亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        我國主要麥區(qū)小麥產(chǎn)量形成對磷素的需求

        2016-08-24 09:09:45車升國李燕婷林治安李燕青趙秉強
        植物營養(yǎng)與肥料學報 2016年4期
        關鍵詞:產(chǎn)量

        車升國, 袁 亮, 李燕婷, 林治安, 李燕青, 趙秉強*, 沈 兵

        (1 農(nóng)業(yè)部植物營養(yǎng)與肥料重點實驗室, 中國農(nóng)業(yè)科學院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所, 北京 100081;2 中國農(nóng)業(yè)科學院德州鹽堿土改良實驗站, 山東德州 253015; 3 中海石油化學股份有限公司, 北京 100029)

        ?

        我國主要麥區(qū)小麥產(chǎn)量形成對磷素的需求

        車升國1,2, 袁 亮1, 李燕婷1, 林治安2, 李燕青1, 趙秉強1*, 沈 兵3

        (1 農(nóng)業(yè)部植物營養(yǎng)與肥料重點實驗室, 中國農(nóng)業(yè)科學院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所, 北京 100081;2 中國農(nóng)業(yè)科學院德州鹽堿土改良實驗站, 山東德州 253015; 3 中海石油化學股份有限公司, 北京 100029)

        小麥產(chǎn)量; 磷素吸收; 需磷量; 響應特征

        近年來,有關小麥的磷肥施用效果[5]、 磷素的吸收[6]、 磷肥利用率[7-8]等已開展廣泛研究,但研究主要集中于田塊尺度,或小區(qū)域、 小樣本數(shù)田間試驗,缺乏大尺度、 大樣本數(shù)小麥磷素吸收規(guī)律及差異研究[9]。Yue等[10]總結我國1395個樣點氮素需求與產(chǎn)量關系表明,小麥生產(chǎn)100 kg籽粒需氮量隨產(chǎn)量的增加而逐漸降低,但大樣本數(shù)據(jù)下小麥產(chǎn)量與磷素的需求規(guī)律性還未見報道。本文收集了2000年后文獻中田間試驗數(shù)據(jù),分析了我國小麥主產(chǎn)區(qū)黃淮海冬麥區(qū)、 長江中下游冬麥區(qū)和西北冬春兼播麥區(qū)小麥產(chǎn)量、 不同部位磷含量和吸磷量,以及100 kg小麥籽粒需磷量的區(qū)域差異,計算了不同小麥產(chǎn)量水平與籽粒和秸稈磷含量以及和100 kg籽粒需磷量的關系,為我國小麥推薦施肥模型等提供科學的區(qū)域參數(shù),為指導小麥區(qū)域合理施肥提供理論依據(jù)與科學參考。

        1 材料與方法

        1.1研究區(qū)域

        在我國小麥種植業(yè)區(qū)劃、 中國化肥區(qū)劃基礎上[11-12],根據(jù)2013年我國小麥區(qū)域生產(chǎn)布局和產(chǎn)量情況,選擇我國小麥3個主要生產(chǎn)區(qū)作為研究對象,分別為黃淮海冬(秋播)麥區(qū)(HH)、 長江中下游冬(秋播)麥區(qū)(CR)和西北冬春兼播麥區(qū)(NW)[13]。2013年三個小麥產(chǎn)區(qū)小麥播種面積21783千公頃,占我國小麥總播種面積的90.32%; 小麥產(chǎn)量11485萬噸,占我國小麥總產(chǎn)量的94.20%[14]。

