亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        水分管理調(diào)控水稻氮素利用研究進(jìn)展

        2016-08-29 03:27:30曹小闖李曉艷朱練峰張均華禹盛苗吳良?xì)g金千瑜
        生態(tài)學(xué)報(bào) 2016年13期
        關(guān)鍵詞:氧量根際氮素

        曹小闖, 李曉艷,朱練峰,張均華,禹盛苗,吳良?xì)g,金千瑜,*

        1 中國(guó)水稻研究所,水稻生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 杭州 310006

        2 浙江大學(xué)環(huán)境與資源學(xué)院,教育部環(huán)境修復(fù)與生態(tài)健康重點(diǎn)實(shí)驗(yàn)室,杭州 310058

        ?

        水分管理調(diào)控水稻氮素利用研究進(jìn)展

        曹小闖1, 李曉艷2,朱練峰1,張均華1,禹盛苗1,吳良?xì)g2,金千瑜1,*

        1 中國(guó)水稻研究所,水稻生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 杭州310006

        2 浙江大學(xué)環(huán)境與資源學(xué)院,教育部環(huán)境修復(fù)與生態(tài)健康重點(diǎn)實(shí)驗(yàn)室,杭州310058

        水分管理;根際溶氧量;氮代謝;光合氮素利用率;水稻

        水稻是我國(guó)種植面積最大、灌溉用水量最多的作物, 全國(guó)種植面積達(dá)3000萬hm2[1]。作為一個(gè)需氧的有機(jī)體,水稻雖然有發(fā)達(dá)的通氣組織以保證根系的正常需氧活動(dòng),但半水生性特點(diǎn)要求其生長(zhǎng)過程中需要大量的灌溉水,因此土壤供氧狀況仍是限制水稻根系生長(zhǎng)的關(guān)鍵因子[2]。長(zhǎng)期處于淹水狀態(tài)的稻田,空氣很難進(jìn)入到土壤中,水稻根系及微生物的呼吸作用消耗大量氧氣,導(dǎo)致土壤中的氧濃度極低。持續(xù)的低氧環(huán)境會(huì)引起稻田還原性有毒物質(zhì)的積累,根系細(xì)胞能量代謝失衡、細(xì)胞質(zhì)酸化及低氧的生理生化反應(yīng),對(duì)水稻根系形態(tài)結(jié)構(gòu)、根系活力和生長(zhǎng)發(fā)育等都會(huì)產(chǎn)生嚴(yán)重影響[3-4]。研究發(fā)現(xiàn),濕潤(rùn)灌溉、干濕交替、好氧栽培等水分管理能通過調(diào)控根際溶氧量促進(jìn)水稻生長(zhǎng)[5-8],誘導(dǎo)水稻的生理特性及改善根系的吸收功能增強(qiáng)其抗旱性能,達(dá)到以不犧牲光合產(chǎn)物積累而大幅度提高氮素利用效率的目的[9-10]。增加根際溶氧量還能刺激土壤氮的礦化作用,且氮素形態(tài)顯著影響水稻的光合速率[11]。隨著我國(guó)氮肥用量的不斷增加,水稻的氮素利用率呈不斷降低趨勢(shì);灌水過多、不合理的水分管理也顯著增加稻田氮素?fù)p失,因此尋找提高氮肥利用率的新途徑是目前急需解決的突出問題[12]。本文通過國(guó)內(nèi)外最新文獻(xiàn)綜述了稻田水分管理對(duì)水稻根際氮素形態(tài)、氮吸收利用、光合速率及其氮環(huán)境效應(yīng)的影響等方面研究進(jìn)展,以期為相關(guān)研究提供參考。

        1 稻田水分管理對(duì)土壤和根際氮素形態(tài)的影響

        增加根際溶氧量還能顯著提高根際氧化還原電位及根系活力,這不僅有利于根系對(duì)營(yíng)養(yǎng)物質(zhì)的吸收,還使根際土壤磷有效性增加、還原性有害物質(zhì)(Fe2+、Mn2+、H2S等)減少,為水稻生長(zhǎng)、氮吸收代謝提供有利的外部環(huán)境[19-20]。干濕交替及好氧栽培模式下土壤團(tuán)聚體破碎釋放出的閉蓄態(tài)有機(jī)物、微生物細(xì)胞溶解及滲透調(diào)節(jié)物質(zhì)的分泌等都將提高基質(zhì)的有效性及碳、氮礦化率[21];還提高了有機(jī)質(zhì)有效性并能抵制微生物進(jìn)入半休眠狀態(tài),這也增加微生物生物量碳、氮[18]。碳源是微生物生長(zhǎng)繁殖的限制因素,高量的溶解性有機(jī)碳提升了微生物生物量和酶活性,隨之土壤結(jié)構(gòu)得到改善,碳氮有效性將進(jìn)一步提高[22]。

