亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        氮沉降對杉木和楓香土壤氮磷轉(zhuǎn)化及碳礦化的影響

        2016-08-09 01:21:56王方超鄒麗群方向民萬松澤吳南生王輝民陳伏生
        生態(tài)學(xué)報 2016年11期

        王方超,鄒麗群,唐 靜,方向民,萬松澤,吳南生,*,王輝民,陳伏生

        1 江西農(nóng)業(yè)大學(xué)林學(xué)院, 江西特色林木資源培育與利用2011協(xié)同創(chuàng)新中心,南昌 330045 2 贛南師范學(xué)院生命與環(huán)境科學(xué)學(xué)院,贛州 341000 3 中國科學(xué)院地理科學(xué)與資源研究所, 中國科學(xué)院千煙洲紅壤丘陵綜合開發(fā)試驗站,北京 100101

        ?

        氮沉降對杉木和楓香土壤氮磷轉(zhuǎn)化及碳礦化的影響

        王方超1,鄒麗群1,唐靜2,方向民1,萬松澤1,吳南生1,*,王輝民3,陳伏生1

        1 江西農(nóng)業(yè)大學(xué)林學(xué)院, 江西特色林木資源培育與利用2011協(xié)同創(chuàng)新中心,南昌 330045 2 贛南師范學(xué)院生命與環(huán)境科學(xué)學(xué)院,贛州 341000 3 中國科學(xué)院地理科學(xué)與資源研究所, 中國科學(xué)院千煙洲紅壤丘陵綜合開發(fā)試驗站,北京 100101

        摘要:氮沉降是全球變化的重大環(huán)境問題,根際是地下生態(tài)過程研究的前沿,但目前氮沉降對亞熱帶地區(qū)不同樹種土壤氮、磷供應(yīng)和碳礦化根際過程的影響及其機制尚不清楚。選取典型紅壤區(qū)15a針葉樹杉木(Cunninghamia lanceolata)和闊葉樹楓香(Liquidamba formosana)為對象,野外原位開展10 g N m-2a-1氮沉降試驗3a,于2014年8月收集杉木和楓香根際土壤和非根際土壤,測定其pH值、有效氮、速效磷、水溶性有機碳及其34 d有機碳礦化動態(tài),并計算根際效應(yīng)。結(jié)果表明:氮沉降顯著降低兩個樹種土壤pH值和杉木根際土壤速效磷(P<0.05);提高楓香非根際土壤-N和杉木非根際土壤水溶性有機碳含量。同時,氮沉降顯著提高杉木土壤有機碳礦化速率,根際和非根際的增幅分別為71.2%和41.2%,降低楓香土壤有機碳礦化速率,根際和非根際的降幅分別為10.6%和44.1%。此外,氮沉降顯著降低楓香土壤-N和有機碳前期礦化速率的根際效應(yīng),增強后期礦化速率的根際效應(yīng),而杉木對氮沉降響應(yīng)不顯著??梢姡两悼娠@著改變樹木土壤養(yǎng)分供應(yīng)和有機碳穩(wěn)定性,且丘陵紅壤區(qū)針葉樹和闊葉樹根際過程對氮沉降的響應(yīng)模式有別。率先報道了亞熱帶不同樹種根際碳、氮、磷耦合過程對氮沉降的響應(yīng)格局,并較好地揭示了針葉樹和闊葉樹對氮沉降響應(yīng)的分異機制。

        關(guān)鍵詞:根際過程;全球變化;養(yǎng)分供應(yīng);有機碳穩(wěn)定性;丘陵紅壤

        氮(N)沉降的持續(xù)加重及其生態(tài)效應(yīng)受到科學(xué)家的廣泛關(guān)注[1-2]。20世紀(jì)以來,由于人類活動的影響,N沉降量不斷升高,全球當(dāng)前N沉降速率已超過10 kg N hm-2a-1,預(yù)計到2050年還將增加1倍,部分地區(qū)可達50 kg N hm-2a-1[3]。隨著社會經(jīng)濟的快速發(fā)展,中國已是繼歐洲和美國之后的第三大N沉降區(qū)[4]。已有研究表明,N沉降影響生態(tài)系統(tǒng)的養(yǎng)分循環(huán)、碳(C)動態(tài)、植被動態(tài),凋落物分解和土壤酸化等各個方面[2,5],但這些影響仍存在很大的不確定性。

