亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類廣義平均曲率Liénard方程周期解存在性與唯一性

        2016-08-31 02:25:40蘭德新陳文斌
        湖南師范大學自然科學學報 2016年3期
        關(guān)鍵詞:蘭德武夷武夷山

        蘭德新,陳文斌

        (武夷學院數(shù)學與計算機學院,中國 武夷山 354300)

        ?

        一類廣義平均曲率Liénard方程周期解存在性與唯一性

        蘭德新*,陳文斌

        (武夷學院數(shù)學與計算機學院,中國 武夷山354300)

        運用Mawhin 重合度拓展定理研究了一類廣義平均曲率Liénard 方程

        周期解存在性與唯一性問題,得到了周期解存在性與唯一性的相關(guān)新結(jié)果.

        廣義平均曲率;Liénard 方程;周期解;重合度

        1 Introduction

        We consider the following Prescribed mean curvature Liénard equation:

        (1)

        wheref,e∈C(R,R),β,g,τ∈C1(R,R),e,τ,βare T-periodic,T>0,β(t)>0 andτ(t)≥0. As we all know, the dynamic behaviors of Liénard equation have been wide-ly investigated[1-5]due to the application in many fields such as physics, mechanics and the engineering technique fields. In such applications, it is important to know the existence of periodic solutions of Liénard equation. For example, see papers[1-5]. These papers were devoted mainly to study the following several types:

        x″(t)+f(x(t))x′(t)+g(x(t-σ))=e(t),

        x″(t)+f(x(t))x′(t)+g(x(t-τ(t,x(t))))=e(t),

        (φp(x′(t)))′+f(x(t))x′(t)+β(t)g(x(t-τ(t)))=e(t).

        (2)

        2 Preliminaries

        Throughout this paper, letXandYbe real Banach spaces and letL:D(L) ?X→Ybe a Fredholm operator with index zero; hereD(L) denotes the domain ofL.This means that ImLis closed inYand dim KerL=dim(Y/lmL)<+∞. Consider the supplementary subspacesX1andY1such thatX=KerL⊕X1andY=lmL⊕Y1and letP:X→KerLandQ:Y→Y1be the natural projections, Clearly, KerL∩(D(L)∩X1)=0; thus the restrictionLp: =L|D(L)∩X1is invertible. Denote the in-verse ofLpbyK.

        (1)Lx≠λNx,?(x,λ)∈(D(L)∩?Ω)×(0,1);

        (2)Nx?lmL,?x∈KerL∩?Ω;

        (3) deg(JQN,Ω∩KerL,0)≠0,whereJ:lmQ→KerLis an isomorphism.

        Lemma 2.2[10]Letα∈[0,+∞] be constants,S∈C(R,R) withs(t+T)≡s(t), ands(t)∈[-α,α],?t∈[0,T]. Then ?x∈C1(R,R) withx(t+T)≡x(t),we have

        In order to use Mawhin’s continuation theorem to study the existence of T-periodic solutions for Eq.(1),we should consider the following system:

        (3)

        LetX=Y={x:x=(x1,x2)T∈C(R,R2),x(t)≡x(t+T)},‖x‖=max{|x1|0,|x2|0},

        and letKrepresent the inverse ofLKer P∩D(L). Clearly, KerL=lmQ=R2and

        where

        For the sake of convenience, we list the following assumptions which will be used for us to study the existence and uniqueness of T-periodic solutions to Eqs.(3) in Section 3.

        [H2] There existsl>0 such that |g(x1)-g(x2)|≤l|x1-x2|,?l∈R,x1,x2∈R.

        [H4]g′(x)<0,|τ|0≤εandτ′(t)<1 (εbe sufficiently small constant ).

        3 Main results

        ProofWeconsiderLx=λNx,?λ∈(0,1).

        LetΩ1={x∈X:Lx=λNx,λ∈(0,1)}.Ifx∈Ω1,thenwehave

        (4)

        Bythefirstformulaeof(4),wehave

        Itfollowsthat

        (5)

        (6)

        Thenfromtheassumption[H1],wemusthave

        x1(t1-τ(t1))>-d,

        (7)

        and

        x1(t2-τ(t2))

        (8)

        Now,webegintoprovethatthereisaconstantξ∈R such that |x1(ξ)|≤d.

        Case1Ifx1(t2-τ(t2))∈(-d,d),then|x1(ξ)|≤dwhenξ=t2-τ(t2).