        2 稻田水分管理對(duì)水稻氮吸收利用的影響調(diào)控研究

        2.1稻田水分管理對(duì)水稻氮吸收的影響

        2.2稻田水分管理對(duì)水稻氮吸收的調(diào)控機(jī)制研究

        根際是植物、土壤和微生物相互作用的特殊區(qū)域,是植物、土壤、微生物進(jìn)行物質(zhì)和能量交換及信息傳遞的門戶。根際缺氧或無氧環(huán)境下水稻根系細(xì)胞迅速?gòu)挠醒鹾粑袚Q為以乙醇發(fā)酵途徑為主的無氧呼吸,ATP合成量?jī)H為正常時(shí)3%—5%,能量嚴(yán)重虧缺,不利于水稻對(duì)氮的吸收[41]。短期缺氧脅迫時(shí),水稻根系能通過增加通氣組織功能提高氧氣向根尖的轉(zhuǎn)運(yùn)效率, 減少吸收營(yíng)養(yǎng)物質(zhì)的根表面積, 但提高著生在主根上的側(cè)根數(shù)目以增加對(duì)營(yíng)養(yǎng)物質(zhì)的吸收[42]。通過調(diào)控水分管理增加根際溶氧量可顯著提高稻田氧化還原電位和硝態(tài)氮含量,這兩個(gè)因素都會(huì)影響水稻的根系形態(tài)建成和氮素吸收[43]。增加根際溶氧量對(duì)水稻氮吸收代謝有顯著的促進(jìn)作用,這可能是由于隨著根際溶氧量增加,根系呼吸作用加強(qiáng),為氮吸收提供更多的能量;也可能受增氧條件下根系形態(tài)變化的影響,主要表現(xiàn)為最長(zhǎng)根增長(zhǎng)、孔隙度減小、側(cè)根和不定根數(shù)減少、外皮層厚壁組織細(xì)胞疏松,根系活力增強(qiáng)[6,44]。楊菲等[45]發(fā)現(xiàn)干濕交替能明顯提高根際氧濃度,增加水稻根系生物量、根毛數(shù)、根系表面積,并促進(jìn)水稻4級(jí)次生側(cè)根的發(fā)生。Jackson等[46]發(fā)現(xiàn)增氧可顯著提高水稻根長(zhǎng)及其生物量,且能顯著增加深層根的比例,說明增加根際氧濃度可促進(jìn)根系向下層生長(zhǎng),提高土壤中水分和養(yǎng)分的有效性。富氧環(huán)境可提高水稻總根長(zhǎng)和下層根系所占的干物質(zhì)比例,且提高了根系自根基到根尖10—20cm、>20cm部分所占的生物量比例[47]。但根際氧濃度并非越高越好,水稻對(duì)根際溶氧量需求存在一定的闕值。研究發(fā)現(xiàn)水分含量達(dá)到田間持水量的70%—75%時(shí),最有利于水稻根系生長(zhǎng),在此基礎(chǔ)上增加或降低根際溶氧量,水稻的產(chǎn)量及相關(guān)氮代謝均會(huì)受到顯著影響[48]。總之,根系形態(tài)結(jié)構(gòu)的改變必將導(dǎo)致水稻對(duì)土壤氮素吸收利用能力的改變,根系生物量大、直徑大、空隙高度及不定根數(shù)量高的水稻品種在氮素吸收及產(chǎn)量上均有明顯的優(yōu)勢(shì),這將為今后選育理想根系品種提供重要參考。

