全先奎,王傳寬
東北林業(yè)大學(xué),生態(tài)研究中心,哈爾濱 150040
?
興安落葉松葉碳利用效率對(duì)環(huán)境變化的適應(yīng)
全先奎,王傳寬*
東北林業(yè)大學(xué),生態(tài)研究中心,哈爾濱150040
摘要:興安落葉松(Larix gmelinii)作為北方森林的主要組成樹(shù)種,具有廣闊的分布范圍和多樣的生長(zhǎng)環(huán)境,是研究樹(shù)木對(duì)環(huán)境變化響應(yīng)的理想樹(shù)種。葉碳利用效率(CUEL)不僅與樹(shù)木的碳代謝及生長(zhǎng)發(fā)育密切相關(guān),而且能反映樹(shù)木對(duì)環(huán)境變化的響應(yīng)與適應(yīng)。將來(lái)自不同地區(qū)(即環(huán)境條件)的6個(gè)興安落葉松種源的種子播種培育在帽兒山森林生態(tài)系統(tǒng)研究站內(nèi),在其生長(zhǎng)30a后采用研究站和種子來(lái)源地間干燥度(AI)的差值(ΔAI)來(lái)代表環(huán)境變化梯度,研究環(huán)境變化對(duì)CUEL的影響。結(jié)果表明:CUEL在不同環(huán)境變化梯度間存在顯著差異(P<0.05),且呈現(xiàn)隨ΔAI的增大而減小的趨勢(shì)。CUEL與葉片氮含量、葉片磷含量、比葉重及葉綠素含量等均呈線性正相關(guān)關(guān)系,但較大ΔAI梯度下的CUEL敏感性更高。CUEL與種子來(lái)源地平均年降水量呈顯著線性正相關(guān)關(guān)系(P=0.05),而與種子來(lái)源地AI則呈顯著線性負(fù)相關(guān)關(guān)系(P<0.01);隨種子來(lái)源地年平均氣溫、平均年蒸發(fā)量的增加而下降,但其相關(guān)性不顯著。以上結(jié)果表明,環(huán)境變化使興安落葉松CUEL產(chǎn)生了適應(yīng)性變異,表現(xiàn)出樹(shù)木對(duì)原生長(zhǎng)環(huán)境的生態(tài)適應(yīng)。
關(guān)鍵詞:興安落葉松;光合;碳利用效率;遺傳適應(yīng); 帽兒山生態(tài)站; 同質(zhì)種植園試驗(yàn)
陸地生態(tài)系統(tǒng)碳利用效率(CUE,即凈初級(jí)生產(chǎn)力與總初級(jí)生產(chǎn)力的比率)反映了生態(tài)系統(tǒng)碳同化能力和固碳潛力[1],不僅是森林碳匯功能估算和森林碳循環(huán)模型構(gòu)建的基礎(chǔ)參數(shù),而且可用于探究樹(shù)木對(duì)全球變化的響應(yīng)和適應(yīng)機(jī)制[2- 3]。葉片水平的CUE(CUEL)作為葉片碳平衡的重要指標(biāo),是光合與呼吸作用綜合作用的結(jié)果,因其對(duì)環(huán)境變化(如溫度、降水量等)十分敏感而備受關(guān)注[2,4]。
由于溫度對(duì)光合和呼吸的影響機(jī)制不同,使得溫度與CUEL之間的關(guān)系復(fù)雜[5],至今尚無(wú)一致的結(jié)論。例如:有研究表明,在短時(shí)間內(nèi)光合速率隨著溫度的升高呈指數(shù)升高,但是超過(guò)最適溫度之后幵始下降,而呼吸速率則隨著溫度的升高一直增大至極限值[6],從而使CUEL隨溫度的變化出現(xiàn)波動(dòng)。也有研究報(bào)道,光合和呼吸隨溫度變化表現(xiàn)出不同的敏感性,從而打破了兩者之間的平衡[7- 8],進(jìn)而引起CUEL的變異。還有研究指出,隨溫度變化,光合和呼吸會(huì)保持一個(gè)相對(duì)恒定的比值[9- 11],即CUEL保持不變;這是因?yàn)楣夂虾秃粑?jīng)過(guò)一定時(shí)間后會(huì)對(duì)溫度變化產(chǎn)生自適應(yīng)[12],從而重新恢復(fù)兩者之間的平衡[13]。這種適應(yīng)使得生長(zhǎng)在不同溫度下的植物存在相似的光合和呼吸速率[7,14]。此外,CUEL對(duì)溫度變化的響應(yīng)可能因樹(shù)種而異。例如:Dillaway等在通過(guò)移栽比較4種闊葉樹(shù)種幼苗的CUE發(fā)現(xiàn),顫楊(Populustremuloides)和紙皮樺(Betulapapyrifera)的CUE隨著移栽樣地年平均氣溫的升高而明顯減小,最大減幅達(dá)37%;而美洲黑楊(Populusdeltoids)和北美楓香(Liquidambarstyraciflua)的CUE的相應(yīng)減幅較小[1]。
全球不同森林類型CUE分析研究表明,降水適中的溫帶落葉落葉林的CUE最高,而降水最大的熱帶雨林和最小的北方森林的CUE較低[15]。Zhang等[16]發(fā)現(xiàn),當(dāng)年降水量低于2300mm時(shí),CUE隨著降水量的增加呈下降趨勢(shì);當(dāng)降水量高于2300mm時(shí),CUE趨于穩(wěn)定。出現(xiàn)上述格局可能與森林類型生活史的動(dòng)態(tài)變化以及資源利用方式不同有關(guān)[17]。然而,野外控制實(shí)驗(yàn)研究表明,當(dāng)降水量減少50%時(shí),生態(tài)系統(tǒng)總呼吸增加,凈初級(jí)生產(chǎn)力降低,從而引起CUE降低[18]。室內(nèi)人工控水實(shí)驗(yàn)研究表明,苗木的呼吸和光合的比率隨著降水量的增加而下降,從而使CUE增加[2]。由此可見(jiàn),環(huán)境變化與CUE之間的關(guān)系尚需更多的觀測(cè)試驗(yàn)加以澄清。
