徐曉嶺, 王蓉華, 顧蓓青*
(1.上海對(duì)外經(jīng)貿(mào)大學(xué) 統(tǒng)計(jì)與信息學(xué)院,上海 201620; 2.上海師范大學(xué) 數(shù)理學(xué)院,上海 200234)
?
關(guān)于兩參數(shù)Birnbaum-Saunders疲勞壽命分布統(tǒng)計(jì)分析的2個(gè)注記
徐曉嶺1, 王蓉華2, 顧蓓青1*
(1.上海對(duì)外經(jīng)貿(mào)大學(xué) 統(tǒng)計(jì)與信息學(xué)院,上海 201620; 2.上海師范大學(xué) 數(shù)理學(xué)院,上海 200234)
通過(guò)Monte-Carlo模擬說(shuō)明目前用于求解兩參數(shù)Birnbaum-Saunders疲勞壽命分布尺度參數(shù)的2種方法可能無(wú)法得到尺度參數(shù)的區(qū)間估計(jì).進(jìn)一步指出,在利用廣義樞軸量法給出尺度參數(shù)以及參數(shù)函數(shù)的置信區(qū)間過(guò)程中存在錯(cuò)誤,并用反例進(jìn)行了說(shuō)明,同時(shí)給出了正確的證明.
兩參數(shù)Birnbaum-Saunders疲勞壽命分布;尺度參數(shù);區(qū)間估計(jì);廣義樞軸量
Journal of Zhejiang University(Science Edition), 2016,43(5):539-544
Birnbaum-Saunders模型是概率物理方法中的重要失效分布模型,由BIRNBAUM和SAUDERS于1969年在研究主因裂紋擴(kuò)展導(dǎo)致的材料失效過(guò)程中推導(dǎo)而來(lái),其后廣泛應(yīng)用于機(jī)械產(chǎn)品的可靠性研究,在電子產(chǎn)品性能退化失效分析中也有重要應(yīng)用.
設(shè)T服從兩參數(shù)Birnbaum-Saunders疲勞壽命分布BS(α,β),其分布函數(shù)F(t)與密度函數(shù)f(t)分別為:
其中,α>0稱(chēng)為形狀參數(shù),β>0稱(chēng)為尺度參數(shù),φ(x),Φ(x)分別為標(biāo)準(zhǔn)正態(tài)分布的密度函數(shù)與分布函數(shù),即
假設(shè)Yj是獨(dú)立同分布的非負(fù)隨機(jī)變量,均值為μ,方差為σ2,當(dāng)然這個(gè)假設(shè)只在某些應(yīng)用中成立.設(shè)失效發(fā)生在第s個(gè)周期,即在第s個(gè)周期Wn首次超過(guò)臨界值w,易見(jiàn)
P(s≤n)=P(Wn≥w).
當(dāng)n很大時(shí),由中心極限定理知:
由于存在多周期,每一周期持續(xù)時(shí)間都很短,可以用連續(xù)時(shí)間t(失效需要的時(shí)間)來(lái)替換離散時(shí)間n,故相應(yīng)的累積分布函數(shù)F(t)為
其中,
由于Birnbaum-Saunders疲勞壽命分布是從疲勞過(guò)程的基本特征出發(fā),其分布比常用壽命分布如威布爾分布、對(duì)數(shù)正態(tài)分布更適合描述某些因疲勞失效產(chǎn)品的壽命分布規(guī)律.此分布已成為可靠性統(tǒng)計(jì)分析的常用分布之一.