        Case2Ifx1(t2-τ(t2))<-d,thenfrom(3.4)andthecontinuityofx1(t)onR,weseethatthereisaconstantξ∈(t1-τ(t1),t2-τ(t2))[or(t2-τ(t2),t1-τ(t1))]suchthat|x1(ξ)|=-d,i.e.,|x1(ξ)|≤d.

        WeseeineitherCase1orCase2that|x1(ξ)|≤d.Sinceξ∈R is a constant, there must be an integer kand a pointt*∈[0,T] such thatξ=kT+t*.So|x1(ξ)|=|x1(t*)|≤d, which leads to

        (9)

        (10)

        By |f(x)|≥σ, we know

        (11)

        (12)

        By using Lemma 2.2, we see

        (13)

        Substituting (12) and (13) into (11). we get

        (14)

        Combining (9) and (14), we obtain

        (15)

        So by using (9), we get

        Furthermore, from the first equation of (3.1), we have

        Which implies that there is a constantζ∈[0,T] such thatx2(ζ)=0.So

        By the second formulae of (4) and [H3], we have

        Now, if we setΩ={x:x=(x1,x2)T∈X,|x1|00,equationQN(x)=(0,0)T,i.e.,

        has no solution in (Ω∩KerL)/Δε, whereε∈(0,ε0) is an arbitrary constant. So deg {JQN,Ω∩KerL,0}=deg {JQN,Δε,0}. Let

        Ifx∈?Δε. Then

        which implies that ‖JQN(x)-JQN0(x)‖→0 asε→0. So ifε>0 is sufficiently small, then

        deg {JQN,Δε,0}=deg {JQN0,Δε,0}.

        Noting dimQN0=1, it follows that deg{JQN0,Δε,0}=deg{JQN0,Δ0,0}, where Δ0={x:x∈R,|x|0 is constant. By assumption [H1], we see that deg {JQN0,Δ0,0}≠0,i.e., deg {JQN,Ω∩KerL,0}=deg {JQN,Δ0,0}≠0. Then, the condition (3) of Lemma 2.1 is also satisfied. Therefore, by applying Lemma 2.1, we conclude that the equation

        Lx=Nx,

        Furthermore, letu(t)=x3(t)-x4(t) andv(t)=y3(t)-y4(t)v. Sincex′=ψ(y-h(x)), it follows from (1) that

        we will show thatv(t)≤0,?t∈[0,T].

        Suppose there exists at0∈[0,T] such thatv(t0)=maxt∈[0,T]v(t)>0 which together withβ(t)>0 implies that

        (16)

        It follows from [H4] and the first equation of Eq.(16) thatx3(t0-τ(t0))=x4(t0-τ(t0)), then from the second equation of Eq.(7), we get

        -β(t)g′(x3(t0-τ(t0)))[ψ(y3(t0-τ(t0))-h(x3(t0-τ(t0)))-

        ψ(y4(t0-τ(t0))-h(x4(t0-τ(t0)))](1-τ′(t0)).

        In view ofβ(t0)>0,g′(x3(t0-τ(t0)))<0.v(t0)=y3(t0)-y4(t0)>0.τ′(t0)<1 and |τ|0<ε,εbe sufficiently small, then we haveψ(y3(t0-τ(t0)))>ψ(y4(t0-τ(t0))) andv″(t0)>0.

        Which is a contradiction. Hence maxt∈[0,T]v(t)≤0. Similarly, exchanging the role ofx3andx4, we can show that maxt∈[0,T]v(t)≥0. This implies thatv(t)≡0,i.e.,y3(t)≡y4(t).Then fromg′(x)<0, we havex3(t-τ(t))≡x4(t-τ(t)).i.e.,x3(t)≡x4(t) Therefore, the Eq.(1) has at most one solution. The proof of Theorem 3.1 is now complete.

        References:

        [1]NGUYENPC.Periodicsolutionsofasecondordernonlinearsystem[J].JMathAnalAppl, 1997,214(1):219-232.

        [2]LUSP,GEWG.PeriodicsolutionsforakindofLiénardequationwithadeviatingargument[J].JMathAnnaAppl, 2004,289(2):231-243.

        [3]CHENGWS,RENJL.OntheexistenceofperiodicsolutionforP-LaplaciangeneralizedLiénardequation[J].NonlinearAnal, 2005,60(1):65-75.