        2.3稻田水分管理對(duì)水稻光合速率的調(diào)控研究

        3 稻田水分管理對(duì)氮素環(huán)境效應(yīng)的影響

        氮素利用率是決定氮肥增產(chǎn)效果的主要因素,受氮肥用量、施肥方法、水分管理等因素影響。長(zhǎng)期淹水種植使稻田氮礦化速率極慢,還田秸稈等有機(jī)質(zhì)分解不充分,導(dǎo)致土壤積累大量的酚醛木質(zhì)素化合物,降低氮素有效性[75],這將阻礙水稻對(duì)土壤背景氮的吸收但對(duì)肥料氮吸收沒有影響,加重水稻生產(chǎn)對(duì)肥料的依賴。以南太湖流域淹灌稻田為例,淹灌稻田中氮揮發(fā)、徑流、淋失等途徑是造成氮肥利用率低的主要原因,三者氮損失量分別占施氮量的20%—40%、1.4%—6.3%及1.0%—1.9%[76]。稻田氮素?fù)p失受溫度、水分、氮源、pH 值、C/N、氧化還原電位等諸多因素影響,其中土壤持水量能夠很好的反映土壤溶解氧的狀況,因而通過調(diào)控稻田水分含量將影響稻田氮素?fù)p失。在稻田生態(tài)系統(tǒng)中,CH4是造成全球溫室效應(yīng)的主要?dú)怏w。Liesack等[77]指出,稻田產(chǎn)生的CH4大約有高達(dá)36%—80%在根際微氧區(qū)域被甲烷氧化細(xì)菌消耗, 因此根際生物氧化在控制稻田溫室氣體排放過程中具有非常重要的作用[78]。甲烷氧化菌是一種嚴(yán)格的好氧菌, 而產(chǎn)生CH4、N2O等溫室氣體的甲烷細(xì)菌、反硝化細(xì)菌大部分都屬于厭氧菌[79]。稻田持續(xù)淹水導(dǎo)致土壤缺氧,抑制甲烷氧化菌的活性。當(dāng)頻繁干濕交替及增加根際溶氧量后土壤的氧化還原電位增加,土壤微生物群落結(jié)構(gòu)發(fā)生變化,甲烷氧化菌等好氧微生物活性顯著增加,可抑制溫室氣體的產(chǎn)生。李香蘭等[80]發(fā)現(xiàn),稻田持續(xù)淹水處理CH4排放量是烤田處理的12—20倍。因此通過適宜的水分管理改善根系氮素、溶氧量狀況,可能會(huì)降低甲烷細(xì)菌、反硝化細(xì)菌等厭氧微生物的數(shù)量和活性,減少CH4、N2O等溫室氣體的生成。

        4 問題與展望

        氮素生理利用率與光合作用緊密相關(guān),水稻氮肥利用率的降低必然與植物光合氮素利用率的降低有關(guān)。張?jiān)茦虻萚83]發(fā)現(xiàn),高氮效水稻品種的葉綠素含量較低,但光合速率下降卻不明顯;且氮高效水稻基因型在各生育期均具有理想的株型、葉面積指數(shù)、光合勢(shì)和群體生長(zhǎng)速率來協(xié)調(diào)其氮素高效吸收利用[84]。當(dāng)前有關(guān)水稻光合同化物的形成與利用、氮素在體內(nèi)運(yùn)輸和轉(zhuǎn)運(yùn)、籽粒充實(shí)等對(duì)于根際氧濃度的響應(yīng),以及相關(guān)吸收和轉(zhuǎn)運(yùn)蛋白的表達(dá)調(diào)控機(jī)制等方面報(bào)道較少。因此,加強(qiáng)這些方面的研究能夠更好完善水稻氧營(yíng)養(yǎng)代謝機(jī)制,將為高氮效水稻品種選育提供更好的參考價(jià)值。

        基于以上的分析,可以認(rèn)為稻田生態(tài)系統(tǒng)中水稻氮素利用需要從以下幾方面進(jìn)行深入研究:

        (1) 合理的水分管理能促進(jìn)水稻氮素吸收,提高氮素利用率。因此,通過控制稻田水氮互作協(xié)調(diào)土壤水-肥-氣的平衡,根據(jù)影響氮肥利用率和光合作用的限制因素探索和開發(fā)新型水氮集成管理技術(shù),將有利于構(gòu)建理想水稻根系、健康稻田環(huán)境,提高水稻產(chǎn)量和氮素利用效率。

        (2) 氮水平、氮形態(tài)能通過調(diào)控葉片光合速率影響水稻的生長(zhǎng)發(fā)育及氮素利用率。加強(qiáng)水氮互作對(duì)水稻不同生育期光合速率的影響研究,明確光合氮素利用率與根際氮形態(tài)特征及溶氧量的響應(yīng)關(guān)系,這將為我們?nèi)骊U述水氮互作提高水稻氮肥利用率的光合生理本質(zhì)奠定基礎(chǔ)。

        (3)當(dāng)前根際氧調(diào)控根系吸收特性的相關(guān)研究較少,進(jìn)一步揭示不同根際氧濃度下水稻根系功能與養(yǎng)分利用間的內(nèi)在聯(lián)系是根際氧研究的發(fā)展趨勢(shì)。水稻根系及植株的衰老主要受激素調(diào)控,明確根際氧與激素在延緩衰老中的互作機(jī)制,進(jìn)而闡述溶氧量調(diào)控根系生長(zhǎng)發(fā)育和生理功能的機(jī)理,提高根系機(jī)能并帶動(dòng)外界營(yíng)養(yǎng)的高利用率以及光合產(chǎn)物的轉(zhuǎn)運(yùn)效率,對(duì)于水稻后期產(chǎn)量潛能的發(fā)揮和超高產(chǎn)栽培都具有重要科學(xué)意義。

        [1]中國(guó)統(tǒng)計(jì)年鑒, 2014. http://www.stats.gov.cn/tjsj/ndsj/2014/indexch.Htm.