關(guān)于兩參數(shù)Birnbaum-Saunders疲勞壽命分布BS(α,β)的統(tǒng)計(jì)分析已有較多研究.BIRNBAUM等[1]結(jié)合背景分析提出了BS疲勞壽命分布,DESMOND[2]基于生物模型給出了更加通用的推導(dǎo),進(jìn)一步說(shuō)明BS疲勞壽命分布使用的物理緣由,放寬了文獻(xiàn)[1]中所給出的最初的假設(shè)條件.DESMOND[3]研究了BS分布與逆高斯分布的關(guān)系,指出用此分布來(lái)描述產(chǎn)品的疲勞壽命較其他分布更合理.BIRNBAUM等[4]討論了全樣本場(chǎng)合下參數(shù)的極大似然估計(jì).ENGELHARDT等[5]應(yīng)用蒙特卡羅方法和MLE的漸進(jìn)正態(tài)性討論了參數(shù)置信區(qū)間估計(jì)以及形狀參數(shù)和尺度參數(shù)的假設(shè)檢驗(yàn)問(wèn)題.RIECK等[6]研究了將疲勞壽命分布的對(duì)數(shù)線(xiàn)性模型用于加速壽命試驗(yàn),此模型還可用于比較平均壽命,同時(shí)進(jìn)一步研究了MLE與最小二乘估計(jì),并用大樣本方法給出了參數(shù)的近似區(qū)間估計(jì)和假設(shè)檢驗(yàn)方法.雖然BS分布參數(shù)的極大似然估計(jì)有很多優(yōu)點(diǎn),但非線(xiàn)性方程較為復(fù)雜,無(wú)法直接求解,而常規(guī)的矩估計(jì)不一定存在或唯一,NG[7]給出了修改矩估計(jì)的方法.DUPUIS等[8]給出了參數(shù)的ROBUST估計(jì).CHANG等[9]給出了可靠度函數(shù)的區(qū)間估計(jì).RIECK[10]針對(duì)對(duì)稱(chēng)截尾樣本,給出了BS分布的參數(shù)估計(jì).OWEN和PADGETT在文獻(xiàn)[11-13]中給出了BS分布可靠度的貝葉斯估計(jì)并研究了冪律加速壽命試驗(yàn)?zāi)P?KUNDO等[14]討論了BS分布的失效率函數(shù)的形狀,得到該失效率函數(shù)是一個(gè)倒浴盆函數(shù).
在國(guó)內(nèi),較早研究BS分布的有王炳興等[15],文獻(xiàn)[15]討論了BS疲勞壽命分布及其對(duì)數(shù)線(xiàn)性模型的參數(shù)估計(jì)問(wèn)題,給出了BS疲勞壽命分布中參數(shù)的逆矩估計(jì)方法,此方法計(jì)算簡(jiǎn)單,且對(duì)可能異常點(diǎn)相對(duì)穩(wěn)健,并用實(shí)例說(shuō)明該估計(jì)方法的可行性;文獻(xiàn)[16]研究了定數(shù)截尾和定時(shí)截尾場(chǎng)合下的參數(shù)點(diǎn)估計(jì)與區(qū)間估計(jì).王蓉華等[17]在雙邊定數(shù)截尾場(chǎng)合下, 給出了BS分布參數(shù)的擬最小二乘估計(jì)和近似極大似然估計(jì), 并用隨機(jī)模擬方法比較了極大似然估計(jì)、近似極大似然估計(jì)和擬最小二乘估計(jì)的偏性和均方誤差;文獻(xiàn)[18]還研究了定數(shù)截尾場(chǎng)合下BS分布參數(shù)的近似極大似然估計(jì);文獻(xiàn)[19]研究了缺失數(shù)據(jù)場(chǎng)合下BS分布尺度參數(shù)的區(qū)間估計(jì).孫祝嶺[20]研究了BS分布參數(shù)的區(qū)間估計(jì)問(wèn)題,提出用新的樞軸量來(lái)構(gòu)造尺度參數(shù)的經(jīng)典置信區(qū)間,此方法具有較為簡(jiǎn)單的顯式表達(dá)式,應(yīng)用回歸分析給出了BS分布參數(shù)的最小二乘估計(jì)和形狀參數(shù)區(qū)間估計(jì)方法.用計(jì)算機(jī)隨機(jī)模擬了區(qū)間估計(jì)的效果,結(jié)果顯示效果非常好[21].孫祝嶺[22]給出了BS分布變異系數(shù)的區(qū)間估計(jì)和假設(shè)檢驗(yàn)方法.在失效機(jī)理保持不變的條件下,還討論了BS分布環(huán)境因子的估計(jì)問(wèn)題[23].王炳興[24]研究了形狀參數(shù)以及均值、分位數(shù)、可靠度等可靠性指標(biāo)的廣義區(qū)間估計(jì).牛翠珍等[25]利用文獻(xiàn)[24]中的廣義樞軸量法對(duì)分布在不同參數(shù)情形下的BS進(jìn)行了比較.周磊等[26]提出了一種基于BS分布的互連線(xiàn)時(shí)延模型,避免了查表運(yùn)算,且僅需要采用前2個(gè)瞬態(tài),計(jì)算簡(jiǎn)單,準(zhǔn)確性較好,同時(shí)提出了一種精度修正算法,修正后該方法具有更好的適應(yīng)性,90納米工藝TCAD仿真實(shí)驗(yàn)表明,該模型在效率、精度、難易程度等方面具有一定的優(yōu)勢(shì).趙建印等[27]利用BS分布對(duì)布朗運(yùn)動(dòng)、幾何布朗運(yùn)動(dòng)和Gamma過(guò)程等隨機(jī)過(guò)程退化軌道建立了形式統(tǒng)一的加速退化模型,并采用極大似然方法估計(jì)模型參數(shù).最后針對(duì)某自控溫伴熱電纜,利用所建模型進(jìn)行加速退化分析,有效驗(yàn)證了模型的正確性和合理性.
