劉正群 張祖翔 陳 亮 劉靜波, 張宏福*
(1.中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動物營養(yǎng)學(xué)國家重點(diǎn)實(shí)驗(yàn)室,北京100193;2.西南科技大學(xué)生命科學(xué)與工程學(xué)院,綿陽621010)
?
生長豬基礎(chǔ)飼糧組成對磷酸氫鈣和磷酸二氫鈣中磷的全腸道真消化率的影響
劉正群1張祖翔2陳亮1劉靜波1,2張宏福1*
(1.中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動物營養(yǎng)學(xué)國家重點(diǎn)實(shí)驗(yàn)室,北京100193;2.西南科技大學(xué)生命科學(xué)與工程學(xué)院,綿陽621010)
本試驗(yàn)旨在研究生長豬基礎(chǔ)飼糧組成對磷酸氫鈣(DCP)和磷酸二氫鈣(MCP)中磷的全腸道真消化率(TTTD)的影響。試驗(yàn)1選用10頭平均體重為(30.4±1.8) kg的生長豬,按照10×8不完全拉丁方設(shè)計(jì),分別飼喂含有5個(gè)DCP添加水平的玉米-豆粕型和含有5個(gè)DCP添加水平的小麥-豆粕型飼糧,進(jìn)行8期消化試驗(yàn);試驗(yàn)2選用10頭平均體重為(30.9±1.5) kg的生長豬,按照10×8不完全拉丁方設(shè)計(jì),分別飼喂含有5個(gè)MCP添加水平的玉米-豆粕型和含有5個(gè)MCP添加水平的小麥-豆粕型飼糧,進(jìn)行8期消化試驗(yàn)。每期消化試驗(yàn)包括5 d的飼糧適應(yīng)期和2 d的糞便收集期。結(jié)果表明:1)玉米-豆粕型飼糧的總糞磷排泄量極顯著高于小麥-豆粕型飼糧(P<0.01),小麥-豆粕型飼糧的全腸道可消化磷含量和磷的表觀全腸道消化率(ATTD)極顯著高于玉米-豆粕型飼糧(P<0.01)。飼糧添加DCP和MCP線性增加總糞磷排泄量、全腸道可消化磷含量及磷的ATTD(P<0.01)。2)通過使用線性回歸法,測得生長豬采食玉米-豆粕型和小麥-豆粕型飼糧對DCP中磷的TTTD分別為82.33%和82.88%,生長豬采食玉米-豆粕型和小麥-豆粕型飼糧對MCP中磷的TTTD分別為85.88%和84.62%。由此可見,生長豬基礎(chǔ)飼糧組成對DCP和MCP中磷的TTTD無顯著影響。
磷;基礎(chǔ)飼糧;生長豬;全腸道真消化率;磷酸氫鈣;磷酸二氫鈣
磷是動物體所必需的礦物質(zhì)元素之一,對機(jī)體的生理功能和代謝功能起著重要的作用。但植物性飼料中磷含量較低,而且60%~80%是以植酸鹽的形式存在,由于單胃動物體內(nèi)缺少分解植酸鹽的內(nèi)源酶系統(tǒng),因而極少能被單胃動物所利用[1]。為提高動物生長性能,有必要在飼糧中添加無機(jī)磷以滿足動物的營養(yǎng)需要量,目前使用較為廣泛的無機(jī)磷主要包括磷酸氫鈣(dicalcium phosphate,DCP)和磷酸二氫鈣(monocalcium phosphate,MCP)[2-4]。前期研究表明,通過使用線性回歸模型分析飼糧總磷攝入量與動物可消化磷之間的關(guān)系,可推導(dǎo)出飼料原料中磷的真消化率和豬內(nèi)源磷排泄量[5-8]。影響飼糧中磷的消化率的因素有多種,包括飼糧磷水平、鈣磷比、植酸酶活性以及飼糧中粗纖維和碳水化合物的組成和含量等[8-14]。Nortey等[14]研究發(fā)現(xiàn),以小麥作為基礎(chǔ)飼糧,使用小麥次粉部分替換基礎(chǔ)飼糧的小麥,結(jié)果表明,磷的表觀回腸和全腸道消化率隨著小麥次粉替換小麥水平的增加而顯著降低。以上結(jié)果表明,飼糧中碳水化合物組成及含量顯著影響磷的消化利用效率。因此,為提高生長豬對飼料中無機(jī)磷的利用效率,應(yīng)弄清楚無機(jī)磷中磷的消化率是否受到基礎(chǔ)飼糧組成的影響??紤]到玉米和小麥在植酸酶活性和飼糧碳水化合物組成上存在顯著差異,且二者是豬飼糧中主要的能量飼料,本試驗(yàn)通過在玉米-豆粕型飼糧和小麥-豆粕型飼糧中分別添加不同水平DCP和MCP,比較基礎(chǔ)飼糧組成對DCP和MCP中無機(jī)磷的全腸道真消化率(true total tract digestibility,TTTD)的影響。
