儲(chǔ)呈林 陳強(qiáng)路 張 博 史 政 姜海健 楊 鑫
(1.中國(guó)石油化工股份有限公司石油勘探開(kāi)發(fā)研究院無(wú)錫石油地質(zhì)研究所 江蘇無(wú)錫 214126;2. Tyumen State Oil and Gas University Tyumen 625003)
?
熱液活動(dòng)對(duì)東二溝剖面玉爾吐斯組烴源巖形成的影響
儲(chǔ)呈林1陳強(qiáng)路1張博2史政1姜海健1楊鑫1
(1.中國(guó)石油化工股份有限公司石油勘探開(kāi)發(fā)研究院無(wú)錫石油地質(zhì)研究所江蘇無(wú)錫214126;2. Tyumen State Oil and Gas University Tyumen 625003)
研究熱液活動(dòng)是否會(huì)破壞烴源巖的形成。對(duì)塔里木盆地東二溝剖面玉爾吐斯組進(jìn)行地球化學(xué)分析,利用δEu、Fe/Ti和(Fe +Mn)/Ti比值研究熱液活動(dòng),Al/Ti比值替代古生產(chǎn)力,V/Cr、V/(V+Ni)和Ni/Co比值代表氧化還原環(huán)境,進(jìn)而探討熱液活動(dòng)與古生產(chǎn)力、氧化還原條件以及有機(jī)質(zhì)含量之間的關(guān)系。玉爾吐斯組沉積時(shí)古生產(chǎn)力水平較低,為貧氧—厭氧環(huán)境,下部具有較強(qiáng)的熱液活動(dòng),中上部熱液活動(dòng)較弱。下部的熱液活動(dòng)雖然促進(jìn)了古生產(chǎn)力的提高,但TOC含量整體較低,為0.01%~3.58%,平均值為0.64%;中上部熱液活動(dòng)較弱,古生產(chǎn)力水平較低,TOC含量卻較高,為0.06%~12.19%,平均值為8.95%,是較好的烴源巖層。巖石薄片顯示,與熱液活動(dòng)相關(guān)的硅質(zhì)巖中含有大量的藻類(lèi)。研究結(jié)果表明,較強(qiáng)的熱液活動(dòng)會(huì)帶來(lái)大量的富硅流體,稀釋沉積物中的有機(jī)質(zhì),對(duì)烴源巖的形成起破壞作用。
熱液活動(dòng)烴源巖玉爾吐斯組塔里木盆地
海底熱液活動(dòng)于1977年首次在加拉帕戈斯群島被發(fā)現(xiàn),其主要出現(xiàn)在大洋中脊、弧后盆地和島弧三種構(gòu)造環(huán)境中[1-2]。海底熱液富含有各種金屬元素,如Fe,Zn,Cu,Cd,Mn等,越來(lái)越多的金屬礦床被發(fā)現(xiàn)與熱液活動(dòng)相關(guān)[3-5]。海底熱液活動(dòng)除帶來(lái)大量金屬元素外,同樣能促進(jìn)熱液活動(dòng)區(qū)生物群落的發(fā)育。現(xiàn)代海底熱液研究表明,熱液活動(dòng)區(qū)生物繁盛,生物產(chǎn)量與熱液活動(dòng)強(qiáng)度呈正比,熱液活動(dòng)能促進(jìn)沉積物中有機(jī)質(zhì)的富集[6]。Hanetal.[7]研究中國(guó)南方下寒武統(tǒng)牛蹄塘組發(fā)現(xiàn),受熱液活動(dòng)影響的黑色頁(yè)巖,金屬元素富集,有機(jī)碳含量為2.55%~11.5%,平均值為7.73%,而未受熱液活動(dòng)影響的黑色頁(yè)巖有機(jī)碳為1.80%~4.26%,平均值位3.67%。
目前熱液活動(dòng)與烴源巖關(guān)系的研究主要集中在熱液活動(dòng)有利于促進(jìn)生物群落的發(fā)育和還原環(huán)境的形成兩大方面[8-11],而熱液活動(dòng)強(qiáng)度差異性及其產(chǎn)物對(duì)烴源巖形成的影響研究的較少。前人研究認(rèn)為塔里木盆地下寒武統(tǒng)玉爾吐斯組為良好的烴源巖層,且形成過(guò)程中受到海底熱液的影響[12-13]。本文利用地球化學(xué)指標(biāo)對(duì)塔里木盆地東二溝剖面玉爾吐斯組的沉積環(huán)境進(jìn)行了恢復(fù)和判別,分析有機(jī)碳和沉積環(huán)境的關(guān)系,探討不同強(qiáng)度熱液活動(dòng)及其產(chǎn)物對(duì)烴源巖發(fā)育的影響。