關(guān)于兩參數(shù)Birnbaum-Saunders疲勞壽命分布尺度參數(shù)的區(qū)間估計(jì)通常采用文獻(xiàn)[19-20]所提出的方法,本文通過(guò)MonteCarlo模擬說(shuō)明這2種方法有可能無(wú)法得到尺度參數(shù)的區(qū)間估計(jì).同時(shí)指出文獻(xiàn)[24]在利用廣義樞軸量法給出尺度參數(shù)以及參數(shù)函數(shù)的置信區(qū)間過(guò)程中存在錯(cuò)誤,用反例進(jìn)行了說(shuō)明,并給出了正確的證明.
1.1文獻(xiàn)[19]方法研究
設(shè)總體T~BS(α,β),T1,T2,…,Tn為來(lái)自總體T的一個(gè)容量為n的簡(jiǎn)單隨機(jī)樣本,其次序統(tǒng)計(jì)量記為T(mén)(1)≤T(2)≤…≤T(n).
則Z(1)≤Z(2)≤…≤Z(n)與樣本量為n標(biāo)準(zhǔn)正態(tài)分布N(0,1)的前n個(gè)次序統(tǒng)計(jì)量同分布.
令
即G(β)為樞軸量,其分布與參數(shù)無(wú)關(guān).由文獻(xiàn)[19]知,G(β)對(duì)β嚴(yán)格單調(diào)遞減,將G(β)作如下恒等變換:
則
1.2文獻(xiàn)[20]方法研究
設(shè)T1,T2,…,Tn為來(lái)自Birnbaum-Saunders疲勞壽命分布總體T~BS(α,β)的一個(gè)容量為n的簡(jiǎn)單隨機(jī)樣本,其樣本觀察值為t1,t2,…,tn.
令
則
Yi~N(0,α2),i=1,2,…,n.
因此對(duì)于樣本,若
則有雙側(cè)置信區(qū)間;
若為下列3種情況之一:
則有沒(méi)有雙側(cè)置信區(qū)間.
為彌補(bǔ)文獻(xiàn)[20]的不足,需解決尺度參數(shù)β的區(qū)間估計(jì)問(wèn)題,這將另文討論.
設(shè)T1,T2,…,Tn為來(lái)自?xún)蓞?shù)Birnbaum-Saunders疲勞壽命分布總體T~BS(α,β)的一個(gè)容量為n的簡(jiǎn)單隨機(jī)樣本,其次序觀察值為t1,t2,…,tn.
令
則
Yi~N(0,α2),i=1,2,…,n.
據(jù)文獻(xiàn)[24],
下證“T(β)與V相互獨(dú)立”.