        [2]Angela Hodge, Graziella Berta, Claude Doussan, Francisco Merchan, Martin Crespi. Plant root growth, architecture and function. Plant and Soil, 2009, 321(1/2): 153-187.

        [3]Konstantin Yu Kulichikhin, Olli Aitio, Tamara V Chirkova, Kurt V Fagerstedt. Effect of oxygen concentration on intracellular pH, glucose-6-phosphate and NTP content in rice (Oryzasativa) and Wheat (Triticumaestivum) root tips: in vivo31P-NMR study. Physiologia Plantarum, 2007, 129(3): 507-518.

        [4]Julia Bailey-Serres, Takeshi Fukao, Daniel J Gibbs, Michael J Holdsworth, Seung Cho Lee, Francesco Licausi, Pierdomenico Perata, Laurentius A C J Voesenek, Joost T van Dongen. Making sense of low oxygen sensing. Trends in Plant Science, 2012, 17(3): 129-138.

        [5]趙鋒, 張衛(wèi)建, 章秀福, 王丹英, 徐春梅. 稻田增氧模式對(duì)水稻籽粒灌漿的影響. 中國(guó)水稻科學(xué), 2011, 25(6): 605-612.

        [6]Motoka Nakamura, Takatoshi Nakamura, Takayoshi Tsuchiya, Ko Noguchi. Functional linkage between N acquisition strategies and aeration capacities of hydrophytes for efficient oxygen consumption in roots. Physiologia Plantarum, 2013, 147(2): 135-146.

        [7]Zhu L F, Yu S M, Jin Q Y. Effects of aerated irrigation on leaf senescence at late growth stage and grain yield of rice. Rice Science, 2012, 19(1): 44-48.

        [8]Li Y L, Wang X X. Root-induced changes in radial oxygen loss, rhizosphere oxygen profile, and nitrification of two rice cultivars in Chinese red soil regions. Plant and Soil, 2013, 365(1/2): 115-126.

        [9]潘英華, 康紹忠. 交替隔溝灌溉水分入滲規(guī)律及其對(duì)作物水分利用的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2000, 16(1): 39-43.

        [10]周江明, 姜家彪, 姜新有, 詹麗釧. 不同肥力稻田晚稻水氮耦合效應(yīng)研究. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2008, 14(1): 28-35.

        [11]Guo S W, Katrin Sehiemer, Burkhard Sattelmaeher, Ulf-Peter Hansen. Different apparent CO2compensation points in nitrate-and ammonium-growthPhaseolusvulgarisand the relationship to non-photorespiratory CO2evolution. Physiologia Plantarum, 2005, 123(3): 288-301.

        [12]張福鎖, 王激清, 張衛(wèi)峰, 崔振嶺, 馬文奇, 陳新平, 江榮風(fēng). 中國(guó)主要糧食作物肥料利用率現(xiàn)狀與提高途徑. 土壤學(xué)報(bào), 2008, 45(5): 915-924.

        [13]趙霞, 徐春梅, 王丹英, 陳松, 計(jì)成林, 陳麗萍, 章秀福. 根際溶氧量在水稻氮素利用中的作用機(jī)制研究. 中國(guó)水稻科學(xué), 2013, 27(6): 647-652.

        [14]劉學(xué), 朱練峰, 陳琛, 王會(huì)民, 歐陽由男, 禹盛苗, 金千瑜. 超微氣泡增氧灌溉對(duì)水稻生育特性及產(chǎn)量的影響. 灌溉排水學(xué)報(bào), 2009, 28(5): 89-91.

        [15]段英華, 張亞麗, 沈其榮. 水稻根際的硝化作用與水稻的硝態(tài)氮營(yíng)養(yǎng). 土壤學(xué)報(bào), 2004, 41(5): 803-809.

        [16]Kirk G J D, Kronzucker H J. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: A modeling study. Annals of Botany, 2005, 96(4): 639-646.

        [17]裴鵬剛, 張均華, 朱練峰, 禹盛苗, 金千瑜. 根際氧濃度調(diào)控水稻根系形態(tài)和生理特性研究進(jìn)展. 中國(guó)稻米, 2013, 19(2): 6-8.

        [18]Noah Fierer, Joshua P Schimel. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 2002, 34(6): 777-787.

