亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類廣義平均曲率Liénard方程周期解存在性與唯一性

        2016-08-31 02:25:40蘭德新陳文斌
        湖南師范大學自然科學學報 2016年3期
        關(guān)鍵詞:蘭德武夷武夷山

        蘭德新,陳文斌

        (武夷學院數(shù)學與計算機學院,中國 武夷山 354300)

        ?

        一類廣義平均曲率Liénard方程周期解存在性與唯一性

        蘭德新*,陳文斌

        (武夷學院數(shù)學與計算機學院,中國 武夷山354300)

        運用Mawhin 重合度拓展定理研究了一類廣義平均曲率Liénard 方程

        周期解存在性與唯一性問題,得到了周期解存在性與唯一性的相關(guān)新結(jié)果.

        廣義平均曲率;Liénard 方程;周期解;重合度

        1 Introduction

        We consider the following Prescribed mean curvature Liénard equation:

        (1)

        wheref,e∈C(R,R),β,g,τ∈C1(R,R),e,τ,βare T-periodic,T>0,β(t)>0 andτ(t)≥0. As we all know, the dynamic behaviors of Liénard equation have been wide-ly investigated[1-5]due to the application in many fields such as physics, mechanics and the engineering technique fields. In such applications, it is important to know the existence of periodic solutions of Liénard equation. For example, see papers[1-5]. These papers were devoted mainly to study the following several types:

        x″(t)+f(x(t))x′(t)+g(x(t-σ))=e(t),

        x″(t)+f(x(t))x′(t)+g(x(t-τ(t,x(t))))=e(t),

        (φp(x′(t)))′+f(x(t))x′(t)+β(t)g(x(t-τ(t)))=e(t).

        (2)

        2 Preliminaries

        Throughout this paper, letXandYbe real Banach spaces and letL:D(L) ?X→Ybe a Fredholm operator with index zero; hereD(L) denotes the domain ofL.This means that ImLis closed inYand dim KerL=dim(Y/lmL)<+∞. Consider the supplementary subspacesX1andY1such thatX=KerL⊕X1andY=lmL⊕Y1and letP:X→KerLandQ:Y→Y1be the natural projections, Clearly, KerL∩(D(L)∩X1)=0; thus the restrictionLp: =L|D(L)∩X1is invertible. Denote the in-verse ofLpbyK.

        (1)Lx≠λNx,?(x,λ)∈(D(L)∩?Ω)×(0,1);

        (2)Nx?lmL,?x∈KerL∩?Ω;

        (3) deg(JQN,Ω∩KerL,0)≠0,whereJ:lmQ→KerLis an isomorphism.

        Lemma 2.2[10]Letα∈[0,+∞] be constants,S∈C(R,R) withs(t+T)≡s(t), ands(t)∈[-α,α],?t∈[0,T]. Then ?x∈C1(R,R) withx(t+T)≡x(t),we have

        In order to use Mawhin’s continuation theorem to study the existence of T-periodic solutions for Eq.(1),we should consider the following system:

        (3)

        LetX=Y={x:x=(x1,x2)T∈C(R,R2),x(t)≡x(t+T)},‖x‖=max{|x1|0,|x2|0},

        and letKrepresent the inverse ofLKer P∩D(L). Clearly, KerL=lmQ=R2and

        where

        For the sake of convenience, we list the following assumptions which will be used for us to study the existence and uniqueness of T-periodic solutions to Eqs.(3) in Section 3.

        [H2] There existsl>0 such that |g(x1)-g(x2)|≤l|x1-x2|,?l∈R,x1,x2∈R.

        [H4]g′(x)<0,|τ|0≤εandτ′(t)<1 (εbe sufficiently small constant ).

        3 Main results

        ProofWeconsiderLx=λNx,?λ∈(0,1).

        LetΩ1={x∈X:Lx=λNx,λ∈(0,1)}.Ifx∈Ω1,thenwehave

        (4)

        Bythefirstformulaeof(4),wehave

        Itfollowsthat

        (5)

        (6)

        Thenfromtheassumption[H1],wemusthave

        x1(t1-τ(t1))>-d,

        (7)

        and

        x1(t2-τ(t2))

        (8)

        Now,webegintoprovethatthereisaconstantξ∈R such that |x1(ξ)|≤d.

        Case1Ifx1(t2-τ(t2))∈(-d,d),then|x1(ξ)|≤dwhenξ=t2-τ(t2).