證明不失一般性,可假設(shè)σ=1.易見(jiàn)
由于Y1,Y2相互獨(dú)立,則(Y1,Y2)的聯(lián)合密度為:
對(duì)-∞ 令 由于T~t(n-1),U~χ2(n),即T與U的密度函數(shù)分別為: -∞ 由此得(T,U)的聯(lián)合密度為: 得到T與U相互獨(dú)立. [1]BIRNBAUM Z W, SAUNDERS S C. A new family of life distribution[J]. Journal of Applied Probability,1969(6):319-322. [2]DESMOND A F. Stochastic models of failure in random environments[J]. The Canadian Journal of Statistics,1985(2):171-176. [3]DESMOND A F. On the relationship between two fatigue-life models[J]. IEEE Transactions on Reliability,1986(2):167-171. [4]BIRNBAUM Z W, SAUNDERS S C. Estimation for a family of life distributions with applications to fatigue[J]. Appl Prob, 1969(6):328-347. [5]ENGELHARDT M, WRIGHT F T. Inferences on the parameters of the Birnbaum Saunders fatigue life distribution based on maximum likelihood estimation[J]. Technometrics,1981,23(3):251-256. [6]RIECK J R, NEDELMAN J R. A log-linear model for the Birnbaum Saunders distribution[J]. Techanometrics,1991,33(1):51-60. [7]NG H K T, KUNDU D, BALAKRISHNAN N. Modified moment estimation for the two-parameter Birnbaum-Saunders distribution[J]. Computational Statistics and Data Analysis,2003,43:283-298. [8]DUPUIS D J, MILLS J E. Robust estimation of the Birnbaum distribution[J]. IEEE Transactions on Reliability,1998,47(1):88-95. [9]CHANG D S, TANG L C. Reliability bounds and critical time for the Birnbaum-Saunders distribution[J]. Reliability, IEEE Transactions on Reliability,1993,42:464-469. [10]RIECK J R. Parametric estimation for the Birnbaum-Saunders distribution based on symmetrically censored samples[J]. Communication Statistics-Theory Methods,1995,24:1721-1736. [11]OWEN W J, PADGETT W J. A Birnbaum-Saunders accelerated life model[J]. IEEE Transactions on Reliability,2000,49(2):224-229. [12]OWEN W J, PADGETT W J. Acceleration models for system strength based on Birnbaum-Saunders distribution[J]. Lifetime Data Analysis,1999(5):133-147. [13]OWEN W J, PADGETT W J. Power-law accelerated Birnbaum-Saunders life models[J]. International Journal of Reliability, Quality and Safety Engineering,2000,7(1):1-15. [14]KUNDU D, KANNAN N, BALAKRISHNAN N. On the hazard function of Birnbaum-Saunders distribution and associated inference[J]. Computational Statistics & Data Analysis,2008,52(5):2692-2702. [15]王炳興,王玲玲.Birnbaum-Saunders疲勞壽命分布的參數(shù)估計(jì)[J].華東師范大學(xué)學(xué)報(bào),1996(4):10-15. WANG Bingxing, WAGN Lingling. Parameter estimation of Birnbaum-Saunders fatigue life distribution[J]. Journal of East China Normal University,1996(4):10-15. [16]王炳興,王玲玲.Birnbaum-Saunders疲勞壽命分布在截尾試驗(yàn)情形的統(tǒng)計(jì)分析[J].應(yīng)用概率統(tǒng)計(jì),1996,12(4):369-375. WANG Bingxing, WAGN Lingling. Statistical analysis of Birnbaum-Saunders fatigue life distribution in the censored test case[J]. Applied Probability and Statistics,1996,12(4):369-375. [17]王蓉華,費(fèi)鶴良.雙邊截尾場(chǎng)合下BS疲勞壽命分布的參數(shù)估計(jì)[J].上海師范大學(xué)學(xué)報(bào),1999,28(2):17-22. WANG Ronghua, FEI Heliang. Parameter estimation for the BS fatigue life distribution under bilateral censoring[J]. Journal of Shanghai Normal University,1999,28(2):17-22. [18]WANG Ronghua, FEI Heliang. Statistical analysis for the Birnbaum-Saunders fatigue life distribution under multiply type II censoring[J]. Chin Quart J of Math,2006,21(1):15-27. [19]WANG Ronghua, FEI Heliang. Statistical analysis for the Birnbaum-Saunders fatigue life distribution under type II bilateral censoring and multiply type II censoring[J]. Chin Quart J of Math,2004,19(2):126-132. [20]孫祝嶺.Birnbaum-Saunders疲勞壽命分布尺度參數(shù)的區(qū)間估計(jì)[J].