震旦紀(jì)早期,塔里木陸塊已經(jīng)固結(jié)為增生的大陸地殼,形成具有前震旦系基底的盆地;震旦紀(jì)末,塔里木陸塊一度整體抬升,震旦紀(jì)地層遭受風(fēng)化剝蝕[14]。此后,早寒武世的冰川消融和缺氧事件,導(dǎo)致海平面快速上升,形成最大海泛并轉(zhuǎn)為陸表海,沉積了早古生代第一套海相烴源巖[15],在柯坪、阿克蘇地區(qū)為玉爾吐斯組。
塔里木盆地東二溝剖面位于阿克蘇市西南約50 km的青松石料廠(chǎng)北側(cè),地理位置為40°54′19.59″ N,79°51′10.05″ E,地層發(fā)育良好(圖1)。該剖面出露的玉爾吐斯組與下伏震旦系奇格布拉克組平行不整合接觸,與上覆下寒武統(tǒng)肖爾布拉克組整合接觸,底部為含磷硅質(zhì)巖夾薄層黑色泥巖,向上硅質(zhì)巖層逐漸增多;中部以黑色泥巖和頁(yè)巖為主,夾有少量硅質(zhì)巖;上部由瘤狀白云巖夾泥巖逐漸過(guò)渡為肖爾布拉克組深灰色厚層塊狀白云巖。
圖1 塔里木盆地東二溝剖面巖性柱狀圖及位置Fig.1 Map of lithology and location of Dongergou section in Tarim Basin
樣品采自于塔里木盆地東二溝剖面,共16件,其中震旦系奇格布拉克組樣品1件、寒武系玉爾吐斯組樣品13件、肖爾布拉克組樣品2件。殘余總有機(jī)碳測(cè)試在中石化石油勘探開(kāi)發(fā)研究院無(wú)錫石油地質(zhì)研究所實(shí)驗(yàn)中心完成(表1),儀器為美國(guó)LecoCS-200碳硫測(cè)定儀,靈敏度為3~5位有效數(shù)字,準(zhǔn)確度:C>0.1%±0.001或0.1%±0.005;C<0.1%±0.000 2或0.1%±0.005。元素化學(xué)分析由中國(guó)石油勘探開(kāi)發(fā)研究院廊坊分院完成(表1),主要元素?cái)?shù)據(jù)用X射線(xiàn)熒光光譜法(XRF)分析,分析誤差小于3%;微量和稀土元素?cái)?shù)據(jù)用等離子體質(zhì)譜法(ICP-MS)分析,分析誤差小于6%。
3.1海底熱液活動(dòng)的證據(jù)
大洋中脊熱液流體的稀土元素特征已經(jīng)被廣泛研究[16-18]。由于稀土元素在化學(xué)性質(zhì)上的相似性和系統(tǒng)差異,稀土元素常常用來(lái)作為海底熱液活動(dòng)的示蹤劑[19-21]。
東二溝剖面玉爾吐斯組沉積物稀土元素組成見(jiàn)表1,稀土元素組成分析顯示其總稀土(ΣREE)含量較低,為(3.9~117.09)×10-6,平均含量為47.15×10-6。用北美頁(yè)巖的稀土元素值標(biāo)準(zhǔn)化后[22],具有明顯的正Eu異常(δEu=0.94~2.11)和負(fù)Ce異常(δCe=0.31~0.63),輕稀土與重稀土比值較小,標(biāo)準(zhǔn)化曲線(xiàn)近于水平或左傾。Eu的正異常是現(xiàn)代海底熱液流體稀土元素組成的重要標(biāo)志[19, 23-25],表明東二溝玉爾吐斯組沉積時(shí)有海底熱液的參與(圖2)。