        黃淮海冬(秋播)麥區(qū)主要包括山東、 河南、 河北、 北京、 天津及江蘇和安徽北部。本區(qū)地處暖溫帶,氣候溫和,屬半濕潤性或半干旱季風氣候,土壤類型以褐土和潮土為主,小麥主要為冬小麥(冬小麥-夏玉米輪作)。2013年本區(qū)小麥播種面積和產(chǎn)量分別占全國的57.44%和66.64%。長江中下游冬(秋播)麥區(qū)包括浙江、 湖北、 湖南、 江西及安徽和江蘇南部等。本區(qū)位于北亞熱帶季風區(qū),氣候溫暖濕潤,熱量豐富,土壤類型主要為水稻土、 棕壤等,小麥主要為冬小麥(冬小麥-水稻或其他作物輪作)。2013年本區(qū)小麥播種面積和產(chǎn)量占全國的14.53%和13.74%。西北冬春兼播麥區(qū)包括陜西、 山西、 新疆、 寧夏、 甘肅和內(nèi)蒙古東部區(qū)域。本區(qū)處于中溫帶內(nèi)陸地區(qū),屬大陸性氣候,冬季寒冷,夏季炎熱,土壤以棕鈣土、 灰鈣土、 灌漠土、 灰漠土等為主。小麥有冬小麥和春小麥。2013年本區(qū)小麥播種面積和產(chǎn)量分別占全國的18.35%和13.82%[14]。

        1.2數(shù)據(jù)來源

        數(shù)據(jù)來源包括“十一五”、 “十二五”國家科技支撐計劃課題試驗數(shù)據(jù),2000年后公開發(fā)表的期刊文獻、 碩博畢業(yè)論文、 書籍等。共收集產(chǎn)量數(shù)據(jù)5484組、 籽粒磷吸收量680組、 秸稈磷吸收量651組、 籽粒磷含量1096組、 秸稈磷含量887組、 植株磷積累量1397組和100 kg籽粒需磷量數(shù)據(jù)1574組。詳細樣點分布見表1和參考文獻[13]。

        1.3數(shù)據(jù)處理

        2 結果與分析

        2.1不同主產(chǎn)區(qū)小麥磷素吸收規(guī)律

        社會福利政策質(zhì)量評價是保障和促進社會福利政策質(zhì)量的重要環(huán)節(jié)??茖W的評價活動能夠發(fā)現(xiàn)社會福利政策過程中存在的問題,以便及時總結經(jīng)驗,糾正錯誤,從而公正地判斷某一政策本身的價值和質(zhì)量,為延續(xù)、革新或終結政策提供依據(jù)。因此,社會福利政策質(zhì)量評價不僅有利于檢驗社會福利政策的效果、效率及效益,也有利于提高決策的民主化、科學化水平和政策質(zhì)量。

        在不同麥區(qū),小麥產(chǎn)量以黃淮海冬麥區(qū)最高 (7.07 t/hm2,n=2976),長江中下游冬麥區(qū)次之 (5.60 t/hm2,n=1059),西北冬春兼播麥區(qū)最低 (4.71 t/hm2,n=1389)。同樣,小麥地上部吸磷總量以黃淮海冬麥區(qū)最高,平均為32.2 kg/hm2(n=716),長江中下游冬麥區(qū)次之,為22.3 kg/hm2(n=167),西北冬春兼播麥區(qū)最低,僅為19.4 kg/hm2(n=487)。籽粒和秸稈磷吸收量也均以黃淮海冬麥區(qū)最高,平均分別為21.3 kg/hm2(n=289)和8.7 kg/hm2(n=289),長江中下游冬麥區(qū)次之,為15.8 kg/hm2(n=8)和5.4 kg/hm2(n=8),西北冬春兼播麥區(qū)最低,僅為13.8 kg/hm2(n=382)和2.7 kg/hm2(n=353)。籽粒磷含量以長江中下游冬麥區(qū)最高,為0.43% (n=22),黃淮海冬麥區(qū)居中,為0.33%,西北冬春兼播麥區(qū)最低,為0.30%。秸稈磷含量則以黃淮海冬麥區(qū)最高,為0.09% (n=486),長江中下游冬麥區(qū)次之,為0.08% (n=8),西北冬春兼播麥區(qū)最低,僅為0.06% (n=370)。這一結果表明,小麥產(chǎn)量與磷素吸收量相關。

        表1 小麥主產(chǎn)區(qū)小麥產(chǎn)量、 磷吸收累積及100 kg籽粒需磷量

        注(Note): HH—Huanghuaihai winter wheat planting area; CR—Changjiang river winter wheat planting area; NW—Northweat China spring-winter wheat planting area.