        Case2Ifx1(t2-τ(t2))<-d,thenfrom(3.4)andthecontinuityofx1(t)onR,weseethatthereisaconstantξ∈(t1-τ(t1),t2-τ(t2))[or(t2-τ(t2),t1-τ(t1))]suchthat|x1(ξ)|=-d,i.e.,|x1(ξ)|≤d.

        WeseeineitherCase1orCase2that|x1(ξ)|≤d.Sinceξ∈R is a constant, there must be an integer kand a pointt*∈[0,T] such thatξ=kT+t*.So|x1(ξ)|=|x1(t*)|≤d, which leads to

        (9)

        (10)

        By |f(x)|≥σ, we know

        (11)

        (12)

        By using Lemma 2.2, we see

        (13)

        Substituting (12) and (13) into (11). we get

        (14)

        Combining (9) and (14), we obtain

        (15)

        So by using (9), we get

        Furthermore, from the first equation of (3.1), we have

        Which implies that there is a constantζ∈[0,T] such thatx2(ζ)=0.So

        By the second formulae of (4) and [H3], we have

        Now, if we setΩ={x:x=(x1,x2)T∈X,|x1|00,equationQN(x)=(0,0)T,i.e.,

        has no solution in (Ω∩KerL)/Δε, whereε∈(0,ε0) is an arbitrary constant. So deg {JQN,Ω∩KerL,0}=deg {JQN,Δε,0}. Let

        Ifx∈?Δε. Then

        which implies that ‖JQN(x)-JQN0(x)‖→0 asε→0. So ifε>0 is sufficiently small, then

        deg {JQN,Δε,0}=deg {JQN0,Δε,0}.

        Noting dimQN0=1, it follows that deg{JQN0,Δε,0}=deg{JQN0,Δ0,0}, where Δ0={x:x∈R,|x|0 is constant. By assumption [H1], we see that deg {JQN0,Δ0,0}≠0,i.e., deg {JQN,Ω∩KerL,0}=deg {JQN,Δ0,0}≠0. Then, the condition (3) of Lemma 2.1 is also satisfied. Therefore, by applying Lemma 2.1, we conclude that the equation

        Lx=Nx,

        Furthermore, letu(t)=x3(t)-x4(t) andv(t)=y3(t)-y4(t)v. Sincex′=ψ(y-h(x)), it follows from (1) that

        we will show thatv(t)≤0,?t∈[0,T].

        Suppose there exists at0∈[0,T] such thatv(t0)=maxt∈[0,T]v(t)>0 which together withβ(t)>0 implies that

        (16)

        It follows from [H4] and the first equation of Eq.(16) thatx3(t0-τ(t0))=x4(t0-τ(t0)), then from the second equation of Eq.(7), we get

        -β(t)g′(x3(t0-τ(t0)))[ψ(y3(t0-τ(t0))-h(x3(t0-τ(t0)))-

        ψ(y4(t0-τ(t0))-h(x4(t0-τ(t0)))](1-τ′(t0)).

        In view ofβ(t0)>0,g′(x3(t0-τ(t0)))<0.v(t0)=y3(t0)-y4(t0)>0.τ′(t0)<1 and |τ|0<ε,εbe sufficiently small, then we haveψ(y3(t0-τ(t0)))>ψ(y4(t0-τ(t0))) andv″(t0)>0.

        Which is a contradiction. Hence maxt∈[0,T]v(t)≤0. Similarly, exchanging the role ofx3andx4, we can show that maxt∈[0,T]v(t)≥0. This implies thatv(t)≡0,i.e.,y3(t)≡y4(t).Then fromg′(x)<0, we havex3(t-τ(t))≡x4(t-τ(t)).i.e.,x3(t)≡x4(t) Therefore, the Eq.(1) has at most one solution. The proof of Theorem 3.1 is now complete.

        References:

        [1]NGUYENPC.Periodicsolutionsofasecondordernonlinearsystem[J].JMathAnalAppl, 1997,214(1):219-232.

        [2]LUSP,GEWG.PeriodicsolutionsforakindofLiénardequationwithadeviatingargument[J].JMathAnnaAppl, 2004,289(2):231-243.

        [3]CHENGWS,RENJL.OntheexistenceofperiodicsolutionforP-LaplaciangeneralizedLiénardequation[J].NonlinearAnal, 2005,60(1):65-75.