沉積物中Fe/Ti和(Fe +Mn)/Ti比值同樣可以作為判別海底熱液的標(biāo)志,當(dāng)Fe/Ti>20或(Fe +Mn)/Ti>20±5,沉積物認(rèn)為是熱液沉積[26]。東二溝剖面玉爾吐斯組沉積中Fe/Ti比值為7.98~287.76,平均值為49.27,(Fe+Mn)/Ti比值為9.31~320.11,平均值為53.82(表1),同樣表明玉爾吐斯組沉積時(shí)有海底熱液的參與。以δEu、Fe/Ti和(Fe +Mn)/Ti比值反應(yīng)熱液活動(dòng)強(qiáng)弱,縱向上玉爾吐斯組熱液活動(dòng)具有由弱到強(qiáng)再減弱的特征,熱液活動(dòng)主要集中在玉爾吐斯組的中下部,上部熱液活動(dòng)不明顯或較弱(圖3)。
3.2古海洋生產(chǎn)力
海洋生產(chǎn)力反映了生物通過(guò)同化作用生產(chǎn)或積累有機(jī)物的能力[27]。對(duì)于古海洋而言,古海洋生產(chǎn)力的直接測(cè)定是不可能的。古海洋生產(chǎn)力的研究常用生物沉積物、化學(xué)元素、古生物等指標(biāo)來(lái)替代[28]。隨著現(xiàn)代分析測(cè)試技術(shù)的進(jìn)步及其分析精度的提高,地球化學(xué)指標(biāo)在古海洋研究中的作用日益突出,常用來(lái)反應(yīng)古生產(chǎn)力的地球化學(xué)指標(biāo)包括Al、Al/Ti、P、Ba、Ba/Ti等[29-31]。
表1 塔里木盆地東二溝剖面樣品元素?cái)?shù)據(jù)
注:TOC、Al2O3、TFe2O3單位為%,其余元素單位為μg/g。
圖2 東二溝剖面玉爾吐斯組稀土元素配分模式Fig.2 REE pattern of Yuertusi Formation at Dongergou section
圖3 東二溝剖面玉爾吐斯組熱液活動(dòng)的地球化學(xué)特征Fig.3 Geochemical characteristics of hydrothermal activities of Yuertusi Formation at Dongergou section
單一元素受沉積速率等因素的影響較大,而通過(guò)元素比值可以抵消沉積速率等變化的影響[31],且Al和Ti元素受成巖作用的影響較小,因此本文采用Al/Ti 的比值來(lái)做為反應(yīng)古海洋生產(chǎn)力的指標(biāo)。由于Al/Ti比值受陸源物質(zhì)的影響較大,僅在受陸源物質(zhì)含量較小的情況下適用[30]。Krycetal.[32]在太平洋和南極半島的研究表明,陸源物質(zhì)小于3%~5%時(shí),Al/Ti可以作為替代古生產(chǎn)力的指標(biāo)。Yarinciketal.[33]在研究卡里亞科盆地時(shí)同樣指出Al/Ti作為古產(chǎn)力指標(biāo)時(shí),陸源物質(zhì)必須小于5%。根據(jù)Ti/TiPAAS計(jì)算陸源物質(zhì)含量[34],東二溝剖面除3個(gè)樣品陸源物質(zhì)含量超過(guò)5%外,其余樣品的陸源物質(zhì)含量都小于5%,平均值為4.66%,總體陸源物質(zhì)的含量較少。因此可以用Al/Ti來(lái)作為反應(yīng)古生產(chǎn)力的指標(biāo)。
圖4 東二溝剖面玉爾吐斯組古生產(chǎn)力的地球化學(xué)特征Fig.4 Geochemical characteristics paleoproductivity of Yuertusi Formation at Dongergou section
從東二溝剖面玉爾吐斯組Al/Ti隨深度變化的曲線(xiàn)可以看出,Al/Ti比值變化的范圍不大,主要分布在12.8~31.12之間,平均值為21.08。玉爾吐斯組下部的Al/Ti比值較大,平均值為25.28,大于上部的16.88,反應(yīng)了玉爾吐斯組沉積早期,古生產(chǎn)力水平較高??傮w看來(lái),由下往上,玉爾吐斯組古生產(chǎn)力水平逐漸下降(圖4)。
3.3保存條件