興安落葉松(Larixgmelinii)是我國(guó)北方森林的主要組成樹(shù)種之一,位于氣候變化敏感區(qū)域。本研究將來(lái)自不同地區(qū)(即環(huán)境條件)的6個(gè)興安落葉松種源的種子播種培育在帽兒山森林生態(tài)系統(tǒng)研究站,在其生長(zhǎng)30a后比較測(cè)定其CUEL差異,探索CUEL對(duì)環(huán)境變化的響應(yīng)是環(huán)境控制下的表型性馴化還是基因控制下的遺傳適應(yīng)。研究結(jié)果將有助于理解和預(yù)測(cè)氣候變化對(duì)興安落葉松的影響。
1材料和方法
1.1研究地概況
研究地設(shè)立于帽兒山森林生態(tài)站內(nèi)(45°20′N, 127°30′E)。該地區(qū)氣候?qū)儆诖箨懶詼貛Ъ撅L(fēng)氣候,1989—2009年平均年降水量為629mm,平均年蒸發(fā)量為864mm,年平均氣溫3.1℃,1月和7月份平均氣溫分別為-18.5℃和22℃。研究樣地內(nèi)土壤和地形條件一致,平均海拔300m,平均坡度10—15°,土壤為暗棕色森林土。
興安落葉松種子來(lái)自于其國(guó)內(nèi)自然分布區(qū)內(nèi)的6個(gè)地點(diǎn)(表1)。前期試驗(yàn)于1980年秋采種,1981年在生態(tài)站內(nèi)育苗,1983年春將2年實(shí)生苗栽種在研究樣地內(nèi)[19]。樣地設(shè)計(jì)按完全隨機(jī)區(qū)組設(shè)計(jì),重復(fù)5次,80株小區(qū)設(shè)計(jì),雙行排列,按株行距1.5m×2.0m定植,四周設(shè)有保護(hù)行,1997年和2001年間伐兩次,株行距現(xiàn)為4.5m×2.5m[19]。
表1 6個(gè)興安落葉松種子來(lái)源地地理和氣候條件(1974—2005)*
AMT:annual mean air temperature, MAP:mean annual precipitation, MAE:mean annual evaporation, RH:mean annual relative humidity, FFP: mean annual frost free period
1.2CUEL測(cè)定
在研究樣地內(nèi)對(duì)來(lái)自每個(gè)地點(diǎn)的落葉松選取3株標(biāo)準(zhǔn)木,然后在每株標(biāo)準(zhǔn)木周圍搭建觸及冠層(14 m左右)的木架。每株標(biāo)準(zhǔn)木選取冠層上部向陽(yáng)的當(dāng)年生枝新生針葉3簇進(jìn)行氣體交換測(cè)定。在2009—2011年生長(zhǎng)季(5—9月)內(nèi),每月中旬選擇晴天的6:30—12:00時(shí)段,采用LI- 6400便攜式CO2/H2O紅外分析儀(LI-COR,Lincoln,USA)活體測(cè)定針葉氣體交換過(guò)程以及相應(yīng)的環(huán)境因子。測(cè)定時(shí),設(shè)定的葉室溫度25 ℃,氣流進(jìn)入葉室的流速500μmol/s;先采用飽和光強(qiáng)對(duì)葉進(jìn)行充分光誘導(dǎo),當(dāng)光合速率穩(wěn)定后開(kāi)始測(cè)定光響應(yīng)曲線,光量子通量密度(PPFD)梯度為:2000、1500、1200、800、400、200、150、100、50、0μmol photons m-2s-1,CO2濃度設(shè)定為400μmol CO2/mol。光響應(yīng)曲線采用Prado和Demoraes[20]非線性方程進(jìn)行擬合:
Pn=Pmax(1-e-k×(PAR-LCP))
(1)
式中,k為常數(shù),PAR為光合有效輻射,Pmax為最大凈光合速率(μmol CO2m-2s-1),Pn為凈光合速率(μmol CO2m-2s-1),LCP為光補(bǔ)償點(diǎn)(μmol CO2m-2s-1)。用200μmol photons m-2s-1以下的PAR和Pn分別為橫、縱坐標(biāo)進(jìn)行線性回歸,回歸直線與縱坐標(biāo)的截距為暗呼吸速率(Rd,mmol H2O m-2s-1)。CUEL由下式獲得:
CUEL=Pmax/ (Pmax+Rd)
(2)
之后,采用掃描圖像處理獲得用于光合測(cè)定的針葉面積;隨后將針葉樣品置于65℃下烘干至恒重 (精度0.0001g),獲取其干質(zhì)量。比葉重(LMA, g/cm2)由下式獲得:
LMA = 葉干質(zhì)量/葉面積
(3)
1.3元素測(cè)定
在測(cè)定光合的同時(shí),摘取與光合測(cè)定針葉相同位置的針葉100g(鮮質(zhì)量),置于4℃冷藏箱保存帶回實(shí)驗(yàn)室。室內(nèi)將部分樣品置于65℃烘箱中烘至恒重(精度0.0001g),然用將樣品粉碎、過(guò)篩、裝袋,用于元素含量測(cè)定。葉氮含量(NL)采用全自動(dòng)凱氏定氮儀(Kjeltec 8400, Foss,Hiller?d, Danmark)測(cè)定,葉磷含量(PL)采用雙氧水-硫酸消煮-鉬銻抗分光光度法測(cè)定。剩余鮮樣用于葉綠素測(cè)定,葉綠素含量(包括葉綠素a和b)采用丙酮-乙醇等體積混合液浸提,然后通過(guò)分光光度法測(cè)定。
1.4數(shù)據(jù)分析
帽兒山生態(tài)站和種子來(lái)源地的干燥度指數(shù)(AI)由下式獲得:
AI= MAE/MAP
(4)
式中,MAE為年均蒸發(fā)量,MAP為年均降水量。