        [19]趙峰, 王丹英, 徐春梅, 張衛(wèi)建, 章秀福. 水稻氧營(yíng)養(yǎng)的生理、生態(tài)機(jī)制及環(huán)境效應(yīng)研究進(jìn)展. 中國(guó)水稻科學(xué), 2009, 23(4): 335-341.

        [20]Revsbech N P, Pedersen O, Reichardt W, Briones A. Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biology and Fertility of Soils, 1999, 29(4): 379-385.

        [21]Butterly C R, Bünemann E K, McNeill A M, Baldock J A, Marschner P. Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biology and Biochemistry, 2009, 41(7): 1406-1416.

        [22]Maria Stenberg, Bo Stenberg, Tomas Rydberg. Effects of reduced tillage and liming on microbial activity and soil properties in a weakly-structured soil. Applied Soil Ecology, 2000, 14(2): 135-145.

        [23]Francesco Licausi. Regulation of the molecular response to oxygen limitations in plants. New Phytologist, 2011, 190(3): 550-555.

        [24]Halley C Oliveira, Luciano Freschi, Ladaslav Sodek. Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency. Plant Physiology and Biochemistry, 2013, 66: 141-149.

        [25]Maria Stoimenova, Abir U Igamberdiev, Kapuganti Jagadis Gupta, Robert D Hill. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta, 2007, 226(2): 465-474.

        [26]Faouzi Horchani, Samira Aschi-Smiti, Renaud Brouquisse. Involvement of nitrate reduction in the tolerance of tomato (SolanumlycopersicumL.) plants to prolonged root hypoxia. Acta Physiologiae Plantarum, 2010, 32(6): 1113-1123.

        [27]Anne Botrel, Werner M Kaiser. Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta, 1997, 201(4): 496-501.

        [28]Shi K, Ding X T, Dong D K, Zhou Y H, Yu J Q. Putrescine enhancement of tolerance to root-zone hypoxia inCucumissativus: a role for increased nitrate reduction. Functional Plant Biology, 2008, 35(4): 337-345.

        [29]徐春梅, 王丹英, 陳松, 陳麗萍, 章秀福. 增氧對(duì)水稻根系生長(zhǎng)與氮代謝的影響. 中國(guó)水稻科學(xué), 2012, 26(3): 320-324.

        [30]趙鋒, 張衛(wèi)建, 章秀福, 王丹英, 徐春梅. 連續(xù)增氧對(duì)不同基因型水稻分蘗期生長(zhǎng)和氮代謝酶活性的影響. 作物學(xué)報(bào), 2012, 38(2): 344-351.

        [31]王紹華, 曹衛(wèi)星, 丁艷鋒, 田永超, 姜東. 水氮互作對(duì)水稻氮吸收與利用的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2004, 37(4): 497-501.

        [32]陳新紅, 劉凱, 徐國(guó)偉, 王志琴, 楊建昌. 結(jié)實(shí)期氮素營(yíng)養(yǎng)和土壤水分對(duì)水稻光合特性、產(chǎn)量及品質(zhì)的影響. 上海交通大學(xué)學(xué)報(bào): 農(nóng)業(yè)科學(xué)版, 2004, 22(1): 48-53.

        [33]孫永健, 孫園園, 李旭毅, 郭翔, 馬均. 水氮互作下水稻氮代謝關(guān)鍵酶活性與氮素利用的關(guān)系. 作物學(xué)報(bào), 2009, 35(11): 2055-2063.

        [34]Trought M C T, Drew M C. Alleviation of injury to young wheat plants in anaerobic solution cultures in relation to the supply of nitrate and other inorganic nutrients. Journal of Experimental Botany, 1981, 32(3): 509-522.

        [35]Wang X Z, Zhu J G, Gao R, Yasukazu H, Feng K. Nitrogen cycling and losses under rice-wheat rotations with coated urea and urea in the Taihu lake region. Pedosphere, 2007, 17(1): 62-69.

        [36]Tan X Z, Shao D G, Liu H H, Yang F S, Xiao C, Yang H D. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy and Water Environment, 2013, 11(1/4): 381-395.

        [37]Sepaskhah A R, Barzegar M. Yield, water and nitrogen-use response of rice to zeolite and nitrogen fertilization in a semi-arid environment. Agricultural Water Management, 2010, 98(1): 38-44.

        [38]劉艷麗, 張斌, 胡峰, 喬潔, 張衛(wèi)健. 干濕交替對(duì)水稻土碳氮礦化的影響. 土壤, 2008, 40(4): 554-560.