保存條件是沉積物中有機(jī)質(zhì)能否富集的關(guān)鍵因素之一。一般來(lái)說(shuō),缺氧環(huán)境有利于有機(jī)質(zhì)的富集和保存,是優(yōu)質(zhì)烴源巖發(fā)育的重要條件之一。由于Cr、U、V、Ni等微量元素對(duì)沉積水體中的氧化還原條件比較敏感,且在成巖過(guò)程中幾乎不發(fā)生遷移,反應(yīng)了沉積時(shí)的原始條件,所以它們是用來(lái)恢復(fù)水體氧化還原條件的理想指標(biāo)[35]。本文采用V/Cr、V/(V+Ni)和Ni/Co作為氧化還原條件的替代指標(biāo)。地球化學(xué)家認(rèn)為:常氧環(huán)境V/Cr<2.00、V/(V+Ni)<0.46、Ni/Co<5.00;貧氧環(huán)境2.00
從圖5中可知,東二溝剖面玉爾吐斯組V/Cr比值主要介于2~4之間,表明玉爾吐斯組沉積時(shí)為貧氧的沉積環(huán)境,V/(V+Ni)比值大于0.46,主要分布在0.6附近,表現(xiàn)為貧氧—厭氧的特征。與V/Cr和V/(V+Ni)比值不同,Ni/Co比值大多數(shù)表現(xiàn)為厭氧的特征,這可能是由于成巖作用使Co元素再活化,造成Co元素減少而引起的[37],但Ni/Co縱向上的變化規(guī)律與V/Cr和V/(V+Ni)相同。因此,東二溝剖面玉爾吐斯組沉積時(shí)為貧氧—厭氧的水體環(huán)境(圖5)。
圖5 東二溝剖面玉爾吐斯組氧化還原的地球化學(xué)特征Fig.5 Geochemical characteristics of paleoredox of Yuertusi Formation at Dongergou section
以δEu反應(yīng)熱液活動(dòng),Al/Ti比值表示古生產(chǎn)力水平,V/Cr和V/(V+ Ni)比值代表氧化還原環(huán)境,結(jié)合TOC值,研究了熱液活動(dòng)對(duì)東二溝剖面玉爾吐斯組烴源巖發(fā)育的影響(圖6)。
東二溝剖面玉爾吐斯組Al/Ti比值變化的范圍不大,下部Al/Ti比值分布在19.7~31.12之間,平均值為25.28,上部Al/Ti值為12.8~21.33,平均值為16.88,下部的古生產(chǎn)力高于上部。根據(jù)δEu縱向上的變化,玉爾吐斯組沉積時(shí)的熱液活動(dòng)主要集中在下部。因此玉爾吐斯組下部較高的古生產(chǎn)力水平可能與熱液活動(dòng)有關(guān),在熱液活動(dòng)較強(qiáng)時(shí),古生產(chǎn)力同樣存在一個(gè)明顯的突變(圖6),這可能與熱液活動(dòng)時(shí)帶來(lái)豐富的營(yíng)養(yǎng)物質(zhì)有關(guān)。雖然玉爾吐斯組下部古生產(chǎn)力水平較高,處于貧氧—厭氧的沉積環(huán)境,但其TOC含量卻比較低,7個(gè)樣品中TOC含量為0.01%~3.58%,平均值為0.64%,但其中僅有DE-6和DE-7兩個(gè)樣品TOC含量大于0.5%,整體上烴源巖并不發(fā)育。雖然玉爾吐斯組中上部的古生產(chǎn)力水平較低、保存條件與下部相似,但熱液活動(dòng)較弱(圖6),其TOC含量反而較高,6個(gè)樣品中TOC含量為0.06%~12.19%,平均值為8.95%,僅有DE-16一個(gè)樣品TOC含量<0.5%,是烴源巖的發(fā)育層段。