為了更好地體現(xiàn)環(huán)境變化對(duì)葉生理生態(tài)特征的影響,本文采用研究站和種子來(lái)源地間AI的差值(ΔAI)代表環(huán)境變化梯度,6個(gè)種源構(gòu)成6個(gè)環(huán)境變化梯度。帽兒山森林生態(tài)站與塔河、根河、中央站、三站、烏伊嶺和鶴北6個(gè)地點(diǎn)間AI的差值分別為0.70、0.99、1.47、0.73、0.46和0.86,本文采用ΔAI0.70、ΔAI0.99、ΔAI1.47、ΔAI0.73、ΔAI0.46和ΔAI0.86分別代表相應(yīng)的種子來(lái)源地。
應(yīng)用SPSS 13.0統(tǒng)計(jì)軟件對(duì)數(shù)據(jù)進(jìn)行相關(guān)分析和方差分析,并用Ducan法進(jìn)行多重比較。以每株標(biāo)準(zhǔn)木為統(tǒng)計(jì)單位,每株標(biāo)準(zhǔn)木CUEL及相關(guān)因子值由3簇針葉的平均值求得。方差分析前對(duì)所有數(shù)據(jù)進(jìn)行方差齊性檢驗(yàn)和正態(tài)分布檢驗(yàn)。采用單因素方差分析比較各環(huán)境變化梯度間CUEL及其相關(guān)因子的差異。采用協(xié)方差分析(ANCOVA)比較分析線性回歸方程的斜率和截距的顯著性差異。
2結(jié)果
2.1環(huán)境變化梯度對(duì)CUEL及其相關(guān)因子的影響
6個(gè)環(huán)境變化梯度間CUEL存在顯著的差異(P<0.05),其變化趨勢(shì)與Pmax及Rd相反,即Pmax較高,Rd也較大,但CUEL卻較小(圖1)。6個(gè)梯度CUEL大小依次為:(77.02±0.23)% (ΔAI1.47)<(77.69±0.29)%(ΔAI0.99)<(78.57±0.49)%(ΔAI0.86)<(78.88±0.28)%(ΔAI0.70)<(79.79±0.25)%(ΔAI0.73)<(80.69±0.35)%(ΔAI0.46)。6個(gè)環(huán)境變化梯度間CUEL、Pmax、Rd、LMA、NL、PL和葉綠素含量均具有明顯的遺傳分化,其遺傳分化度為分別為62.95%、50.07%、43.70%、30.00%、39.17%、29.70%和37.00%(表2)。
CUEL和NL、PL、LMA以及葉綠素含量間均呈線性正相關(guān)關(guān)系,但相關(guān)方程的斜率和截距隨環(huán)境變化梯度而異(P<0.05)(圖2,表3)。隨著N、PL、和LMA的增大,ΔAI1.47、ΔAI0.99和ΔAI0.863個(gè)梯度下的CUEL增大幅度較大(方程斜率),而ΔAI0.46和ΔAI0.70的增幅較小。而隨著葉綠素含量增大,CUEL的增幅在梯度間差異不顯著(P>0.05)。當(dāng)NL、PL、LMA以及葉綠素含量為零時(shí)CUEL的初始值(方程的截距)均存在顯著的梯度差異(P<0.05),并有隨ΔAI增大而減小的趨勢(shì)。
圖1 不同環(huán)境梯度下興安落葉松最大凈光合速率(Pmax)、暗呼吸速率(Rd)和葉碳利用率(CUEL)比較(平均值±標(biāo)準(zhǔn)誤差, n=42)Fig.1 Comparisons of maximum net photosynthetic rate (Pmax), dark respiratory rate (Rd), leaf carbon use efficiency (CUEL) of L. gmelinii across the environmental gradients (mean±SE, n=42)不同字母表示環(huán)境梯度間差異顯著(α=0.05)
參數(shù)Parameter代碼Code單位UnitFPD/%葉碳利用效率LeafcarbonuseefficiencyCUEL%16.720.00162.95最大凈光合速率MaximumnetphotosyntheticratePmaxμmolCO2m-2s-114.300.00150.07暗呼吸速率DarkrespiratoryrateRdμmolCO2m-2s-19.540.00143.70比葉重LeafmassperareaLMAmg/cm27.180.00130.00葉氮含量LeafnitrogenconcentrationNLmg/g3.680.02539.17葉磷含量LeafphosphorusconcentrationPLmg/g4.970.0013.60葉綠素含量Leafchlorophyllconcentrationmg/g3.600.00837.00
D代表環(huán)境梯度間變異占總體變異的百分?jǐn)?shù),F和P分別為費(fèi)舍爾統(tǒng)計(jì)檢驗(yàn)值和顯著性水平
圖2 不同環(huán)境梯度下興安落葉松葉碳利用效率(CUEL) 和葉氮含量(NL)、葉磷含量(PL)、葉綠素含量、比葉重(LMA)間關(guān)系Fig.2 Relationships between leaf carbon use efficiency (CUEL) and leaf nitrogen concentration (NL), leaf phosphorus concentration (PL), leaf chlorophyll concentration and leaf mass per area (LMA) for L. gmelinii under the six environmental gradients
Table 3The ANCOVA analyses for the slopes and intercepts of the regression equations between leaf carbon use efficiency and associated factors forL.gmelinii