        2.2小麥磷素吸收特征對產(chǎn)量的響應

        圖1 小麥主產(chǎn)區(qū)及全國小麥產(chǎn)量與地上部磷吸收總量的相關關系Fig.1 Relationship of shoot P uptakes and wheat yields in the main winter wheat region and whole China[注(Note): HH—黃淮海冬麥區(qū) Huanghuaihai winter wheat planting area; CR—長江中下游冬麥區(qū) Changjiang River winter wheat planting area; NW—西北冬春小麥兼播區(qū) Northweat China spring-winter wheat planting area; All— 全國 All China.]

        圖2 小麥不同產(chǎn)量水平下100 kg籽粒需磷量Fig.2 P requirement per 100 kg wheat grain in different yield ranges in China[注(Note): 圖中箱體中部實線和虛線分別代表中值和平均值,箱體上下邊代表75%和25%位點,上下橫線代表90%和10%位點,上下圓點代表95%和5%位點Solid and dashed lines in the boxes indicate the median and mean, respectively. The box boundaries indicate the 75th quartiles and 25th quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles represent the 95th and 5th percentiles.]

        圖3 我國小麥不同產(chǎn)量水平籽粒磷含量和秸稈磷含量Fig.3 P contents in both grains and straw of wheat at different yield ranges in China[注(Note): 圖中箱體中部實線和虛線分別代表中值和平均值,箱體上下邊代表75%和25%位點,上下橫線代表90%和10%位點,上下圓點代表95%和5%位點Solid and dashed lines in the boxes indicate the median and mean, respectively. The box boundaries indicate the 75th quartiles and 25th quartiles, the whisker caps indicate 90th and 10th percentiles, and the circles represent the 95th and 5th percentiles.]

        3 討論

        4 結論

        我國田間試驗的小麥產(chǎn)量、 地上部吸磷總量、 籽粒吸磷量、 秸稈吸磷量、 籽粒磷含量和秸稈磷含量變異性大,區(qū)域差異明顯。其對應參數(shù)全國平均值分別為6.18 t/hm2、 26.4 kg/hm2、 17.0 kg/hm2、 5.4 kg/hm2、 0.32%和0.08%,變異系數(shù)分布為33.1%、 58.6%、 55.1%、 94.8%、 34.3%和75.0%。除籽粒磷含量外,小麥產(chǎn)量、 地上部磷吸收量、 籽粒磷吸收量、 秸稈磷吸收量和秸稈磷含量均以黃淮海麥區(qū)最高,長江中下游冬麥區(qū)次之,西北冬春麥區(qū)最低。

        [1]趙秉強. 施肥制度與土壤可持續(xù)利用[M]. 北京: 科學出版社, 2012.

        Zhao B Q. Fertilization systems and land use sustainability[M]. Beijing: Science Press, 2012.

        [2]李慶逵, 朱兆良, 于天仁. 中國農(nóng)業(yè)持續(xù)發(fā)展中的肥料問題[M]. 南昌: 江西科學技術出版社, 1988.

        Li Q K, Zhu Z L, Yu T R. Fertilizer issue of sustainable agriculture development in China[M]. Nanchang: Jiangxi Science and technology Press, 1988.

        [3]張福鎖,王激情,張衛(wèi)峰,等. 中國主要糧食作物肥料利用率現(xiàn)在與提高途徑[J]. 土壤學報, 2008, 915-924.

        Zhang F S, Wang J Q, Zhang W F,etal. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 915-924.

        [4]李東坡, 武志杰. 化學肥料的土壤生態(tài)環(huán)境效應[J]. 應用生態(tài)學報, 2008, 19(5): 1158-1165.

        Li D P, Wu Z J. Impact of chemical fertilizers application on soil ecological environment[J]. Chinese Journal of Applied Ecology, 2008, 19(5): 1158-1165.

        [5]何曉雁. 黃土高原旱地長期施磷肥對土壤磷素循環(huán)的影響[D]. 楊凌: 西北農(nóng)林科技大學碩士學位論文, 2012.