        [39]何文壽, 李生秀, 李輝桃. 水稻對(duì)銨態(tài)氮和硝態(tài)氮吸收特性的研究. 中國(guó)水稻科學(xué), 1998, 12(4): 249-252.

        [40]Lon S, Chen N C, Chishaki N, Inanaga S. Behavior of N within rice plants, comparing between Japonica and Indica varieties. Ecology and Environment, 2004, 13(4): 646-650.

        [41]Almeida A M, Vriezen W H, Van Der Straeten D. Molecular and physiological mechanisms of flooding avoidance and tolerance in rice. Russian Journal of Plant Physiology, 2003, 50(6): 743-751.

        [42]Jean Armstrong, William Armstrong. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe2+and water uptake, and lateral root emergence. Annals of Botany, 2005, 96(4): 625-638.

        [43]Jampeetong Arunothai, Brix Hans. Oxygen stress inSalvinianatans: Interactive effects of oxygen availability and nitrogen source. Environmental and Experimental Botany, 2009, 66(2): 153-159.

        [44]Zhao F, Xu C M, Zhang W J, Zhang X F, Li F B, Chen J P, Wang D Y. Effects of rhizosphere dissolved oxygen content and nitrogen form on root traits and nitrogen accumulation in rice. Rice Science, 2011, 18(4): 304-310.

        [45]楊菲, 謝小立. 稻田干濕交替過程生理生態(tài)效應(yīng)研究綜述. 雜交水稻, 2010, 25(2): 1-4.

        [46]Jackson M B, Colmer T D. Response and adaptation by plants to flooding stress. Annals of Botany, 2005, 96(4): 501-505.

        [47]王丹英, 韓勃, 章秀福, 邵國(guó)勝, 徐春梅, 符冠富. 水稻根際含氧量對(duì)根系生長(zhǎng)的影響. 作物學(xué)報(bào), 2008, 34(5): 803-808.

        [48]張玉屏, 李金才, 黃義德, 黃文江. 水分脅迫對(duì)水稻根系生長(zhǎng)和部分生理特性的影響. 安徽農(nóng)業(yè)科學(xué), 2001, 29(1): 58-59.

        [50]Wang X B, Wu P, Hu B, Chen Q S. Effects of nitrate on the growth of lateral root and nitrogen absorption in rice. Acta Botanica Sinica, 2002, 44(6): 678-683.

        [51]Herbert J Kronzucker, M Yaeesh Siddiqi, Anthony D M Glass, Guy J D Krik. Nitrate-ammonium synergism in rice: A subcellular flux analysis. Plant Physiology, 1999, 119(3): 1041-1046.

        [55]Cao Y, Fan X R, Sun S B, Xu G H, Hu J, Shen Q R. Effect of nitrate on activities and transcript levels of nitrate reductase and glutamine synthetase in rice. Pedosphere, 2008, 18(5): 664-673.

        [56]趙鋒, 王丹英, 徐春梅, 張衛(wèi)建, 李鳳博, 毛海軍, 章秀福. 根際增氧模式的水稻形態(tài)、生理及產(chǎn)量響應(yīng)特征. 作物學(xué)報(bào), 2010, 36(2): 303-312.

        [57]Elizabeth A Ainsworth, Stephen P Long. What have we learned from 15 years of free-air CO2enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 2005, 165(2): 351-372.

        [58]Andrew D B Leakey, Martin Uribelarrea, Elizabeth A Ainsworth, Shawna L Naidu, Alistair Rogers, Donald R Ort, Stephen P Long. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2concentration in the absence of drought. Plant Physiology, 2006, 140(2): 779-790.

        [59]Debabrata Ray, Sheshshayee M S, Mukhopadhyay K, Bindumadhava H, Prasad T G, Kumar M Udaya. High nitrogen use efficiency in rice genotypes is associated with higher net Photosynthetic rate at lower Rubisco content. Biologia Plantarum, 2003, 46(2): 251-256.

        [60]Oula Ghannoum, John R Evans, Wah Soon Chow, T John Andrews, Jann P Conroy, Susanne von Caemmerer. Faster Rubisco is the key to superior nitrogen-use efficiency in NADP-Malic enzyme relative to NAD-Malic enzyme C4grasses. Plant Physiology, 2005, 137(2): 638-650.

        [61]Amane Makino, Tetsuya Sato, Hiromi Nakano, Tadahiko Mae. Leaf photosynthesis, plant growth and nitrogen allocation in rice under different irradiances. Plant, 1997, 203(3): 390-398.

        [62]Chandler J W, Dale J E. Nitrogen deficiency and fertilization effects on needle growth and Photosynthesis in Sitka spruce (Piceasilchensis). Tree Physiology, 1995, 15(12): 813-817.