自變量Independentvariable應(yīng)變量Dependentvariable斜率Slope截距InterceptFPFP葉碳利用效率葉氮含量Leafnitrogenconcentration3.020.0112.040.001Leafcarbonuseefficiency葉磷含量Leafphosphorusconcentration16.68<0.0011250.64<0.001葉綠素含量Leafchlorophyllconcentration1.420.220821.67<0.001比葉重Leafmassperarea3.490.005186.07<0.001
F和P分別為費(fèi)舍爾統(tǒng)計(jì)檢驗(yàn)值和顯著性水平
2.2CUEL與種子來(lái)源地氣候因子間的關(guān)系
CUEL與種子來(lái)源地的地理和氣候因子間均存在一定的相關(guān)性,但其相關(guān)程度和趨勢(shì)因相關(guān)因子而異(圖3)。CUEL和種子來(lái)源地的平均年降水量(MAP)呈顯著線性正相關(guān)關(guān)系(P=0.05,圖3),但與其AI則呈顯著線性負(fù)相關(guān)關(guān)系(P<0.01,圖3)。CUEL均隨種子來(lái)源地的年平均氣溫(AMT)和平均年蒸發(fā)量(MAE)增加而下降,但其相關(guān)性不顯著(P值分別為0.66和0.19)(圖3)。CUEL隨著種子來(lái)源地經(jīng)度和的緯度增加,均呈現(xiàn)出一定的變化規(guī)律,但相關(guān)性不顯著(圖3)。
圖3 不同環(huán)境梯度下葉碳利用效率(CUEL)與種子來(lái)源地年平均氣溫(AMT)、平均年降水量(MAP)、平均年蒸發(fā)量(MAE),干燥度指數(shù)(AI)、經(jīng)度及緯度間關(guān)系(平均值±標(biāo)準(zhǔn)誤差, n=42)Fig.3 Relationships between leaf carbon use efficiency (CUEL) and annual mean temperature (AMT), mean annual precipitation (MAP), mean annual evaporation (MAE), aridity index (AI), longitude, or latitude of the six seed source origins for L. gmelinii trees (mean±SE, n=42)
3討論和結(jié)論
3.1影響CUEL的生物因子
本研究發(fā)現(xiàn),來(lái)自6個(gè)環(huán)境梯度下的興安落葉松在均質(zhì)環(huán)境下生長(zhǎng)30a后,其CUEL、Pmax和Rd均存在顯著差異(P<0.05),且隨ΔAI變化而呈現(xiàn)出明顯的變化規(guī)律(圖1)。這表明CUEL及其影響因子已產(chǎn)生了遺傳變異,CUEL、Pmax和Rd在6個(gè)梯度間的遺傳分化度分別達(dá)62.95%、50.07%、43.70%(表2)。隨著ΔAI的增大,興安落葉松Pmax和Rd均表現(xiàn)出增大的趨勢(shì),但Rd的增幅更大,因而CUEL表現(xiàn)出減小的趨勢(shì)。這說(shuō)明在環(huán)境變化條件下,呼吸比光合具有更大的敏感性,光合和呼吸的比值并不恒定,因而CUEL的發(fā)生變異。有研究認(rèn)為,當(dāng)溫度和水分發(fā)生變化時(shí),呼吸比光合更容易受到影響[22- 23]。室內(nèi)控水試驗(yàn)表明,隨著土壤含水率的降低,Rd和Pmax間的比值明顯增大[24]。而在大尺度水平上的研究也表明,隨著干旱程度的增加,Rd和Pmax間的比值呈增大趨勢(shì),并且在一定范圍內(nèi),水分對(duì)呼吸的影響大于對(duì)光合的影響[25- 26]。本文僅研究了葉尺度的CUE,而在樹(shù)木個(gè)體水平上是否也存在相似的規(guī)律尚需進(jìn)一步驗(yàn)證。
氮和磷是直接參與樹(shù)木光合生理代謝過(guò)程,進(jìn)而影響CUEL。氮是氨基酸和核酸的必要組成成分之一,缺乏或過(guò)量都會(huì)導(dǎo)致葉綠素含量、酶含量和酶活性的下降,并進(jìn)一步導(dǎo)致光合同化物的減少;因此,在一定的范圍內(nèi),葉氮含量及利用效率與Pmax呈正相關(guān)關(guān)系[27- 30]。本研究結(jié)果表明,較大ΔAI梯度下的樹(shù)木具有更高的NL,并且隨著NL的增大,其CUEL增幅也明顯高于其他梯度(圖2)。磷通過(guò)影響有機(jī)磷循環(huán)及RuBP 酶的更新速率而影響葉的光合作用。在一定范圍內(nèi),隨著PL的增大,葉碳同化能力提高,Pmax增大[31]。與NL情況相似,6個(gè)環(huán)境變化梯度興安落葉松CUEL和PL存在顯著的線性正相關(guān)關(guān)系(P<0.05),但隨著PL的增大,較大ΔAI梯度下的樹(shù)木CUEL增幅也明顯高于其他梯度(圖2)。隨著LMA的增大,較大ΔAI梯度下的樹(shù)木具有更高的CUEL(圖2),這是因?yàn)樵诟珊挡焕h(huán)境條件下樹(shù)木為了提高水分利用效率而增大葉的傳輸組織厚度、葉肉厚度和葉總厚度,進(jìn)而LMA增大[32- 35]。較大的葉肉厚度使得單位面積葉具有更多的光合構(gòu)件,從而有利于Pmax的提高[35- 36]。葉綠素在光合作用中起著能量接收和轉(zhuǎn)換作用[37- 38],因而葉綠素含量較高的樹(shù)木具有較強(qiáng)的Pmax,進(jìn)而具有較大的CUEL(圖2)。