        He X Y. Effect of long-term phosphor fertilization on soil phosphorus cycling in dry land on Loess Plateau [D]. Yangling: MS Thesis of Northwest A&F University, 2012.

        [6]姜宗慶, 封超年, 黃聯(lián)聯(lián), 等. 施磷量對小麥物質(zhì)生產(chǎn)及吸磷特性的影響[J]. 植物營養(yǎng)與肥料學報, 2006, 12(5): 628-634.

        Jiang Z Q, Feng C N, Huang L L,etal. Effects of phosphorus application on dry matter production and phosphorus uptake in wheat (TriticumaestivumL.)[J]. Plant Nutrition and Fertilizer Science, 2006, 12(5): 628-634.

        [7]陽顯斌, 張錫洲, 李廷軒, 等. 磷素籽粒生產(chǎn)效率不同的小麥品種磷素吸收利用差異[J]. 植物營養(yǎng)與肥料學報, 2011, 17(3): 525-531.

        Yang X B, Zhang X Z, Li T X,etal. Differences of phosphorus uptake and utilization in wheat cultivars with different phosphorus use efficiency for grain yield[J]. Plant Nutrition and Fertilizer Science, 2011, 17(3): 525-531.

        [8]高靜, 張淑香, 徐明崗, 等. 長期施肥下三類典型農(nóng)田土壤小麥磷肥利用效率的差異[J]. 應用生態(tài)學報, 2009, 20(9): 2142-2148.

        Gao J, Zhang S X, Xu M G,etal. Phosphorus use efficiency of wheat on three typical farmland soils under long-term fertilization[J]. Chinese Journal of Applied Ecology, 2009, 20(9): 2142-2148.

        [9]串麗敏. 基于產(chǎn)量反應和農(nóng)學效率的小麥推薦施肥方法研究[D]. 北京: 中國農(nóng)業(yè)科學院博士學位論文,2013.

        Chuan L M. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for wheat [D]. Beijing: PhD Dissertation, China Academy of Agricultural Sciences, 2013.

        [10]Yue S C, Meng Q F, Zhao R F,etal. Change in nitrogen requirement with increasing grain yield for winter wheat[J]. Agronomy Journal, 2012, 104: 1687-1693.

        [11]趙廣才. 中國小麥種植區(qū)劃研究(一)[J]. 麥類作物學報, 2010, 30(5): 886-895.

        Zhao G C. Study on Chinese wheat planting regionalization (一)[J]. Journal of Triticeae Crops, 2010, 30(5): 886-895.

        [12]中國農(nóng)業(yè)科學院土壤肥料研究所. 中國化肥區(qū)劃[M]. 北京: 中國農(nóng)業(yè)科技出版社, 1986. 36-66.

        Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences. Zone of fertilizer in China[M]. Beijing: China Agricultural Science and Technology Press, 1986. 36-66.

        [13]車升國, 袁亮, 李燕婷, 等. 我國主要麥區(qū)小麥氮素吸收及其產(chǎn)量效應[J]. 植物營養(yǎng)與肥料學報, 2016, 22 (2): 287-295.

        Che S G, Yuan L, Li Y T,etal. Characteristic of N uptake and it response to grain yield of wheat in main wheat production regions in China[J]. Plant Nutrition and Fertilizer Science, 2016, 22 (2): 287-295.

        [14]中華人民共和國國家統(tǒng)計局. 中國統(tǒng)計年鑒[M]. 北京: 中國統(tǒng)計出版社, 2014.

        National Bureau of Statistics of the People’s Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2014.

        [15]Liu M Q, Yu Z R, Liu Y H,etal. Fertilizer requirements for wheat and maize in China: the QUEFTS approach[J]. Nutrient Cycling in Agroecosystems, 2006, 74: 245-258.

        [16]Liu X Y, He P, Jin J Y,etal. Yield gaps, indigenous nutrient supply, and nutrient use efficiency of wheat in China[J]. Agronomy Journal, 2011, 103: 1452-1463.

        [17]車升國. 區(qū)域作物專用復合(混)肥料配方制定方法與應用 [D]. 北京: 中國農(nóng)業(yè)大學博士論文, 2015.