1.1試驗(yàn)設(shè)計(jì)和飼養(yǎng)管理
試驗(yàn)在動物營養(yǎng)學(xué)國家重點(diǎn)實(shí)驗(yàn)室昌平試驗(yàn)基地進(jìn)行。試驗(yàn)1選用10頭平均體重(30.4±1.8) kg的“杜×長×大”三元雜交閹公豬,采用10×8不完全拉丁方設(shè)計(jì),分別飼喂含有5種DCP添加水平的玉米-豆粕型和含有5種DCP添加水平的小麥-豆粕型飼糧,進(jìn)行8期消化試驗(yàn),試驗(yàn)1飼糧組成及營養(yǎng)水平見表1。試驗(yàn)2選用10頭平均體重為(30.9±1.5) kg的“杜×長×大”三元雜交閹公豬,按照10×8不完全拉丁方設(shè)計(jì),分別飼喂含有5種MCP添加水平的玉米-豆粕型和含有5種MCP添加水平的小麥-豆粕型飼糧,進(jìn)行8期消化試驗(yàn),試驗(yàn)2飼糧組成及營養(yǎng)水平見表2。試驗(yàn)動物于不銹鋼代謝籠內(nèi)飼養(yǎng),自然光照,室溫控制在20 ℃左右。每期消化試驗(yàn)包括5 d的飼糧適應(yīng)期和2 d的糞便收集期。采食量根據(jù)試驗(yàn)動物體重的4%計(jì)算得出,分2次分別于每天08:00和17:00飼喂,試驗(yàn)期間試驗(yàn)動物自由飲水。
表1 試驗(yàn)1飼糧組成及營養(yǎng)水平(飼喂基礎(chǔ))
1)預(yù)混料為每千克飼糧提供 Premix provided per kilogram of diets: Cu (as CuSO4·5H2O)20 mg,F(xiàn)e (as FeSO4·7H2O)120 mg,Mn (as MnSO4·H2O)30 mg,Zn (as Zn SO4·H2O)120 mg,Se (as Na2SeO3)0.5 mg,I (as KI)0.5 mg,VA 8 000 IU,VD32 000 IU,VE 12 IU,VK31.2 mg,VB11.5 mg,VB24 mg,VB62 mg,VB120.02 mg,生物素 boitin 0.08 mg,泛酸 pantothenic acid 12 mg,煙酸 nicotinic acid 20 mg,葉酸 folic acid 0.5 mg。
2)消化能為計(jì)算值,其他為測定值。DE was a calculated value, while the others were measured values.
表2 試驗(yàn)2飼糧組成和營養(yǎng)水平(飼喂基礎(chǔ))
1)預(yù)混料為每千克飼糧提供Premix provided per kilogram of diets: Cu(as CuSO4·5H2O)20 mg,F(xiàn)e(as FeSO4·7H2O)120 mg,Mn(as MnSO4·H2O)30 mg,Zn(as Zn SO4·H2O)120 mg,Se (as Na2SeO3)0.5 mg,I(as KI)0.5 mg,VA 8 000 IU,VD32 000 IU,VE 12 IU,VK31.2 mg,VB11.5 mg,VB24 mg,VB62 mg,VB120.02 mg,生物素 boitin 0.08 mg,泛酸 pantothenic acid 12 mg,煙酸 nicotinic acid 20 mg,葉酸 folic acid 0.5 mg。
2)消化能為計(jì)算值,其他為測定值。DE was a calculated value, while the others were measured values.