雖然較大ΔAI梯度下的樹(shù)木具有較小的CUEL,但隨著NL和PL的增大,其卻表現(xiàn)出較高的CUEL增大幅度,說(shuō)明較大ΔAI梯度下的樹(shù)木具有更高的氮和磷利用率,這是因?yàn)檩^大AI環(huán)境下的土壤相對(duì)貧瘠,因此樹(shù)木需要維持較高的氮和磷利用效率以提高光合速率。而隨著葉綠素含量的增大,CUEL的增幅在6個(gè)ΔAI梯度間差異不顯著,說(shuō)明他們具有相同的葉綠素利用效率。而當(dāng)CUEL為零時(shí),NL、PL、LMA和葉綠素含量的初始值隨著ΔAI的增大,均表現(xiàn)出顯著增大的規(guī)律(P<0.01)。這表明較大ΔAI梯度下的樹(shù)木葉光合碳同化物開(kāi)始累積時(shí),需要較高的生理基礎(chǔ)條件。這是因?yàn)閬?lái)自較大AI環(huán)境下的樹(shù)木長(zhǎng)期生長(zhǎng)在相對(duì)干旱的環(huán)境中,需要更多的光合產(chǎn)物用于維持呼吸的消耗,只有當(dāng)自身?xiàng)l件改善后,如NL和PL較高時(shí),才能開(kāi)始凈光合產(chǎn)物的累積。
3.2影響CUEL的環(huán)境因子
本研究結(jié)果表明,隨著種子來(lái)源地AI的增加,CUEL表現(xiàn)出減小的趨勢(shì),這是因?yàn)闃?shù)木在不利的環(huán)境條件下為了獲取足夠的養(yǎng)分資源,會(huì)分配較少的光合產(chǎn)物用于生長(zhǎng)[39], 而將較多的碳用于維持呼吸[40- 41],從而導(dǎo)致CUEL下降。樹(shù)木具有較低CUEL的最終表現(xiàn)是樹(shù)木生長(zhǎng)速率較慢,生物量較小。前期研究表明,在6個(gè)梯度中,ΔAI1.47梯度下的樹(shù)木具有最小的胸徑和樹(shù)高,而ΔAI0.46和ΔAI0.86兩個(gè)梯度下的樹(shù)木則分別具有最大的胸徑和樹(shù)高[32,42],這和CUEL在6個(gè)梯度間的大小排序恰為相反,這也間接支持了本研究所得結(jié)果。然而,需要說(shuō)明的是,樹(shù)木生物量的積累除了受到實(shí)際光合速率的影響外,還與總?cè)~面積及總體呼吸消耗相關(guān)。因此,如何準(zhǔn)確測(cè)定樹(shù)木個(gè)體水平CUE需要進(jìn)一步研究。
溫度作為影響樹(shù)木CUE最重要的氣候因子,已得到廣泛的關(guān)注[43- 44]。本研究結(jié)果顯示,CUEL和種子來(lái)源地AMT間相關(guān)性不顯著。原因之一是隨著溫度的變化,來(lái)自不同地區(qū)的樹(shù)木其敏感性不同,因而導(dǎo)致CUEL和溫度間相關(guān)性不明顯[45]。例如:Piao等[44]研究認(rèn)為,在年平均氣溫低于11 ℃的區(qū)域,呼吸與GPP的比率隨溫度的升高而減少,而在年平均氣溫高于11 ℃的地區(qū),呼吸與GPP的比率隨著氣溫的升高而增加。此外,CUEL除了受溫度的影響外,還受降水、土壤等環(huán)境因子的調(diào)控。因此,僅用溫度一個(gè)因子與其建立關(guān)系并不能取得好的效果。本文研究的6個(gè)梯度興安落葉松樹(shù)木CUEL和種子來(lái)源地MAP為線性正相關(guān)關(guān)系(圖3)。這是因?yàn)榻邓康臏p少導(dǎo)致總呼吸增加,而凈初級(jí)生產(chǎn)力和光合速率的降低,從而引起CUE降低[18]。AI作為衡量溫度和水分狀況的一個(gè)綜合指標(biāo),其與CUEL間的相關(guān)性要好于溫度和水分。這表明CUEL受到溫度、水分等因子綜合作用的影響,這與以往對(duì)興安落葉松生長(zhǎng)的研究結(jié)果相符[19,46]。此外,本實(shí)驗(yàn)所選的6個(gè)環(huán)境梯度樹(shù)木的地理經(jīng)度和緯度的跨度分別為8°和5°,環(huán)境梯度變化較小,因此,今后研究需要加大環(huán)境變化梯度。
綜上所述,CUEL既存在明顯的環(huán)境梯度差異和遺傳分化,又表現(xiàn)出和種子來(lái)源地環(huán)境因子間良好的相關(guān)關(guān)系。由此推理,環(huán)境變化使興安落葉松葉碳利用效率產(chǎn)生了適應(yīng)性變異,是樹(shù)木對(duì)種子來(lái)源地氣候條件長(zhǎng)期適應(yīng)的結(jié)果。
致謝:感謝黑龍江帽兒山森林生態(tài)系統(tǒng)國(guó)家野外科學(xué)觀測(cè)研究站和林木遺傳育種國(guó)家重點(diǎn)實(shí)驗(yàn)室(東北林業(yè)大學(xué))提供的野外基礎(chǔ)支持。
參考文獻(xiàn)(References):
[1]Dillaway D N, Kruger E L. Trends in seedling growth and carbon-use efficiency vary among broadleaf tree species along a latitudinal transect in eastern North America. Global Change Biology, 2014, 20(3): 908- 922.
[2]朱萬(wàn)澤. 森林碳利用效率研究進(jìn)展. 植物生態(tài)學(xué)報(bào), 2013, 37(11): 1043- 1058.