東二溝剖面玉爾吐斯組沉積時(shí),古生產(chǎn)力水平和氧化還原條件比較相似,僅在熱液活動(dòng)方面存在明顯的差異性,因此熱液活動(dòng)是造成下部和中上部TOC差異的主要原因。玉爾吐斯組內(nèi)部硅質(zhì)巖的微量和稀土元素特征表明其屬熱水沉積作用形成。露頭剖面下部硅質(zhì)巖大量發(fā)育,中上部硅質(zhì)巖較少也與熱液活動(dòng)的總體特征相符,因此硅質(zhì)巖是熱液活動(dòng)的直接物質(zhì)表現(xiàn)。剖面上玉爾吐斯組內(nèi)部的硅質(zhì)巖主要為黑色,厚度穩(wěn)定,與黑色泥巖接觸界線(xiàn)清楚。鏡下薄片觀(guān)察顯示,硅質(zhì)巖為深褐色,內(nèi)部含有豐富的有機(jī)質(zhì),以藻類(lèi)體為主,藻類(lèi)體以綠藻、底棲紅藻為主(圖7)。因此玉爾吐斯組下部TOC含量較低,可能是由于強(qiáng)烈的熱液活動(dòng),帶來(lái)大量的富硅流體,在沉積了大套硅質(zhì)巖的同時(shí),稀釋了沉積物中的有機(jī)質(zhì)所造成的,也就是說(shuō)強(qiáng)烈的熱液活動(dòng)破壞了玉爾吐斯組下部烴源巖的發(fā)育環(huán)境。
圖6 東二溝剖面玉爾吐斯組地球化學(xué)特征參數(shù)及有機(jī)碳豐度關(guān)系Fig.6 Geochemical characteristics and TOC of Yuertusi Formation at Dongergou section
δEu、Fe/Ti和(Fe +Mn)/Ti比值研究表明,玉爾吐斯組下部沉積時(shí)具有較強(qiáng)的熱液活動(dòng),熱液活動(dòng)帶來(lái)了大量的營(yíng)養(yǎng)物質(zhì)促進(jìn)了生古產(chǎn)力水平的提高,但也帶來(lái)了大量的富硅流體,在沉積大套硅質(zhì)巖的同時(shí),對(duì)沉積物中富集的有機(jī)質(zhì)造成了稀釋?zhuān)斐蒚OC含量較低,7個(gè)樣品中僅2個(gè)樣品TOC含量大于0.5%;而玉爾吐斯組中上部的古生產(chǎn)力水平、保存條件與下部相似,但熱液活動(dòng)較弱,形成了對(duì)有機(jī)質(zhì)保存的有利因素,6個(gè)樣品的TOC含量平均值為8.95%,是較好的烴源巖層段。綜上所述,熱液流體強(qiáng)烈活動(dòng)時(shí),帶來(lái)的富硅流體會(huì)造成沉積物中有機(jī)質(zhì)的稀釋?zhuān)焕谛纬捎欣臒N源巖層段。
References)
1Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galápagos Rift[J]. Science, 1979, 203(4385): 1073-1083.
2Spiess F N, Macdonald K C, Atwater T, et al. East pacific rise: hot springs and geophysical experiments[J]. Science, 1980, 207(4438): 1421-1433.
3Scott M R, Scott R B, Rona P A, et al. Rapidly accumulating manganese deposit from the Median Valley of the Mid-Atlantic Ridge[J]. Geophysical Research Letters, 1974, 1(8): 355-358.
4Corliss J B, Lyle M, Dymond J, et al. The chemistry of hydrothermal mounds near the Galápagos Rift[J]. Earth and Planetary Science Letters, 1978, 40(1): 12-24.
5Rona P A. Pattern of hydrothermal mineral deposition: mid-Atlantic Ridge crest at latitude 26° N[J]. Marine Geology, 1976, 21(4): 59-66.