兵工學(xué)報(bào),2009,30(11):1558-1561. SUN Zhuling. Interval estimation of scale parameter for Birnbaum-Saunders fatigue life distribution[J]. Acta Armamentarii,2009,30(11):1158-1561. [21]孫祝嶺.Birnbaum-Saunders疲勞壽命分布參數(shù)的回歸估計(jì)方法[J].兵工學(xué)報(bào),2010,31(9):1260-1262. SUN Zhuling. Regression estimation method of parameters for Birnbaum-Saunders fatigue life distribution[J]. Acta Armamentarii,2010,31(9):1260-1262. [22]孫祝嶺.疲勞壽命分布變異系數(shù)的統(tǒng)計(jì)推斷[J].質(zhì)量與可靠性,2013(1):13-15. SUN Zhuling. Statistical inference of variable coefficient for fatigue life distribution[J]. Quality and Reliability,2013(1):13-15. [23]孫祝嶺. Birnbaum-Saunders分布環(huán)境因子的置信限[J]. 強(qiáng)度與環(huán)境,2012,39(4):51-55.SUN Zhuling. Confidence limit of environmental factor for Birnbaum-Saunders distribution[J]. Structure & Environment Engineering,2012,39(4):51-55. [24]WANG B X. Generalized interval estimation for the Birnbaum-Saunders distribution[J]. Computational Statistics and Data Analysis,2012,56:4320-4326. [25]NIU Cuizhen, GUO Xu, XU Wangli, et al. Comparison of several Birnbaum-Saunders distributions[J]. Journal of Statistical Computation and Simulation,2014,84(12):2721-2733. [26]周磊,孫玲玲.一種基于概率解釋的新型互連線(xiàn)時(shí)延Slew模型[J].電路與系統(tǒng)學(xué)報(bào),2009,14(2):7-10. ZHOU Lei, SUN Lingling. A new Slew interconnect delay model Based on probability interpretation[J]. Journal of Circuits and Systems,2009,14(2):7-10. [27]趙建印,孫權(quán),彭寶華,等.基于加速退化數(shù)據(jù)的BS分布的統(tǒng)計(jì)推斷[J].電子產(chǎn)品可靠性與環(huán)境試驗(yàn),2006(1):11-14. ZHAO Jianyin, SUN Quan, PENG Baohua, et al. Statistical inference for BS distribution based on the accelerated degradation data [J]. Electronic Product Reliability and Environmental Test,2006(1):11-14. [28]徐曉嶺,王蓉華.概率論與數(shù)理統(tǒng)計(jì)[M].北京:人民郵電出版社,2014:48-52. XU Xiaoling, WANG Ronghua. Probability and Mathematical Statistics[M]. Beijing:Posts and Telecom Press,2014:48-52. Two notes of statistical analysis about two-parameter Birnbaum-Saunders fatigue life distribution. XU Xiaoling1, WANG Ronghua2, GU Beiqing1 (1.SchoolofStatisticsandInformation,ShanghaiUniversityofInternationalBusinessandEconomics,Shanghai201620,China; 2.MathematicsandScienceCollege,ShanghaiNormalUniversity,Shanghai200234,China) We know that two methods about interval estimate of scale parameter for two-parameter Birnbaum-Saunders fatigue life distribution are shown not always capable of obtaining the interval estimate of scale parameter based on the results of Monte Carlo simulations. Moreover, there is a mistake in deriving the confidence intervals of scale parameter and parameter function with the generalized pivot method. A corresponding counter example is illustrated, and the correct proof is provided. two-parameter Birnbaum-Saunders fatigue life distribution; scale parameter; interval estimate; generalized pivotal quantity 2015-12-04. 國(guó)家自然科學(xué)基金資助項(xiàng)目(11671264). 徐曉嶺(1965-),ORCID:http://orcid.org/0000-0002-9442-8555,男,博士,教授,主要從事應(yīng)用統(tǒng)計(jì)研究,E-mail:xlxu@suibe.edu.cn. ORCID:http//orcid.org/0000-0003-1539-8747,E-mail:gubeiqing@suibe.edu.cn. 10.3785/j.issn.1008-9497.2016.05.008 O 213 A 1008-9497(2016)05-539-06