        [4]GAOFB,LUSP.NewresultsontheexistenceanduniquenessofpreiodicsolutionsforLiénardequationtypeP-Laplacianequation[J].JFranklinInstitute, 2008,345(2):374-381.

        [5]GAOH,LIUBW.ExistenceanduniquenessofperiodicsolutionsforforcedRayleigh-typeequations[J].ApplMathComput, 2009,211(1):148-154.

        [6]BONHEURED,HABETSP,OBERSNELF, et al.Classicalandnon-classicalsolutionsofaprescribedcurvatureequations[J].JDiffEqu, 2007,243(1):208-237.

        [7]LOPEZR.Acomparisonresultforradialsolutionsofthemeancurvatureequation[J].ApplMathLett, 2009,22(4):860-864.

        [8]PANH.One-dimensionalprescribedmeancurvatureequationwithexponentialnonlinearity[J].NonlinearAnnl, 2009,70(5):999-1010.

        [9]GAINESRE,MAWHINJ.Coincidencedegreeandnonlineardifferentialequaations[M].Berlin:Springer, 1977.

        [10]LUSP,GEWG.Sufficientconditionsfortheexistenceofperiodicsolutionstosomesecondorderdifferentialequationswithadeviatingargument[J].JMathAnalAppl, 2005,308(2):393-419.

        (編輯CXM)

        Existence and Uniqueness of Periodic Solutions for Prescribed Mean Curvature Liénard Equation with a Deviating Argument

        LAN De-xin*, CHEN Wen-bin

        (College of Mathematics and Computer Science, Wuyi University, Wuyi Shan 354300, China)

        By using the coincidence degree theory, some new results were established, on the existence and uniqueness of T-periodic solutions for a kind of prescribed mean curvature Liénard equation of the form

        prescribed mean curvature; Liénard equation; periodic solution; coincidence degree

        10.7612/j.issn.1000-2537.2016.03.016

        2015-10-15

        武夷學院科學研究基金資助項目(XQ201305)

        ,E-mail:1220340699@qq.com

        O175.6

        A

        1000-2537(2016)03-0089-06

        猜你喜歡
        蘭德武夷武夷山
        《武夷天下秀》
        它們的家園——武夷山
        大美武夷山
        武夷學院
        機電工程(2020年7期)2020-07-23 06:23:22
        基于PTR-TOF-MS與GC-MS技術(shù)的武夷水仙和武夷肉桂香氣特征分析
        風雨廊橋——武夷山馀慶橋
        紅土地(2018年12期)2018-04-29 09:16:50
        武夷山
        中國智庫:何時能圓“蘭德夢”
        華人時刊(2016年3期)2016-04-05 05:56:26
        四天三夜 LAND CRUISER 200蘭德酷路澤探塞北
        越玩越野(2015年2期)2015-08-29 01:05:04
        武夷聽濤
        百花洲(2014年5期)2014-04-16 05:53:24
        久久夜色撩人精品国产小说 | 日韩放荡少妇无码视频| 久久久久无码国产精品不卡| 国产亚洲精品综合在线网址| 精品国产免费一区二区久久| 成人国产一区二区三区| 亚洲人成绝费网站色www| 久久天天躁狠狠躁夜夜中文字幕 | 亚洲精品成人无百码中文毛片| 中文字幕日韩一区二区不卡| 香蕉视频在线观看国产| 亚洲av黄片一区二区| 少妇人妻中文久久综合| 中文字幕人妻被公上司喝醉| 91网站在线看| 亚洲综合偷拍一区二区| 亚洲成av人片不卡无码| а√天堂资源8在线官网在线| 色yeye在线观看| 日韩精品免费在线视频一区| 久久99热狠狠色精品一区| 国产精品麻豆最新AV| 一本久久a久久精品综合| 人妻精品在线手机观看| 无码av免费精品一区二区三区 | 欧美人与物videos另类| 国产一区二区黄色网页| 又大又粗又爽18禁免费看 | 中文字幕午夜精品久久久| 欧美性受xxxx狂喷水| 亚洲区在线播放| 天堂影院久久精品国产午夜18禁| 国产一区二区三区久久精品| 国产女女做受ⅹxx高潮| 国产精品一区二区午夜久久| 日韩av一区二区不卡| 欧美黑人性暴力猛交喷水黑人巨大 | 日韩AV无码乱伦丝袜一区| 国产女同舌吻1区2区| 亚洲午夜福利在线视频| 久久精品国产亚洲婷婷|