1.2樣本收集和處理
試驗(yàn)經(jīng)過5 d飼糧適應(yīng)期后,在試驗(yàn)期的第6天和第7天08:00至18:00收集試驗(yàn)動物排出的全部糞便。收集糞便樣品后立即置于-20 ℃冰箱中冷凍保存,待試驗(yàn)結(jié)束后將每頭豬收集的全部糞便樣品混合均勻后,置于65 ℃烘箱干燥后粉碎待測。
1.3測定指標(biāo)與方法
試驗(yàn)飼糧的常規(guī)營養(yǎng)成分及糞便樣品的干物質(zhì)、總磷含量的測定參考張麗英[15]測定方法,三氧化二鉻含量參考Fenton等[16]提出的方法進(jìn)行測定。
1.4磷的消化率計(jì)算方法
磷的表觀全腸道消化率(apparent total tract digestibility,ATTD)按照以下公式計(jì)算:
磷的ATTD(%)=100-[(飼糧中鉻含量/
糞中鉻含量)×(糞中磷含量/
飼糧中磷含量)×100]。
總糞磷排泄量根據(jù)以下公式計(jì)算:
總糞磷排泄量(mg/kg)=(飼糧中
鉻含量/糞中鉻含量)×糞中磷含量×
飼糧干物質(zhì)含量×100。
全腸道的可消化磷含量計(jì)算根據(jù)以下公式:
全腸道可消化磷(mg/kg)=飼糧
總磷攝入量-全腸道磷的排泄量。
使用線性回歸法測定磷的TTTD按照公式:
可消化磷(mg/kg)=TTTD×
總磷攝入量-內(nèi)源磷排泄量。
如上述公式所描述,使用全腸道可消化磷含量與飼糧總磷攝入量做回歸方程,得出的回歸方程斜率即為飼糧中磷的TTTD。
1.5統(tǒng)計(jì)分析
使用SAS 9.3統(tǒng)計(jì)分析軟件中的一般線性模型(GLM)程序進(jìn)行方差分析和顯著性檢驗(yàn),并進(jìn)行多重比較。結(jié)果以平均值±標(biāo)準(zhǔn)誤表示,差異顯著水平為P<0.05和P<0.01。
試驗(yàn)期間所有生長豬健康狀況正常,并按照相應(yīng)的采食量采食完所有試驗(yàn)飼糧。
2.1飼糧添加DCP對生長豬磷消化率的影響(試驗(yàn)1)
由表3可知,總糞磷排泄量、全腸道可消化磷含量及磷的ATTD均隨著DCP在玉米-豆粕型飼糧和小麥-豆粕型飼糧中添加水平的增加而線性增加(P<0.01),且總糞磷排泄量和磷的ATTD隨著DCP在玉米-豆粕型飼糧中添加水平的增加而呈二次函數(shù)增加(P<0.05)。在添加DCP后,玉米-豆粕型飼糧中總糞磷排泄量極顯著高于小麥-豆粕型飼糧(P<0.01),而小麥-豆粕型飼糧中的全腸道可消化磷含量及磷的ATTD極顯著高于玉米-豆粕型飼糧(P<0.01)。但飼糧類型和磷水平的互作效應(yīng)對總糞磷排泄量、全腸道可消化磷含量及磷的ATTD的影響不顯著(P>0.05)。
全腸道可消化磷與總磷攝入量之間顯著線性相關(guān)是使用線性回歸法測定磷的真消化率的前提條件,本試驗(yàn)結(jié)果滿足上述條件。根據(jù)回歸方程的公式,以mg/kg為單位計(jì)算磷的排泄量,由此得出的線性回歸方程。由表5可知,生長豬采食添加DCP的玉米-豆粕型飼糧和小麥-豆粕型飼糧后,得到的回歸方程分別為Y=0.823 3X-2 035.54和Y=0.828 8X-1 840.51。其中Y表示可消化磷含量,X代表飼糧總磷攝入量。生長豬對玉米-豆粕型飼糧和小麥-豆粕型飼糧DCP中磷的TTTD分為82.33%和82.88%,二者差異不顯著(P>0.05)。其相應(yīng)的內(nèi)源性磷損失分別為2 036和1 841 mg/kg干物質(zhì)攝入量,其回歸方程相應(yīng)的決定系數(shù)(R2)分別為0.948 1和0.936 4,回歸方程擬合良好。
2.2飼糧添加MCP對生長豬磷消化率的影響(試驗(yàn)2)
由表4可知,玉米-豆粕型飼糧和小麥-豆粕型飼糧中,隨著MCP添加水平的增加,總糞磷排泄量、全腸道可消化磷含量及磷的ATTD均呈線性增加(P<0.01)。在玉米-豆粕型飼糧和小麥-豆粕型飼糧中添加MCP后,小麥-豆粕型飼糧中總糞磷排泄量極顯著低于玉米-豆粕型飼糧(P<0.01),但小麥-豆粕型飼糧中全腸道可消化磷含量及磷的ATTD極顯著高于玉米-豆粕型飼糧(P<0.01)。但飼糧類型和磷水平的交互作用對總糞磷排泄量、全腸道可消化磷含量及磷的ATTD均無顯著影響(P>0.05)。