6陳?ài)`發(fā),張水昌,孫省利,等. 海相碳酸鹽巖優(yōu)質(zhì)烴源巖發(fā)育的主要影響因素[J]. 地質(zhì)學(xué)報(bào),2006,80(3):467-472. [Chen Jianfa, Zhang Shuichang, Sun Shengli, et al. Main factors influencing marine carbonate source rock formation[J]. Acta Geologica Sinica, 2006, 80(3): 467-472.]
7Han Tao, Zhu Xiaoqing, Li Kun, et al. Metal sources for the polymetallic Ni-Mo-PGE mineralization in the black shales of the Lower Cambrian Niutitang Formation, South China[J]. Ore Geology Reviews, 2015, 67: 158-169.
8梁鈺,侯讀杰,張金川,等. 海底熱液活動(dòng)與富有機(jī)質(zhì)烴源巖發(fā)育的關(guān)系——以黔西北地區(qū)下寒武統(tǒng)牛蹄塘組為例[J]. 油氣地質(zhì)與采收率,2014,21(4):28-32. [Liang Yu, Hou Dujie, Zhang Jinchuan, et al. Hydrothermal activities on the seafloor and evidence of organic-rich source rock from the Lower Cambrian Niutitang Formation, northwestern Guizhou[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(4): 28-32.]
9張文正,楊華,解麗琴,等. 湖底熱水活動(dòng)及其對(duì)優(yōu)質(zhì)烴源巖發(fā)育的影響——以鄂爾多斯盆地長(zhǎng)7烴源巖為例[J]. 石油勘探與開(kāi)發(fā),2010,37(4):424-429. [Zhang Wenzheng, Yang Hua, Xie Liqin, et al. Lake-bottom hydrothermal activities and their influences on the high-quality source rock development: A case from Chang 7 source rocks in Ordos Basin[J]. Petroleum Exploration and Development, 2010, 37(4): 424-429.]
10李天義,何生,楊智. 海相優(yōu)質(zhì)烴源巖形成環(huán)境及其控制因素分析[J]. 地質(zhì)科技情報(bào),2008,27(6):63-70. [Li Tianyi, He Sheng, Yang Zhi. The marine source rock formation conditions and control factors[J]. Geological Science and Technology Information, 2008, 27(6): 63-70.]
11孫省利,陳?ài)`發(fā),劉文匯,等. 海底熱水活動(dòng)與海相富有機(jī)質(zhì)層形成的關(guān)系——以華北新元古界青白口系下馬嶺組為例[J]. 地質(zhì)論評(píng),2003,49(6):588-595. [Sun Xingli, Chen Jianfa, Liu Wenhui, et al. Hydrothermal venting on the seafloor and formation of organic-rich sediments-evidence from the Neoproterozoic Xiamaling Formation, North China[J]. Geological Review, 2003, 49(6): 588-595.]
12于炳松,陳建強(qiáng),李興武,等. 塔里木盆地肖爾布拉克剖面下寒武統(tǒng)底部硅質(zhì)巖微量元素和稀土元素地球化學(xué)及其沉積背景[J]. 沉積學(xué)報(bào),2004,22(1):59-66. [Yu Bingsong, Chen Jianqiang, Li Xingwu, et al. Rare earth and trace element patterns in bedded-cherts from the bottom of the Lower Cambrian in the northern Tarim Basin, Northwest China: implication for depositional environments[J]. Acta Sedimentologica Sinica, 2004, 22(1): 59-66.]
13孫省利,陳?ài)`發(fā),劉文匯,等. 塔里木盆地下寒武統(tǒng)硅質(zhì)巖地球化學(xué)特征及其形成環(huán)境[J]. 石油勘探與開(kāi)發(fā),2004,31(3):45-48. [Sun Xingli, Chen Jianfa, Liu Wenhui, et al. Geochemical characteristics of cherts of Lower Cambrian in the Tarim Basin and its implication for environment[J]. Petroleum Exploration and Development, 2004, 31(3): 45-48.]
14林暢松,楊海軍,劉景彥,等. 塔里木早古生代原盆地古隆起地貌和古地理格局與地層圈閉發(fā)育分布[J]. 石油與天然氣地質(zhì),2008,29(2):189-197. [Lin Changsong, Yang Haijun, Liu Jingyan, et al. Paleohigh geomorphology and paleogeographic framework and their controls on the formation and distribution of stratigraphic traps in the Tarim Basin[J]. Oil & Gas Geology, 2008, 29(2): 189-197.]