        Che S G. Design method and application of formula of regional crop-based compound fertilizer [D]. Beijing: PhD Dissertation, China Agricultural University, 2015.

        [18]魯如坤. 土壤植物營養(yǎng)學原理與施肥[M]. 北京: 化學工業(yè)工出版社,1998. 1-3.

        Lu R K. Principles of plant nutrient and fertilization[M]. Beijing: Chemical Industry Press, 1998. 1-3.

        [19]Zhang Y, Hou P, Gao Q,etal. On-farm estimation of nutrient requirements for spring corn in North China[J]. Agronomy Journal, 2012, 104: 1437-1442.

        [20]Xu X P, He P, Pampolino M F,etal. Nutrient requirements for maize in China based on QUEFTS analysis[J]. Field Crops Research, 2013. 115-125.

        [21]Buresh R J, Pampolino M F, Witt C. Field-specific potassium and phosphorus balances and fertilizer requirements for irrigated rice-based cropping systems[J]. Plant and Soil, 2010, 335, 35-64.

        [22]Witt C, Dobermann A, Abdulrachman Setal. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia[J]. Field Crops Research, 1999, 63: 113-138.

        [23]黨紅凱,李瑞奇,李雁鳴,等. 超高產(chǎn)栽培條件下冬小麥對磷的吸收、 積累和分配. 植物營養(yǎng)與肥料學報, 2012, 18(3): 531-541.

        Dang H K, Li R Q, Li Y M,etal. Absorption, accumulation and distribution of phosphorus in winter wheat under super-highly yielding conditions[J]. Plant Nutrition and Fertilizer Science, 2012, 18(3): 531-541.

        [24]于振文, 田奇卓, 潘慶民, 等. 黃淮麥區(qū)冬小麥超高產(chǎn)栽培的理論與實踐[J]. 作物學報, 2002, 28(5): 577-585.

        Yu Z W, Tian Q Z, Pan Q M,etal. Theory and practice on cultivation of super high yield of winter wheat in the wheat fields of Yellow river and Huaihe river districts[J]. Acta Agronomica Sinica, 2002, 28(5): 577-585.

        Phosphorous requirement for yield formation of wheat in main wheat production regions of China

        CHE Sheng-guo1,2, YUAN Liang1, LI Yan-ting1, LIN Zhi-an2, LI Yan-qing1, ZHAO Bing-qiang1*, SHEN Bing3

        (1MinistryofAgricultureKeyLaboratoryofPlantNutritionandFertilizer,InstituteofAgriculturalResourcesandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing100081,China; 2DezhouExperimentalStationofChineseAcademyofAgriculturalSciences,Dezhou,Shandong253015; 3ChinaBlueChemicalLtd.,Beijing100029,China)

        【Objectives】 Phosphorous uptake of wheat and the regional variations is the base to guild reasonable phosphorous fertilization strategy. This paper aimed to investigate the P absorption amount and the response to phosphorous fertilization in the main wheat-planting regions. 【Methods】 Data were collected from the published papers and field experiments, in which the wheat yields, P absorption in both grains and straw, P uptakes in the shoots and P concentrations in grains and straw were analyzed in the Huang-Huang-Hai winter wheat planting region (HH), Northwest China spring-winter wheat planting region (NW) and Changjiang River winter wheat planting region (CR), and the wheat P absorption under different yield levels was studied. 【Results】 The results showed that wheat grain yields, P contents in grains and straw, above-ground P uptake, P absorptions in both grains and straw and P amounts needed to produce per 100 kg grains had significant regional variations. The mean grain yield in China was 6.18 t/hm2with a variation coefficient of 33.1%. The mean values of P concentrations in both grains and straw were 0.32% and 0.08%, and the corresponding variation coefficients were 34.3% and 75.0%. The shoot P uptake and P absorption in grains and in straw were 26.4 kg/hm2, 17.0 kg/hm2and 5.4 kg/hm2with the variation coefficients of 58.6%, 55.1% and 94.8%, respectively. Excluding the P concentrations in grains, all other parameters were highest in HH, and lowest in NW. The averaged P amount needed to produce 100kg grain was 0.46 kg with the variation of 37.0% in China, and HH had the highest value of 0.50 kg, while the amounts for YR and NW were 0.44 kg and 0.41, respectively. As increasing wheat yield, N requirement per 100 kg grain was increased consequently, and the N requirements were 0.41 kg, 0.43 kg, 0.50 kg, 0.52 kg for wheat yields <4.50 t/hm2, 4.50-6.50 t/hm2, 6.50-8.50 t/hm2, and >8.50 t/hm2, respectively. The P concentrations in grains maintained the certain levels with 0.32%, 0.31%, 0.31% and 0.33%, respectively for the corresponding yield levels. The P concentrations in straw increased with the corresponding values of 0.05%, 0.07%, 0.11% and 0.12% for the grain yield levels. 【Conclusions】 Differences of temperature, water and soil in the wheat-planting regions caused the differences of P absorption characteristics. For improving wheat yield and N use efficiency, wheat grain yield and P absorption for a region should be taken into account.