由表5可知,通過線性回歸法,生長豬采食添加MCP的玉米-豆粕型飼糧和小麥-豆粕型飼糧后,得到的回歸方程分別Y=0.858 8X-2 062.44和Y=0.846 2X-1 874.62,生長豬基礎(chǔ)飼糧組成對MCP中磷的TTTD分別為85.88%和84.62%,二者無顯著差異(P>0.05)。內(nèi)源性磷損失分別為2 062和1 875 mg/kg干物質(zhì)攝入量,其回歸方程相應(yīng)的R2分別為0.913 1和0.922 8,回歸方程擬合良好。
3.1基礎(chǔ)飼糧組成對生長豬磷的ATTD的影響
在本試驗(yàn)條件下,在無DCP和MCP添加的玉米-豆粕型和小麥-豆粕型飼糧中生長豬對磷的ATTD分別為16.91%~18.27%和28.99%~30.43%,與劉正群等[17]報(bào)道磷的ATTD均基本相近。通過在玉米-豆粕型和小麥-豆粕型2種類型飼糧中添加可消化磷含量較高的DCP,可顯著提高總糞磷排泄量及全腸道可消化磷含量,磷的ATTD也相應(yīng)增加,這與Wu等[7]、劉正群等[17]及Seynaeve等[18]研究結(jié)果一致。通過在上述2種類型飼糧中添加富含可消化磷的MCP時(shí),也均可顯著提高總糞磷排泄量、全腸道可消化磷含量及生長豬對磷的ATTD,這與Stein等[19]研究結(jié)果一致。且Beers等[20]研究也發(fā)現(xiàn),在仔豬飼糧中添加MCP也可顯著提高仔豬對磷的ATTD。在總磷含量相近的2種類型飼糧中,生長豬對小麥-豆粕型飼糧中磷的ATTD顯著高于玉米-豆粕型飼糧中磷的ATTD,這可能與小麥中的可消化磷含量高于玉米中的可消化磷含量相關(guān)[21]。故在畜牧業(yè)生產(chǎn)中,為減少環(huán)境的中磷排放,可以考慮用小麥部分替代玉米作為能量飼料。
表3 飼糧添加磷酸氫鈣對生長豬磷消化率的影響(試驗(yàn)1)
表4 飼糧添加磷酸二氫鈣對生長豬磷消化率的影響(試驗(yàn)二)
表5 生長豬基礎(chǔ)飼糧類型對無機(jī)磷中磷真消化率的影響
Y表示可消化磷,X表示總磷攝入量。Y means digestible P, X means P intake.
3.2基礎(chǔ)飼糧組成對生長豬磷的TTTD的影響
目前飼料原料中磷真消化率的評定方法主要包括同位素稀釋技術(shù)、差量法及線性回歸法等[22]。在各種測定方法中,由Fan等[5]和Shen等[6]提出的線性回歸法被認(rèn)為是測定飼料原料中磷的真消化率和動物內(nèi)源磷排泄量的可靠方法,且使用較為廣泛。線性回歸法測定結(jié)果是否準(zhǔn)確主要在于動物內(nèi)源磷排泄量和待測飼料原料中磷的真消化率不受飼糧磷水平影響的前提假設(shè)是否成立[5],本試驗(yàn)滿足上述條件。
目前,關(guān)于生長豬對飼糧中無機(jī)磷源中磷真消化率的報(bào)道較少,Petersen等[4]通過飼喂無磷飼糧法測得生長豬對常用的無機(jī)磷源中磷的TTTD。本試驗(yàn)通過在玉米-豆粕型和小麥-豆粕型飼糧中添加不同水平的DCP及MCP作為無機(jī)磷源,通過使用線性回歸法,測得了生長豬對添加無機(jī)磷源中磷的TTTD。其結(jié)果顯示,添加DCP作為無機(jī)磷源的玉米-豆粕型以及小麥-豆粕型飼糧中磷的TTTD分別為82.33%和82.88%,添加MCP作為無機(jī)磷源的2種飼糧中磷的TTTD分別為85.88%和84.62%,2種基礎(chǔ)飼糧對2種無機(jī)磷源中磷TTTD均無顯著差距。由線性回歸方程可知,生長豬對添加MCP的飼糧組磷的TTTD高于添加DCP飼糧組磷的TTTD,該結(jié)果與Jongbloed等[2]、Eeckhout等[3]和Petersen等[4]研究結(jié)果一致。但本試驗(yàn)通過線性回歸法測定的生長豬對DCP和MCP中磷的TTTD值均低于Petersen等[4]通過無磷飼糧法測得的磷的TTTD,究其原因,可能在于本試驗(yàn)飼糧中總磷的來源除添加的無機(jī)磷源外,還由玉米-豆粕型和小麥-豆粕型2種基礎(chǔ)飼糧提供。
生長豬基礎(chǔ)飼糧組成對DCP和MCP中磷的TTTD無顯著影響。因此,使用DCP和MCP中磷的TTTD用于配制生長豬飼糧時(shí)無需考慮基礎(chǔ)飼糧中碳水化合物和植酸酶活性對DCP和MCP中磷消化率的影響。
[1]WEREMKO D,FANDREJEWSKI H,ZEBROWSKA T,et al.Bioavailability of phosphorus in feeds of plant origin for pigs[J].Asian Australasian Journal of Animal Sciences,1997,10(6):551-566.