15許效松,汪正江,萬(wàn)方,等. 塔里木盆地早古生代構(gòu)造古地理演化與烴源巖[J]. 地學(xué)前緣,2005,12(3):49-57. [Xu Xiaosong, Wang Zhengjiang, Wan Fang, et al. Tectonic paleogeographic evolution and source rocks of the Early Paleozoic in the Tarim Basin[J]. Earth Science Frontiers, 2005, 12(3): 49-57.]
16Mitra A, Elderfield H, Greaves M J. Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge[J]. Marine Chemistry, 1994, 46(3): 217-235.
17Klinkhammer G P, Elderfield H, Edmond J M, et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5105-5113.
18James R H, Elderfield H, Palmer M R. The chemistry of hydrothermal fluids from the Broken Spur site, 29°N Mid-Atlantic ridge[J]. Geochimica et Cosmochimica Acta, 1995, 59(4): 651-659.
19丁振舉,劉叢強(qiáng),姚書(shū)振,等. 海底熱液沉積物稀土元素組成及其意義[J]. 地質(zhì)科技情報(bào),2000,19(1):27-30. [Ding Zhenju, Liu Congqiang, Yao Shuzhen, et al. REE composition and implication of hydrothermal sedimentation of sea-floor[J]. Geological Science and Technology Information, 2000, 19(1): 27-30.]
20李小虎,初鳳友,張平萍,等. 西南印度洋中脊熱液產(chǎn)物稀土元素組成變化及其來(lái)源[J]. 海洋學(xué)報(bào),2014,36(6):33-41. [Li Xiaohu, Chu Fengyou, Zhang Pingping, et al. Characteristics of composition and source of rare earth elements in the seafloor hydrothermal products from the Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2014, 36(6): 33-41.]
21王曉媛,曾志剛,陳帥,等. 我國(guó)臺(tái)灣東北部龜山島附近海域熱液流體中的稀土元素組成及其對(duì)淺海熱液活動(dòng)的指示[J]. 科學(xué)通報(bào),2013,58(19):1874-1883. [Wang Xiaoyuan, Zeng Zhigang, Chen Shuai, et al. Rare earth elements in hydrothermal fluids from Kueishantao, off northeastern Taiwan: indicators of shallow-water, sub-seafloor hydrothermal processes[J]. Chinese Science Bulletin, 2013, 58(19): 1874-1883.]
22Haskin L A, Wildeman T R, Haskin M A. An accurate procedure for the determination of the rare earths by neutron activation[J]. Journal of Radioanalytical Chemistry, 1968, 1(4): 337-348.
23Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 627-643.
24Craddock P R, Bach W, Seewald J S, et al. Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins[J]. Geochimica et Cosmochimica Acta, 2010, 74(19): 5494-5513.
25Mills R A, Elderfield H. Rare earth element geochemistry of hydrothermal deposits from the active TAG mound, 26°N Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3511-3524.
26Bostr?m K. Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits[C]//Rona P A, Bostr?m K, Laubier L, et al. Hydrothermal processes at seafloor spreading centers. New York: Springer, 1983: 473-489.
27沈國(guó)英,施并章. 海洋生態(tài)學(xué)[M]. 廈門(mén):廈門(mén)大學(xué)出版社,1990:119-120. [Shen Guoying, Shi Bingzhang. Marine Ecology[M]. Xiamen: Xiamen University Press, 1990: 119-120.]
28黃永建,王成善,汪云亮. 古海洋生產(chǎn)力指標(biāo)研究進(jìn)展[J]. 地學(xué)前緣,2005,12(2):163-170. [Huang Yongjian, Wang Chengshan, Wang Yunliang. Progress in the study of proxies of paleocean productivity[J]. Earth Science Frontiers, 2005, 12(2): 163-170.]
29沈俊,施張燕,馮慶來(lái). 古海洋生產(chǎn)力地球化學(xué)指標(biāo)的研究[J]. 地質(zhì)科技情報(bào),2011,30(2):69-77. [Shen Jun, Shi Zhangyan, Feng Qinglai. Review on geochemical proxies in paleo-productivity studies[J]. Geological Science and Technology Information, 2011, 30(2): 69-77.]