[3]Malhi Y. The productivity, metabolism and carbon cycle of tropical forest vegetation. Journal of Ecology, 2012, 100(1): 65- 75.
[4]Bradford M A, Crowther T W. Carbon use efficiency and storage in terrestrial ecosystems. New Phytologist, 2013, 199(1): 7- 9.
[5]Giardina C P, Ryan M G, Binkley D, Fownes J H. Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest. Global Change Biology, 2003, 9(10): 1438- 1450.
[6]Ow L F, Whitehead D, Walcroft A S, Turnbull M H. Seasonal variation in foliar carbon exchange inPinusradiataandPopulusdeltoides: respiration acclimates fully to changes in temperature but photosynthesis does not. Global Change Biology, 2010, 16(1): 288- 302.
[7]Atkin O K, Holly C, Ball M C. Acclimation of snow gum (Eucalyptuspauciflora) leaf respiration to seasonal and diurnal variations in temperature: the importance of changes in the capacity and temperature sensitivity of respiration. Plant, Cell & Environment, 2000, 23(1): 27- 38.
[8]Tjoelker M G, Oleksyn J, Reich P B. Modelling respiration of vegetation: evidence for a general temperature-dependentQ10. Global Change Biology, 2001, 7(2): 223- 230.
[9]Gifford R M. Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Functional Plant Biology, 2003, 30(2): 171- 186.
[10]Loveys B R, Atkinson L J, Sherlock D J, Roberts R L, Fitter A H, Atkin O K. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast-and slow-growing plant species. Global Change Biology, 2003, 9(6): 895- 910.
[11]Atkin O K, Scheurwater I, Pons T L. High thermal acclimation potential of both photosynthesis and respiration in two lowlandPlantagospecies in contrast to an alpine congeneric. Global Change Biology, 2006, 12(3): 500- 515.
[12]Atkin O K, Tjoelker M G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 2003, 8(7): 343- 351.
[13]Dewar R C, Medlyn B E, McMurtrie R E. Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model. Global Change Biology, 1999, 5(5): 615- 622.
[14]Bunce J A. Acclimation of photosynthesis to temperature in eight cool and warm climate herbaceous C3species: Temperature dependence of parameters of a biochemical photosynthesis model. Photosynthesis Research, 2000, 63(1): 59- 67.
[15]DeLucia E H, Drake J E, Thomas R B, Gonzalez-Meler M. Forest carbon use efficiency: is respiration a constant fraction of gross primary production?. Global Change Biology, 2007, 13(6): 1157- 1167.
[16]Zhang Y J, Xu M, Chen H, Adams J. Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Global Ecology and Biogeography, 2009, 18(3): 280- 290.