        [63]Charles R Warren. The photosynthetic limitation posed by internal conductance to CO2movement is increased by nutrient supply. Journal of Experimental Botany, 2004, 55(406): 2313-2321.

        [64]Li Y, Yang X X, Ren B B, Shen Q R, Guo S W. Why nitrogen use efficiency decreased under high nitrogen supply of rice seedlings (OryzasativaL.)? Journal of Plant Growth Regulation, 2012, 31(1): 47-52.

        [65]Pia Walch-Liu, Günter Neumann, Fritz Bangerth, Christof Engels. Rapid effects of nitrogen form on leaf morphogenesis in tobacco. Journal of Experimental Botany, 2000, 51(343): 227-237.

        [66]John M Bowler, Malcolm C Press. Effects of elevated CO2, nitrogen form and concentration on growth and photosynthesis of a fast-and slow-growing grass. New Phytologist, 1996, 132(3): 391-401.

        [67]Guo S W, Brück H, Sattelmacher B. Effects of supplied nitrogen form on growth and water uptake of French bean (PhaseolusvulgarisL.) plants. Plant and Soil, 2002, 239(2): 267-275.

        [68]Guo S W, Zhou Y, Shen Q R, Zhang F S. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations. Plant Biology, 2007, 9(1): 21-29.

        [69]John A Raven. Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytologist, 1985, 101(1): 25-77.

        [70]Li Y, Gao Y X, Xu X M, Shen Q R, Guo S W. Light-saturated photosynthetic rate in high-nitrogen rice (OryzasarivaL.) leaves is related to chloroplastic CO2concentration. Journal of Experimental Botany, 2009, 60(8): 2351-2360.

        [71]Fort C, Fauveau M L, Muller F, Label P, Granier A, Dreyer E. Stomatal conductance, growth and root signaling in young oak seedlings subjected to partial soil drying. Tree Physiology, 1997, 17(5): 281-289.

        [72]丁雷, 李英瑞, 李勇, 沈其榮, 郭世偉. 梯度干旱脅迫對(duì)水稻葉片光合和水分狀況的影響. 中國(guó)水稻科學(xué), 2014, 28(1): 65-70.

        [73]陳貴, 周毅, 郭世偉, 沈其榮. 水分脅迫和不同形態(tài)氮素營(yíng)養(yǎng)對(duì)苗期水稻光合特性的影響. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2007, 30(4): 78-81.

        [74]李勇. 氮素營(yíng)養(yǎng)對(duì)水稻光合作用與光合氮素利用率的影響機(jī)制研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2011.

        [75]Sabina Yeasmin, A K M Mominul Islam, A K M Aminul Islam. Nitrogen fractionation and its mineralization in paddy soils: A review. Journal of Agricultural Science Technology, 2012, 8(3): 775-793.

        [76]曹志洪, 林先貴, 楊林章, 胡正義, 董元華, 尹睿. 論“稻田圈” 在保護(hù)城鄉(xiāng)生態(tài)環(huán)境中的功能Ⅱ.稻田土壤氮素養(yǎng)分的累積、遷移及其生態(tài)環(huán)境意義. 土壤學(xué)報(bào), 2006, 43(2): 256-260.

        [77]Werner Liesack, Sylvia Schnell, Niels Peter Revsbech. Microbiology of flooded rice paddies. FEMS Microbiology Reviews, 2000, 24(5): 625-645.

        [78]Banker B C, Kludze H K, Alford D P, Delaune R D, Lindau C W. Methane sources and sinks in paddy rice soils: Relationship to emissions. Agriculture, Ecosystems & Environment, 1995, 53(3): 243-251.

        [79]Karin Enwall, Laurent Philippot, Sara Hallin. Activity and composition of the denitrifying bacterial community respond differently to long-term fertilization. Applied and Environmental Microbiology, 2005, 71(12): 8335-8343.

        [80]李香蘭, 徐華, 曹金留, 蔡祖聰, 八木一行. 水分管理對(duì)水稻生長(zhǎng)期CH4排放的影響. 土壤, 2007, 39(2): 238-240.

        [81]Guo J H, Peng Y Z, Wang S Y, Zheng Y N, Huang H J, Wang Z W. Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure. Bioresource Technology, 2009, 100(111): 2796-2802.

        [82]Reddy K R, Patrick W H Jr. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry, 1975, 7(2): 87-94.

        [83]張?jiān)茦? 吳榮生, 蔣寧, 劉桂華. 水稻的氮素利用效率與品種類型的關(guān)系. 植物生理學(xué)通訊, 1989, 25(2): 45-47.