30任景玲,張經(jīng),劉素美. 以Al/Ti比值為地球化學(xué)示蹤劑反演海洋古生產(chǎn)力的研究進(jìn)展[J]. 地球科學(xué)進(jìn)展,2005,20(12):1314-1320. [Ren Jingling, Zhang Jing, Liu Sumei. A review on aluminum to titanium ratio as a geochemical proxy to reconstruct paleoproductivity[J]. Advances in Earth Science, 2005, 20(12): 1314-1320.]
31李牛,胡超涌,馬仲武,等. 四川廣元上寺剖面上二疊統(tǒng)大隆組優(yōu)質(zhì)烴源巖發(fā)育主控因素初探[J]. 古地理學(xué)報(bào),2011,13(3):347-354. [Li Niu, Hu Chaoyong, Ma Zhongwu, et al. Main control factors of high quality hydrocarbon source rocks of the Upper Permian Dalong Formation at Shangsi section of Guangyuan, Sichuan province[J]. Journal of Palaeogeography, 2011, 13(3): 347-354.]
32Kryc K A, Murray R W, Murray D W. Al-to-oxide and Ti-to-organic linkages in biogenic sediment: Relationships to paleo-export production and bulk Al/Ti[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 125-141.
33Yarincik K M, Murray R W, Peterson L C. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578, 000 years: results from Al/Ti and K/A[J]. Paleoceanography, 2000, 15(2): 210-228.
34Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869-3878.
35Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
36Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
37Hallberg R O. A Geochemical method for investigation of paleoredox conditions in sediments[J]. Ambio Special Report, 1976, 4: 139-147.
Influence on Formation of Yuertusi Source Rock by Hydrothermal Activities at Dongergou Section, Tarim Basin
CHU ChengLin1CHEN QiangLu1ZHANG Bo2SHI Zheng1JIANG HaiJian1YANG Xin1
(1.Wuxi Research Institute of Petroleum Geology, Research Institute of Petroleum Exploration and Development,SINOPEC, Wuxi, Jiangsu 214126, China;2. Tyumen State Oil and Gas University, Tyumen 625003, Russia)
Based on geochemical analyses of Yuertusi Formation at Dongergou section of Tarim basin, trace elements and rare earth elements are used to probe paleoenvironmental conditions.Using δEu, Fe/Ti and (Fe+Mn)/Ti ratios for the interpretation of hydrothermal activity, Al/Ti ratios as paleoproductivity proxies and V/Cr, V/(V+Ni) and Ni/Co ratios as paleoredox proxies, the relationship of hydrothermal activity, paleoproductivity, paleoredox and total organic carbon was discussed. The data shows that Yuertusi Formation was deposited under dominantly euxinic conditions with a low paleoproductivity and that the lower part of the section experienced a strong hydrothermal activities. Although the hydrothermal activities improve the paleoproductivity of the lower part, the total organic carbon is low and ranges from 0.01% to 3.58% with an average of 0.64%. The middle-upper part of the section have a weak hydrothermal activities, but the total organic is high and ranges from 0.06% to 12.19% with an average of 8.95%. There are plenty of algal in the thin section of cherts related with hydrothermal activities. The study suggests that strong hydrothermal activities provided a lot of silica-rich fluid, which diluted the organic matter in the sediments and destroyed the formation of high-quality source rocks.
hydrothermal activity; source rock; Yuertusi Formation; Tarim Basin
A
1000-0550(2016)04-0803-08
10.14027/j.cnki.cjxb.2016.04.020
2015-07-07; 收修改稿日期: 2015-09-22
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973)項(xiàng)目(2012CB214801);中國(guó)石化科技部項(xiàng)目(P12004)[Foundation: National Key Basic Research Project (973 Project), No. 2012CB214801; Project of Science and Technology Department of SINOPEC, No. P12004]
儲(chǔ)呈林男1982年出生博士沉積盆地分析E-mail:cclin7101@126.com
TE121.32