[17]Malhi Y, Doughty C E, Goldsmith G R, Metcalfe D B, Girardin C A J, Marthews T R, Del Aguila-Pasquel J, Arag?o L E O C, Araujo-Murakami A, Brando P, Da Costa A C L, Silva-Espejo J E, Amézquita F F, Galbraith D R, Quesada C A, Rocha W, Salinas-Revilla N, Silvério D, Meir P, Phillips O L. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Global Change Biology, 2015, 21(6): 2283- 2295.
[18]Metcalfe D B, Meir P, Arag?o L E O C, Lobo-do-Vale R, Galbraith D, Fisher R A, Chaves M M, Maroco J P, Da Costa A C L, De Almeida S S, Braga A P, Gon?alves P H L, De Athaydes J, Da Costa M, Portela T T B, De Oliveira A A R, Malhi Y, Williams M. Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon. New Phytologist, 2010, 187(3): 608- 621.
[19]楊傳平, 姜靜, 唐盛松, 李景云, 王會(huì)仁. 帽兒山地區(qū)21年生興安落葉松種源試驗(yàn). 東北林業(yè)大學(xué)學(xué)報(bào), 2002, 30(6): 1- 5.
[20]Prado C H B A, De Moraes J A P V. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions. Photosynthetica, 1997, 33(1): 103- 112.
[21]Vitasse Y, Delzon S, Bresson C C, Michalet R, Kremer A. Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canadian Journal of Forest Research, 2009, 39(7): 1259- 1269.
[22]Woodwell G M. Biotic effects on the concentration of atmospheric carbon dioxide: a review and projection // Changing Climate. Washington, D.C.: National Academy Press, 1983: 216- 241.
[23]Ryan M G, Hunt E R, McMurtrie R E, ?gren G I, Aber J D, Friend A D, Rastetter E B, Pulliam W M, Raison R J, Linder S. Comparing models of ecosystem function for coniferous forests. I. Model description and validation // Melillo J M, ?gren G I, Breymeyer A, eds. Global Change: Effects on Coniferous Forests and Grasslands. SCOPE 56. New York: John Wiley and Sons, 1996: 313- 362.
[24]儲(chǔ)子彥, 亞熱帶39種植物的葉碳效率對(duì)環(huán)境因子的響應(yīng)研究[D]. 杭州: 浙江大學(xué), 2008.
[25]Wright I J, Reich P B, Westoby M, Ackerly D D, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J H C, Diemer M, Flexas J, Garnier E, Groom P K, Gulias J, Hikosaka K, Lamont B B, Lee T, Lee W, Lusk C, Midgley J J, Navas M L, Niinemets ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov V I, Roumet C, Thomas S C, Tjoelker M G, Veneklaas E J. The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821- 827.
[26]Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats. Functional Ecology, 2001, 15(4): 423- 434.
[27]Meziane D, Shipley B. Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant, Cell & Environment, 1999, 22(5): 447- 459.
[28]Wilson K B, Baldocchi D D, Hanson P J. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology, 2000, 20(9): 565- 578.
[29]IIO A, Yokoyama A, Takano M, Nakamura T, Fukasawa H, Nose Y, Kakubari Y. Interannual variation in leaf photosynthetic capacity during summer in relation to nitrogen, leaf mass per area and climate within aFaguscrenatacrown on Naeba Mountain, Japan. Tree Physiology, 2008, 28(9): 1421- 1429.
[30]Gunderson C A, O′hara K H, Campion C M, Walker A V, Edwards N T. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Global Change Biology, 2010, 16(8): 2272- 2286.
[31]劉福德, 王中生, 張明, 王文進(jìn), 安樹(shù)青, 鄭建偉, 楊文杰, 張世挺. 海南島熱帶山地雨林幼苗幼樹(shù)光合與葉氮、葉磷及比葉面積的關(guān)系. 生態(tài)學(xué)報(bào), 2007, 27(11): 4651- 4661.
[32]季子敬, 全先奎, 王傳寬. 興安落葉松針葉解剖結(jié)構(gòu)變化及其光合能力對(duì)氣候變化的適應(yīng)性. 生態(tài)學(xué)報(bào), 2013, 33(20): 6967- 6974.
[33]Witkowski E T F, Lamont B B. Leaf specific mass confounds leaf density and thickness. Oecologia, 1991, 88(4): 486- 493.
[34]Castro-Díez P, Puyravaud J P, Cornelissen J H C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia, 2000, 124(4): 476- 486.
[35]Gratani L, Meneghini M, Pesoli P, Crescente M F. Structural and functional plasticity ofQuercusilexseedlings of different provenances in Italy. Trees, 2003, 17(6): 515- 521.
[36]Robson T M, Sánchez-Gómez D, Cano F J, Aranda I. Variation in functional leaf traits among beech provenances during a Spanish summer reflects the differences in their origin. Tree Genetics & Genomes, 2012, 8(5): 1111- 1121.
[37]Raich J W, Russell A E, Vitousek P M. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai′i. Ecology, 1997, 78(3): 707- 721.
[38]Martin R E, Asner G P, Sack L. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes ofMetrosiderospolymorphagrown in a common garden. Oecologia, 2007, 151(3): 387- 400.
[39]Vicca S, Luyssaert S, Peuelas J, Campioli M, Chapin III F S, Ciais P, Heinemeyer A, H?gberg P, Kutsch W L, Law B E, Malhi Y, Papale D, Piao S L, Reichstein M, Schulze E D, Janssens I A. Fertile forests produce biomass more efficiently. Ecology Letters, 2012, 15(6): 520- 526.
