvalues

        0<λ1<λ2<…<λk<…→∞,ask→∞,

        andtheeigenfunctionψkcorrespondingtoλkhasexactlyk-1zerosin(0, 1).

        (ii)Foreachk∈N,thealgebraicmultiplicityofλkis1.

        Meanwhile,RABINOWITZ[1]establishedunilateralglobalbifurcationtheory(theorem1.27andtheorem1.40of[1]).However,aspointedoutbyDANCER[2,5]andLPEZ-GMEZ[6],theproofsofthesetheoremscontaingaps.Fortunately,DANCER[2]gaveacorrectedversionoftheunilateralglobalbifurcationtheoremfortheproblem(1)whichhasbeenextendedtotheone-dimensionalp-LaplacianproblembyDAIetal.[7].In2013,DAIetal.[8]establishedaDancer-typeunilateralglobalbifurcationresultforfourth-orderproblemsofthedeformationsofanelasticbeaminequilibriumstatewhichbothendsaresimplysupported.

        Motivatedbytheabovepapers,weshallestablishaDancer-typeunilateralglobalbifurcationresultaboutthecontinuumofsolutionsforthedeformationsofanelasticbeaminequilibriumstatewithfixedbothendpointswhichcanbedescribedbythefourth-orderproblems:

        x′?+kx″+lx=λh(t)x+g(t,x,λ), 0

        x(0)=x(1)=x′(0)=x′(1)=0,

        (4)

        wherehsatisfies (A2), andg:(0, 1)×R2→Rsatisfies the Carathéodory condition in the first two variables, such that

        (5)

        uniformly fort∈ (0, 1) andλon bounded sets.

        Remark 1Since the problem (2) cannot transform into a system of second-order equation, the treatment method of second-order system does not apply to study the problem (2). Thus, existing literature on the problem (2) by bifurcation theory is limited[3-4,9].

        Remark 2For other results on the existence and multiplicity of positive solutions and nodal solutions for other boundary value problems of fourth-order ordinary differential equations based on bifurcation techniques[10-11].

        The rest of this paper is arranged as follows. In section 1, we establish the Dancer-type unilateral global bifurcation theory for problem (4). In section 2, we prove the existence of nodal solutions for the problem (2) under the linear growth condition onf.

        1 Unilateral global bifurcation results

        WedefinethelinearoperatorL:D(L)?E→Y,

        Lx=x′?+kx″+lx, x∈ D(L)

        withD(L)= {x∈C4[0, 1]|x(0)=x(1)=x′(0)=x′(1)=0}.ThenLisaclosedoperatorandL-1:Y→Eiscompletelycontinuous.

        Define the operatorH:R×E→Eby

        H(λ,x)(t):=λL-1(hx)+L-1(g(t,x,λ))=

        Tλ(x)+L-1(g(t,x,λ)).

        It is easy to show thatI-Tλis a nonlinear compact perturbation of the identity. Thus the Leray-Schauder degree deg(I-Tλ,Br(0),0) is well-defined for arbitraryr-ballBr(0) andλ≠λk.

        Lemma 4For anyr>0, we have

        deg(I-Tλ,Br(0),0)=

        ProofSinceTλis compact and linear, by theorem 8.10 of [12],

        deg(I-Tλ,Br(0), 0)=(-1)m(λ),

        wherem(λ) is the sum of algebraic multiplicity of the eigenvaluesλof (3),satisfyλ-1λk<1.

        Ifλ∈ [0,λ1), by lemma 3, then there are no suchλat all, then

        deg(I-Tλ,Br(0), 0)=(-1)0=1.

        Ifλ∈(λk,λk+1) for somek∈N, then

        (λj)-1>1,j∈{1, 2,…,k}.

        By lemma 3, we obtain

        deg(I-Tλ,Br(0), 0)=(-1)k.

        Furthermore, it is clear that problem (4) can be equivalently written as

        x=H(λ,x)(t).

        Clearly,His completely continuous fromR×E→EandH(λ, 0)=0, ?λ∈R.