        [4]GAOFB,LUSP.NewresultsontheexistenceanduniquenessofpreiodicsolutionsforLiénardequationtypeP-Laplacianequation[J].JFranklinInstitute, 2008,345(2):374-381.

        [5]GAOH,LIUBW.ExistenceanduniquenessofperiodicsolutionsforforcedRayleigh-typeequations[J].ApplMathComput, 2009,211(1):148-154.

        [6]BONHEURED,HABETSP,OBERSNELF, et al.Classicalandnon-classicalsolutionsofaprescribedcurvatureequations[J].JDiffEqu, 2007,243(1):208-237.

        [7]LOPEZR.Acomparisonresultforradialsolutionsofthemeancurvatureequation[J].ApplMathLett, 2009,22(4):860-864.

        [8]PANH.One-dimensionalprescribedmeancurvatureequationwithexponentialnonlinearity[J].NonlinearAnnl, 2009,70(5):999-1010.

        [9]GAINESRE,MAWHINJ.Coincidencedegreeandnonlineardifferentialequaations[M].Berlin:Springer, 1977.

        [10]LUSP,GEWG.Sufficientconditionsfortheexistenceofperiodicsolutionstosomesecondorderdifferentialequationswithadeviatingargument[J].JMathAnalAppl, 2005,308(2):393-419.

        (編輯CXM)

        Existence and Uniqueness of Periodic Solutions for Prescribed Mean Curvature Liénard Equation with a Deviating Argument

        LAN De-xin*, CHEN Wen-bin

        (College of Mathematics and Computer Science, Wuyi University, Wuyi Shan 354300, China)

        By using the coincidence degree theory, some new results were established, on the existence and uniqueness of T-periodic solutions for a kind of prescribed mean curvature Liénard equation of the form

        prescribed mean curvature; Liénard equation; periodic solution; coincidence degree

        10.7612/j.issn.1000-2537.2016.03.016

        2015-10-15

        武夷學院科學研究基金資助項目(XQ201305)

        ,E-mail:1220340699@qq.com

        O175.6

        A

        1000-2537(2016)03-0089-06

        猜你喜歡
        蘭德武夷武夷山
        《武夷天下秀》
        它們的家園——武夷山
        大美武夷山
        武夷學院
        機電工程(2020年7期)2020-07-23 06:23:22
        基于PTR-TOF-MS與GC-MS技術(shù)的武夷水仙和武夷肉桂香氣特征分析
        風雨廊橋——武夷山馀慶橋
        紅土地(2018年12期)2018-04-29 09:16:50
        武夷山
        中國智庫:何時能圓“蘭德夢”
        華人時刊(2016年3期)2016-04-05 05:56:26
        四天三夜 LAND CRUISER 200蘭德酷路澤探塞北
        越玩越野(2015年2期)2015-08-29 01:05:04
        武夷聽濤
        百花洲(2014年5期)2014-04-16 05:53:24
        91麻豆精品一区二区三区| 日本三级欧美三级人妇视频| 欧美精品在线一区| 抖射在线免费观看视频网站| 国产精品成人av一区二区三区| 国产亚洲一区二区在线观看| 婷婷成人基地| 亚洲精品综合色区二区| 亚洲一区二区三区在线视频| 美女不带套日出白浆免费视频 | 毛片在线播放亚洲免费中文网| 97se亚洲国产综合在线| 国产香蕉97碰碰视频va碰碰看 | 狂插美女流出白浆视频在线观看| 麻豆蜜桃av蜜臀av色欲av| 国产露脸精品产三级国产av| 国产高清在线91福利| 日本岛国一区二区三区四区| 亚洲精品~无码抽插| 精品视频一区二区三三区四区| 国产精品久久一区性色a| 女人被躁到高潮嗷嗷叫免| 狠狠噜天天噜日日噜无码| 91伊人久久| 日本高清人妻一区二区| 人妻丝袜中文无码av影音先锋专区| 越南女子杂交内射bbwbbw | 国产亚洲精品视频在线| 日韩亚洲中文有码视频| 亚洲精品无码专区在线| 狠狠亚洲婷婷综合色香五月| 国产一区二区黑丝美胸| 大地资源网高清在线播放| 天天爽夜夜爽人人爽曰喷水| 黄色三级一区二区三区| 亚洲精品国产精品乱码在线观看| 欧美国产精品久久久乱码| 狠狠狠狠狠综合视频| 五月婷婷开心六月激情| 国产成人久久精品一区二区三区| 久久精品这里只有精品|