[2]JONGBLOED A W,EVERTS H,KEMME P A.Phosphorus availability and requirements in pigs[M]//Heinemann.Recent advances in animal nutrition.London,UK:Butterworth,1991:65-80.
[3]EECKHOUT W,DE PAEPE M.The digestibility of three calcium phosphates for pigs as measured by difference and by slope-ratio assay[J].Journal of Animal Physiology and Animal Nutrition,1997,77(1/2/3/4/5):53-60.
[4]PETERSEN G I,STEIN H H.Novel procedure for estimating endogenous losses and measurement of apparent and true digestibility of phosphorus by growing pigs[J].Journal of Animal Science,2006,84(8):2126-2132.
[5]FAN M Z,ARCHBOLD T,SAUER W C,et al.Novel methodology allows simultaneous measurement of true phosphorus digestibility and the gastrointestinal endogenous phosphorus outputs in studies with pigs[J].The Journal of Nutrition,2001,131(9):2388-2396.
[6]SHEN Y R,FAN M Z,AJAKAIYE A,et al.Use of the regression analysis technique to determine the true phosphorus digestibility and the endogenous phosphorus output associated with corn in growing pigs[J].The Journal of Nutrition,2002,132(6):1199-1206.
[7]WU X,RUAN Z,ZHANG Y G,et al.True digestibility of phosphorus in different resources of feed ingredients in growing pigs[J].Asian Australasian Journal of Animal Sciences,2008,21(1):107-119.
[8]LIU J B,YANG Y K,HE J,et al.Comparison of two diet types in the estimation of true digestibility of phosphorus in soybean and canola meals for growing pigs by the regression method[J].Livestock Science,2014,167:269-275.
[9]LIU J,BOLLINGER D W,LEDOUX D R,et al.Effects of dietary calcium:phosphorus ratios on apparent absorption of calcium and phosphorus in the small intestine,cecum,and colon of pigs[J].Journal of Animal Science,2000,78(1):106-109.
[10]JOHNSON S L,WILLIAMS S B,SOUTHERN L L,et al.Effect of phytase addition and dietary calcium and phosphorus levels on plasma metabolites and ileal and total-tract nutrient digestibility in pigs[J].Journal of Animal Science,2004,82(3):705-714.
[11]AKINMUSIRE A S,ADEOLA O.True digestibility of phosphorus in canola and soybean meals for growing pigs:influence of microbial phytase[J].Journal of Animal Science,2009,87(3):977-983.
[12]KEMME P A,RADCLIFFE J S,JONGBLOED A W,et al.Factors affecting phosphorus and calcium digestibility in diets for growing-finishing pigs[J].Journal of Animal Science,1997,75(8):2139-2146.
[13]METZLER B U,MOSENTHIN R.A review of interactions between dietary fiber and the gastrointestinal microbiota and their consequences on intestinal phosphorus metabolism in growing pigs[J].Asian Australasian Journal of Animal Sciences,2008,21(4):603-615.
[14]NORTEY T N,PATIENCE J F,SIMMINS P H,et al.Effects of individual or combined xylanase and phytase supplementation on energy,amino acid,and phosphorus digestibility and growth performance of grower pigs fed wheat-based diets containing wheat millrun[J].Journal of Animal Science,2007,85(6):1432-1443.