        Let

        (6)

        (7)

        uniformlyfort∈ (0, 1)andλonboundedsets.

        Theorem1Assume(A1), (A2)and(5)hold.Then

        (i) (λk, 0)isabifurcationpointoftheproblem(4).

        Proof(i)Supposethat(λk, 0)isnotabifurcationpointofproblem(4).Thenthereexistε> 0,ρ0>0suchthatfor|λ-λk|≤εand0<ρ<ρ0thereisnonontrivialsolutionoftheequation

        x-H(λ, x)=0

        with‖x‖=ρ.Fromtheinvarianceofthedegreeunderacompacthomo-topology,weobtainthat

        deg(I-H(λ, ·),Bρ(0), 0)≡constant

        (8)

        forλ∈[λk-ε,λk+ε].

        By takingεsmaller if necessary, we can assume that there is no eigenvalue of (3) inλ∈(λk,λk+ε]. Fixλ∈(λk,λk+ε]. We claim that the equation

        x-(λL-1(hx)+τL-1(g(t,x,λ)))=0

        (9)hasnosolutionxwith‖x‖=ρforeveryτ∈[0, 1]andρsufficientlysmall.Supposeonthecontrary,let{xn}bethesolutionof(9)with‖xn‖→0asn →+∞.

        (10)

        By(7), (10)andthecompactnessofL-1,choosingasubsequenceandrelabelingifnecessary,itfollowsthatyn→y0asn→∞.Thus

        Ly0=λhy0and‖y0‖E=1.

        Thisimpliesthatλisaneigenvalueof(3).Thisisacontradiction.Fromtheinvarianceofthedegreeunderhomo-topologyandlemma4,thenobtain

        deg(I- H(λ, ·),Bρ(0), 0)=

        deg(Ψλ,Bρ(0), 0)=(-1)k.

        (11)

        Similarly, forλ∈[λk-ε,λk), we find that

        deg(I-H(λ, ·),Bρ(0), 0)=(-1)k-1.

        (12)

        Relations (11) and (12) contradicts (8) and hence (λk, 0) is a bifurcation point of problem (4).

        (ii) By (7), we have that

        (13)

        uniformlyt∈(0, 1) andλon bounded sets. Furthermore, by (ii) of lemma 3, applying lemma 2, we can obtain the result.

        (14)

        By(7), (14)andthecompactnessofL-1,weobtainthatforsomeconvenientsubsequenceym→y0asm→+∞.Nowy0verifiestheequation

        Ly0=λjhy0and‖y0‖E=1.

        Hencey0∈SjwhichisanopensetinE,andasaconsequenceforsomemlargeenough, ym∈Sj,andthisisacontradiction.

        Lemma6If(λ, u)isasolutionof(4)andx∈?Sk,thenx≡0.

        ProofBytheproofoftheorem3.1in[13] (seecorollary1.12andtheproofoftheorem2.3togetherwiththeremarkfollowingthatproofin[1]),weeasilyobtaintheresult.

        Bytheorem1andlemma5,wecaneasilydeducethefollowingDancer-typeunilateralglobalbifurcationresult.

        (15)

        (16)

        By(7), (16)andthecompactnessofL-1,weobtainthatforsomeconvenientsubsequencezm→z0asm→+∞.Nowz0verifiestheequation

        Lz0=λjhz0and‖z0‖E=1.

        (17)

        By(7), (17)andthecompactnessofL-1,weobtainthatforsomeconvenientsubsequenceyn→y0≠0asn→+∞.Nowy0verifiestheequation

        Ly0=λ*h(t)y0(t), t∈(0,1)and‖y0‖E=1.

        Inordertotreatthecasef0=∞,weshallneedthefollowinglemma.

        Definition1[14]LetXbeaBanachspaceand{Cn|n=1,2,…}beafamilyofsubsetsofX.ThenthesuperiorlimitDof{Cn}isdefinedby

        suchthatxni→x}.

        (18)

        Lemma 7[14]Each connected subset of metric spaceXis contained in a component, and each connected component ofXis closed.