[40]Chambers J Q, Tribuzy E S, Toledo L C, Crispim B F, Higuchi N, Santos J D, Araújo A C, Kruijt B, Nobre A D, Trumbore S E. Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecological Applications, 2004, 14(S4): 72- 88.
[41]Huasco W H, Girardin C A, Doughty C E, Metcalfe D B, Baca L D, Silva-Espejo J E, Cabrera D G, Arag?o L E O C, Davila A R, Marthews T R, Huaraca-Quispe L P, Alzamora-Taype I, Mora L E, Farfán-Rios W, Cabrera K G, Halladay K, Salinas-Revilla N, Silman M R, Meirf P, Malhi Y. Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in thePeruvianAndes. Plant Ecology & Diversity, 2014, 7(1/2): 125- 142.
[42]平川, 王傳寬, 全先奎. 環(huán)境變化對(duì)興安落葉松氮磷化學(xué)計(jì)量特征的影響. 生態(tài)學(xué)報(bào), 2014, 34(8): 1965- 1974.
[43]Marthews T R, Malhi Y, Girardin C A J, Silva Espejo J E, Arag?o L E O C, Metcalfe D B, Rapp J M, Mercado L M, Fisher R A, Galbraith D R, FisherJ B, Salinas-Revilla N, Friend A D, Restrepo-Coupe N, Williams R J. Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency. Global Change Biology, 2012, 18(9): 2882- 2898.
[44]Piao S L, Luyssaert S, Ciais P, Janssens I A, Chen A P, Cao C, Fang J Y, Friedlingstein P, Luo Y Q, Wang S P. Forest annual carbon cost: a global-scale analysis of autotrophic respiration. Ecology, 2010, 91(3): 652- 661.
[45]Curtis P S, Vogel C S, Gough C M, Schmid H P, Su H B, Bovard B D. Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999—2003. New Phytologist, 2005, 167(2): 437- 456.
[46]楊傳平, 秦泗華, 張維, 于秉君, 張鵬, 張培杲. 中國(guó)興安落葉松種源試驗(yàn)研究(Ⅱ)——種源初步區(qū)劃. 東北林業(yè)大學(xué)學(xué)報(bào), 1990, 18(S2): 25- 33.
基金項(xiàng)目:國(guó)家“十二五”科技支撐項(xiàng)目(2011BAD37B01);教育部長(zhǎng)江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT_15R09);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(DL10BA19)
收稿日期:2015- 06- 30;
修訂日期:2016- 01- 05
*通訊作者
Corresponding author.E-mail: wangck-cf@nefu.edu.cn
DOI:10.5846/stxb201506301346
Adaptation of leaf carbon use efficiency ofLarixgmeliniito environmental change
QUAN Xiankui, WANG Chuankuan*
CenterforEcologicalResearch,NortheastForestryUniversity,Harbin150040,China
Abstract:Dahurian Larch (Larix gmelinii) is a dominant tree species in Eurasian boreal forests, and has a broad biogeographical range under divergent habitats. This makes this tree species ideal for investigating tree adaptation to environmental change. Leaf carbon use efficiency (CUEL) is closely associated with tree carbon metabolism, and tree growth and development. Furthermore, CUEL is sensitive to environmental change. In this study, we measured the CUEL of 30-year-old Dahurian larch trees from six provenances in a common garden at the Maoershan Forest Ecosystem Research Station (45°20′N, 127°30′E) in Northeast China for three years (2009—2011). The six provenances were located across the natural distribution range of the larch, spanning approximately 4° in latitude (48—52°N), 5℃ in mean annual temperature (-2.3—2.6℃), and 200mm in mean annual precipitation (425—622mm). The differences in aridity index (ΔAI, AI = mean annual evaporation/ mean annual precipitation) between the current sites and original locations of the seed sources were used as indices for environmental change gradients (i.e., six provenances were represented as six gradients of environmental change). Our goal was to explore the impacts of environmental changes on larch CUEL and the factors influencing the impacts. We found that CUEL decreased significantly with increasing ΔAI (P<0.05). The CUEL was correlated positively with leaf nitrogen concentration, leaf phosphorus concentration, leaf mass per area, and leaf chlorophyll concentration, but the trees with higher ΔAI values had greater slopes of these relationships. Furthermore, the CUEL was correlated positively with the mean annual precipitation of the seed source original locations (P=0.05), but negatively with the AI of these locations (P<0.01). The CUEL also tended to increase with increasing mean annual temperature and mean annual evaporation of the seed source original locations, but these relationships were not significant (P>0.05). Our results suggest that environmental changes drive the adaptive variability in CUEL of the larch, which is probably attributed to its genotypic adaptation to the environment of the seed source locations.
Key Words:Larix gmelinii; photosynthesis; carbon use efficiency; genotypic adaptation; Maoershan Forest Ecosystem Research Station; common garden experiment
全先奎,王傳寬.興安落葉松葉碳利用效率對(duì)環(huán)境變化的適應(yīng).生態(tài)學(xué)報(bào),2016,36(11):3381- 3390.
Quan X K, Wang C K.Adaptation of leaf carbon use efficiency ofLarixgmeliniito environmental change.Acta Ecologica Sinica,2016,36(11):3381- 3390.