        wheat yield; P uptake; P requirement; response characteristic

        2015-01-08接受日期: 2015-09-24網(wǎng)絡出版日期: 2016-05-23

        國家“十二五”科技支撐計劃項目(2011BAD11B05, 2013BAD05B04)資助。

        車升國(1983—), 男, 山東臨沂人, 博士, 助理研究員, 主要從事農(nóng)田土壤肥力研究。

        Tel: 010-82108664, E-mail: cheshengguo@caas.cn。*通信作者 Tel: 010-82108658, E-mail: zhaobingqiang@caas.cn

        S143.5; S158

        A

        1008-505X(2016)04-0869-08

        猜你喜歡
        產(chǎn)量
        2022年11月份我國鋅產(chǎn)量同比增長2.9% 鉛產(chǎn)量同比增長5.6%
        今年前7個月北海道魚糜產(chǎn)量同比減少37%
        提高玉米產(chǎn)量 膜下滴灌有效
        夏糧再獲豐收 產(chǎn)量再創(chuàng)新高
        世界致密油產(chǎn)量發(fā)展趨勢
        海水稻產(chǎn)量測評平均產(chǎn)量逐年遞增
        2018年我國主要水果產(chǎn)量按?。▍^(qū)、市)分布
        2018年11月肥料產(chǎn)量統(tǒng)計
        2018年10月肥料產(chǎn)量統(tǒng)計
        2018年12月肥料產(chǎn)量統(tǒng)計
        99精品国产成人一区二区在线| 亚洲欧美激情在线一区| 激情欧美日韩一区二区| 欧美成人高清手机在线视频| 国产麻豆极品高清另类| 天天综合网网欲色| 俄罗斯老熟妇色xxxx| 亚洲婷婷丁香激情| 国产伦精品一区二区三区在线| 中国一级黄色片久久久| 亚洲国产精品无码专区影院| 少妇被粗大进猛进出处故事| 国产又粗又黄又爽的大片| 国产黄a三级三级三级av在线看| caoporon国产超碰公开| 人妖啪啪综合av一区| 亚洲乱码国产乱码精品精| 国产香蕉一区二区三区在线视频 | 欧美午夜精品一区二区三区电影| 久久se精品一区精品二区国产| 国内专区一区二区三区| 日本一区二区三区视频网站| 日本丰满熟妇hd| 亚洲日产无码中文字幕| 国产农村妇女毛片精品久久麻豆| 国产69精品久久久久9999apgf| 精产国品一二三产区m553麻豆| 国产真实乱XXXⅩ视频| 在线观看国产一区二区av | 在教室伦流澡到高潮hgl视频 | 中文字幕成人精品久久不卡| 久久99国产综合精品女同| 免费人妻无码不卡中文字幕系 | 久久精品国产99久久丝袜| 日本加勒比一道本东京热| 欧洲成人一区二区三区| 日韩a毛片免费观看| 日本精品人妻在线观看| 一区二区三区国产在线视频| 国产成人av在线免播放观看新| 熟妇人妻中文av无码|