        Lemma 8[15]LetXbe a Banach space and let {Cn|n=1, 2,…} be a family of closed connected subsets ofX. Assume that

        (i) there existszn∈Cn,n=1, 2,… andz*∈X, such thatzn→z*;

        (ii)rn=sup{‖x‖|x∈Cn}=∞;

        BR={x∈X|‖x‖≤R}.

        ThenthereexistsanunboundedconnectedcomponentCinDandz*∈C.

        2 Main results

        Inordertoprovethemainresults,theconditions(A1), (A2)andthefollowingconditionsaresatisfiedinthefollowingpart:

        (H1) f∈C(R, R)satisfiesf(s)s>0fors≠0.

        Theorem3Let(A1), (A2), (H1), (H2)and(H3)hold.Assumefollowingconditionholdsforsomek∈N:

        Theorem4Let(A1), (A2), (H1), (H2)and(H3)hold.Assumefollowingconditionholdsforsomek, n∈Nwithk≤n:

        Proofoftheorem3Firstly,westudythebifurcationphenomenaforthefollowingeigenvalueproblem:

        (19)

        whereλ>0isaparameter.Itisclearthatanysolutionof(19)oftheform(1,x)yieldssolutionsxof(2).

        Foreachn∈N,definef[n](s):R→Rby

        Clearly,by(H2),wehave

        Nowconsidertheauxiliaryfamilyoftheequations

        (20)

        Letζ[n]∈C(R, R)suchthat

        (21)

        Then

        (22)

        Letusconsider

        (23)asabifurcationproblemfromthetrivialsolutionx≡0.

        Equation(23)canbeconvertedtotheequivalentequation

        x:=λL-1[a[n](·)x(·)](t)+

        λL-1[ζ[n](·x(·))](t).

        (24)

        Clearly, ‖L-1[ζ[n](·,x(·))]‖E=o(‖x‖E),as‖x‖E→0.

        Since

        λn+‖xn‖→∞.

        If

        then

        andmoreover,

        AssumethatthereexistsaconstantnumberM>0suchthatforalln∈N,

        λn∈ (0,M],

        Inthiscase,itfollowsthat‖xn‖E→∞.

        Letξ∈C(R, R)suchthat

        f(x)= f∞x+ξ(x).

        Then

        Let

        (25)

        Wedividetheequation

        (26)

        since

        Thus

        y′?+ky″+ly=λra(t)f∞y.

        Weclaimthat

        Proofofthetheorem4Usingthesimilarproofwiththatoftheorem3,wecanobtaintheresult.

        [1]RABINOWITZPH.Someglobalresultsfornonlineareigenvalueproblems[J].JFunctAnal,1971(7):487-513.

        [2]DANCER E N. On the structure of solutions of non-linear eigenvalue problems[J]. Indiana University Math J,1974,23:1069-1076.

        [3]SHEN W G. Global structure of nodal solutions for a fourth-order two-point boundary value problem[J]. Applied Mathematics and Computation,2012,219(1):88-98.

        [4]SHEN W G. Existence of nodal solutions of a nonlinear fourth-order two-point boundary value problem[J]. Boundary Value Problems,2012,2012(1):1-18.doi:10.1186/1687-2770-2012-31.

        [5]DANCER E N. Bifurcation from simple eigenvaluses and eigenvalues of geometric multiplicity one[J]. Bull Lond Math Soc,2002, 34:533-538.

        Hall,2001.

        [7]DAI G W, MA R Y. Unilateral global bifurcation phenomena and nodal solutions forp-Laplacian[J]. J Differ Equ,2012,252:2448-2468.

        [8]DAI G W, HAN X L. Global bifurcation and nodal solutions for fourth-order problems with sign-changing weight[J]. Applied Mathematics and Computation,2013,219:9399-9407.

        [9]KORMAN P. Uniqueness and exact multiplicity of solutions for a class of fourth-order semilinear problems[J]. Proceedings of the Royal Society of Edinburgh A,2004,134(1):179-190.

        [10]MA R Y, GAO C H, HAN X L. On linear and nonlinear fourth-order eigenvalue problems with indefinite weight[J]. Nonlinear Anal Theory Methods Appl,2011,74(18):6965-6969.