        [84]魏海燕, 張洪程, 戴其根, 霍中洋, 許軻, 杭杰, 馬群, 張勝飛, 劉慶, 劉艷陽. 不同水稻氮利用效率基因型的物質(zhì)生產(chǎn)與積累特性. 作物學(xué)報(bào), 2007, 33(11): 1802-1809.

        Effects of water management on rice nitrogen utilization: a review

        CAO Xiaochuang1, LI Xiaoyan2, ZHU Lianfeng1, ZHANG Junhua1, YU Shengmiao1, WU Lianghuan2, JIN Qianyu1,*

        1StateKeyLaboratoryofRiceBiology,ChinaNationalRiceResearchInstitute,Hangzhou310006,China

        2MinistryofEducationKeyLaboratoryofEnvironmentalRemediationandEcosystemHealth,CollegeofEnvironmentalandResourceSciences,ZhejiangUniversity,Hangzhou310058,China

        water management; rhizosphere dissolved oxygen; nitrogen metabolism; photosynthetic nitrogen-use efficiency; rice

        10.5846/stxb201411202298

        浙江省自然科學(xué)基金資助項(xiàng)目(LQ15C130004);國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展973計(jì)劃資助項(xiàng)目(2015CB150502);國(guó)家自然科學(xué)基金資助項(xiàng)目(31172032, 30900880)

        2014-11-20; 網(wǎng)絡(luò)出版日期:2015-10-30

        Corresponding author.E-mail: jinqy@mail.hz.zj.cn

        曹小闖, 李曉艷,朱練峰,張均華,禹盛苗,吳良?xì)g,金千瑜.水分管理調(diào)控水稻氮素利用研究進(jìn)展.生態(tài)學(xué)報(bào),2016,36(13):3882-3890.

        Cao X C, Li X Y, Zhu L F, Zhang J H, Yu S M, Wu L H, Jin Q Y.Effects of water management on rice nitrogen utilization: a review.Acta Ecologica Sinica,2016,36(13):3882-3890.

        猜你喜歡
        氧量根際氮素
        一種催化器儲(chǔ)氧量的測(cè)試及計(jì)算方法
        根際微生物對(duì)植物與土壤交互調(diào)控的研究進(jìn)展
        黃花蒿葉水提物對(duì)三七根際尖孢鐮刀菌生長(zhǎng)的抑制作用
        促植物生長(zhǎng)根際細(xì)菌HG28-5對(duì)黃瓜苗期生長(zhǎng)及根際土壤微生態(tài)的影響
        基于GALM算法的循環(huán)流化床鍋爐氧量軟測(cè)量
        河南科技(2015年3期)2015-02-27 14:20:52
        淺談1000MW鍋爐運(yùn)行中兩側(cè)氧量偏差大原因和調(diào)整運(yùn)行
        河南科技(2014年10期)2014-02-27 14:09:16
        鍋爐運(yùn)行最佳氧量的確定
        楸樹無性系苗期氮素分配和氮素效率差異
        基于光譜分析的玉米氮素營(yíng)養(yǎng)診斷
        氮素運(yùn)籌對(duì)玉米干物質(zhì)積累、氮素吸收分配及產(chǎn)量的影響
        性导航app精品视频| 丰满人妻一区二区三区免费视频| 国产综合无码一区二区辣椒| 欧美va亚洲va在线观看| 丝袜人妻无码中文字幕综合网| 日本一区二区三区清视频| 欧洲熟妇色xxxx欧美老妇性| 亚洲国产精品久久久久秋霞影院 | 精精国产xxxx视频在线播放器| 青青草久久久亚洲一区| 亚洲色一区二区三区四区| 国产人妻久久精品二区三区特黄 | 加勒比精品一区二区三区| 亚洲一品道一区二区三区| 国产精品三级av及在线观看 | 乱子伦一区二区三区| 久久人妻公开中文字幕| 一本色道久久综合中文字幕| 国产女主播一区二区久久| 无码欧美毛片一区二区三| 9999毛片免费看| 免费av网址一区二区| 亚洲视频在线一区二区| 亚洲aⅴ天堂av天堂无码麻豆| 免费国产99久久久香蕉| 国产自拍成人在线免费视频| 亚洲精品无码永久在线观看| 99精品视频在线观看| 一本久久精品久久综合桃色| 久久国产精品婷婷激情| 超碰97资源站| 亚洲V在线激情| 男人一插就想射的原因| 乱码1乱码2美美哒| 国内精品一区二区三区| 亚洲二区三区在线播放| 在线免费观看一区二区| 亚洲乱亚洲乱少妇无码99p| 尤物yw午夜国产精品视频| 99精品久久精品一区| 国产精品自在拍在线拍|