[15]張麗英.飼料分析及飼料質(zhì)量檢測技術(shù)[M].2版.北京:中國農(nóng)業(yè)大學(xué)出版社,2003.
[16]FENTON T W,FENTON M.An improved procedure for the determination of chromic oxide in feed and feces[J].Canadian Journal of Animal Science,1979,59(3):631-634.
[17]劉正群,劉靜波,呂帥兵,等.飼糧類型和磷水平對生長豬后腸磷消化率的影響[J].動物營養(yǎng)學(xué)報(bào),2015,27(8):2509-2516.
[18]SEYNAEVE M,JANSSENS G,HESTA M,et al.Effects of dietary Ca/P ratio,P level and microbial phytase supplementation on nutrient digestibilities in growing pigs:precaecal,post-ileal and total tract disappearances of OM,P and Ca[J].Journal of Animal Physiology and Animal Nutrition,2000,83(1):36-48.
[19]STEIN H H,KADZERE C T,KIM S W,et al.Influence of dietary phosphorus concentration on the digestibility of phosphorus in monocalcium phosphate by growing pigs[J].Journal of Animal Science,2008,86(8):1861-1867.
[20]BEERS S,JONGBLOED A W.Effect of supplementaryAspergillusnigerphytase in diets for piglets on their performance and apparent digestibility of phosphorus[J].Animal Production,1992,55(3):425-430.
[21]馮占雨,喬家運(yùn).在肥育豬和母豬飼糧中利用小麥替代玉米的應(yīng)用研究[J].養(yǎng)豬,2012(4):13-16.
[22]羅贊,賀建華.豬用飼料原料有效磷評定方法的研究[J].飼料工業(yè),2008,29(5):53-58.
(責(zé)任編輯武海龍)
, professor, E-mail: zhanghongfu@caas.cn
Effects of Basal Diet Composition on True Total Tract Digestibility of Phosphorus in Dicalcium Phosphate and Monocalcium Phosphate for Growing Pigs
LIU Zhengqun1ZHANG Zuxiang2CHEN Liang1LIU Jingbo1,2ZHANG Hongfu1*
(1. State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; 2. School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)
Two experiments were conducted to investigate the effects of basal diet composition on the determination of true total tract digestibility (TTTD) of phosphorus (P) in dicalcium phosphate (DCP) and monocalcium phosphate (MCP) for growing pigs. In experiment 1, ten growing pigs with (30.4±1.8) kg average body weight (BW) were fed 5 DCP supplemental levels of corn soybean meal (CSBM) diets and 5 DCP supplemental levels of wheat soybean meal (WSBM) diets in a 10×8 incomplete Latin square design. In experiment 2, ten growing pigs with (30.9±1.5) kg average BW were fed 5 MCP supplemental levels of CSBM diets and 5 MCP supplemental levels of WSBM diets in a 10×8 incomplete Latin square design. Each experiment contained eight digestion periods and each period lasted for 7 days (5 days for adaptation and 2 days for fecal sample collection). The results showed as follows: 1) total tract P output in the CSBM diets was significant higher than that in the WSBM diets (P<0.01), while the total tract digestible P content and apparent total tract digestibility (ATTD) of P in the CSBM diets were higher than those in the WSBM diets (P<0.01). The total tract P output, total tract digestible P content and ATTD of P linearly increased as P from DCP or MCP added to the diet (P<0.01). 2) By using the linear regression method, the estimated true total tract digestibility (TTTD) of P in DCP for pigs fed CSBM and WSBM diet to be 82.33% and 82.88%, respectively. The TTTD of P in MCP for pigs fed CSBM and WSBM diet to be 85.88% and 84.62%, respectively. In conclusion, the TTTD of P in DCP or MCP for growing pigs is not affected by basal diet composition.[ChineseJournalofAnimalNutrition, 2016, 28(8):2542-2550]
phosphorus; basal diet; growing pigs; true total tract digestibility; dicalcium phosphate; monocalcium phosphate
10.3969/j.issn.1006-267x.2016.08.026
2016-02-29
國家科技支撐計(jì)劃項(xiàng)目(2012BDA39B01,2013BAD21B02-01);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS07)
劉正群(1991—),男,山東聊城人,碩士,從事豬營養(yǎng)研究。E-mail: liuzhengqun2015@163.com
張宏福,研究員,博士生導(dǎo)師,E-mail: zhanghongfu@caas.cn
S828
A
1006-267X(2016)08-2542-09