        [11]MA R Y, GAO C H. Nodal solutions of a nonlinear eigenvalue problem of the Euler-Bernoulli equation[J]. Math Anal Appl,2012,387(2):1160-1166.

        [12]DEIMLING K. Nonlinear Functional Analysis[M]. New York: Springer-Verlag,1987.

        [13]RYNNE B P. Global bifurcation for 2mth-order boundary value problems and infinitely many solu-tions of superlinear problems[J]. J Differential Equations,2003,188:461-472.

        [14]WHYBURN G T. Topological Analysis, Princeton Mathematical Series No.23[M]. New Jersey: Princeton University Press,1958.

        [15]MA R Y, AN Y L. Global structure of positive for superlinear second-orderm-point boundary value problems[J]. Topological Methods in Nonlinear Analysis,2009,34(2):279-290.

        10.3785/j.issn.1008-9497.2016.05.005

        非線性項在零點非漸進增長的四階邊值問題單側(cè)全局分歧.

        沈文國

        (蘭州工業(yè)學院, 基礎學科部, 甘肅 蘭州 730050)

        四階問題;單側(cè)全局分歧;結點解;非線性項在零點非漸進增長

        O175.8

        A

        1008-9497(2016)05-525-07

        date:August 1,2015.

        Supported by the National Natural Science Foundation of China (11561038); the Gansu Provincial Natural Science Foundation(145RJZA087).

        About the author:SHEN Wenguo (1963-), ORCID:http://orcid.org/0000-0001-7323-1887, Doctor, Professor, the field of interest is nonlinear functional differential equations,E-mail: shenwg369@163.com.

        猜你喜歡
        基礎學科四階邊值問題
        非線性n 階m 點邊值問題正解的存在性
        四階p-廣義Benney-Luke方程的初值問題
        以戰(zhàn)略遠見促進基礎學科人才培養(yǎng)
        帶有積分邊界條件的奇異攝動邊值問題的漸近解
        臨床醫(yī)院培養(yǎng)基礎學科研究生的探索與思考
        帶參數(shù)的四階邊值問題正解的存在性
        非線性m點邊值問題的多重正解
        對中醫(yī)臨床基礎學科屬性的認識
        一類非線性向量微分方程無窮邊值問題的奇攝動
        四階累積量譜線增強方法的改進仿真研究
        精品极品视频在线观看| 欧美a视频在线观看| 亚洲AV无码一区二区三区少妇av| 久久99精品免费一区二区| 国产青青草视频在线播放| 在线观看国产激情视频| 成人做受黄大片| 乱中年女人伦av| 亚洲色欲Aⅴ无码一区二区| 国产精品久久中文字幕亚洲| 久久精品亚洲热综合一本色婷婷| 红桃av一区二区三区在线无码av| 久久精品国产亚洲av四虎| 中文字幕在线日韩| 国内偷拍第一视频第一视频区 | 熟女精品视频一区二区三区| 少妇白浆高潮无码免费区| 久久er国产精品免费观看8| 日本精品国产1区2区3区| 国产91色综合久久高清| 成人毛片无码一区二区三区| 亚洲日韩专区在线视频| 一区二区三区在线免费av| 熟妇人妻无乱码中文字幕av| 少妇愉情理伦片丰满丰满午夜| 国产亚洲AV无码一区二区二三区 | 大尺度无遮挡激烈床震网站 | 人妻人妇av一区二区三区四区| 久久精品免费中文字幕| 国产精品熟女视频一区二区 | 国产精品老熟女露脸视频| 中文字幕无码免费久久99| 国产视频一区二区三区久久亚洲| 凹凸国产熟女精品视频app| 亚洲av无码一区二区三区在线| 国产伦精品一区二区三区四区| 一区二区三区四区午夜视频在线| 亚洲国产精品久久久久秋霞小说| 亚洲国产成人va在线观看天堂| 亚洲综合国产成人丁香五月小说| 亚洲国产日韩综合天堂|