        根際被認為是森林生物地球化學(xué)循環(huán)的關(guān)鍵區(qū)域,是物質(zhì)和能量轉(zhuǎn)化最激烈的區(qū)域之一,范圍一般為距根表幾毫米至數(shù)厘米的區(qū)域[15]。N沉降對養(yǎng)分轉(zhuǎn)化和有機C礦化的影響效應(yīng)可能優(yōu)先作用于根際土壤,因為植物根產(chǎn)生分泌物和脫落物可為根際區(qū)土壤微生物提供有效C和N源,使根際土壤微生物在數(shù)量上顯著高于非根際土壤,并隨之引起一系列土壤生化過程的變化與連鎖效應(yīng)[16]。此外,由于不同物種對N的需求各異,不同樹種根際分泌物對N沉降的響應(yīng)不同,這必然影響根際土壤N轉(zhuǎn)化和有機C礦化??傮w來看,N沉降對樹木根際過程及其效應(yīng)的研究報道較少,對不同樹種(如:針葉樹和闊葉樹)的響應(yīng)過程及其機制的了解還明顯不夠[17],不利于確切提出森林應(yīng)對全球N沉降的有效措施。

        杉木(Cunninghamialanceolata)是我國南方主要用材樹種,為亞熱帶常綠針葉林的代表性樹種[18]。楓香(Liquidambaformosana)為長江中下游次生林的重要冠層樹種,是亞熱帶落葉闊葉樹的代表[19]?;诖?,結(jié)合南方丘陵山區(qū)N沉降不斷加重的生態(tài)問題,研究兩種代表性樹種根際N、P養(yǎng)分轉(zhuǎn)化和有機C礦化對N沉降的響應(yīng)過程及其異同機制。研究結(jié)果有助于更好的剖析和理解針葉樹和闊葉樹地下根際N、P和C過程的耦合效應(yīng)與調(diào)控機制,為全球變化背景下亞熱帶地區(qū)森林經(jīng)營和管理提供科學(xué)依據(jù)。

        1材料與方法

        1.1研究區(qū)概況

        研究地點位于江西省泰和縣灌溪鎮(zhèn)中國科學(xué)院千煙洲試驗站(115°04′13″E,26°44′48″N,海拔多在100 m左右,相對高度差20—50 m),該地為典型紅壤丘陵地貌,地勢起伏、丘頂渾圓,以10°—25°坡度居多,由白堊系紅色與紫紅色礫巖、砂巖和泥巖組成,除少數(shù)丘頂和裸露地外,風(fēng)化層一般厚30—50 cm。林地土壤為紅黃壤,年均氣溫18℃,年平均降水量約1500 mm,年均相對濕度90%,年日照時數(shù)1400 h,全年降水充沛,但年際變化較大,年內(nèi)分布不均勻,屬典型亞熱帶季風(fēng)氣候[20]。

        1.2試驗設(shè)計

        試驗樣地為典型紅壤區(qū)15a杉木和楓香混交林(表1),其中杉木和楓香的比例為8∶2,在8塊20 m ×20 m混交林地中野外原位開展10 g N m-2a-1N沉降模擬試驗,其中N沉降處理和對照各4塊,配對設(shè)置,施肥自2012年春起,每年4季各1次,施肥方式為NH4NO3拌少量細沙均勻撒施,對照只撒等量細沙。試驗處理之前,在每塊樣地用3 cm土鉆隨機取表層(0—20 cm)土壤36個點混合,預(yù)處理后,測定其基本養(yǎng)分特性(表2)。

        表1氮沉降處理前杉木和楓香混交林林分基本背景特征

        Table 1General stand properties in mixed forests ofCunninghamialanceolataandLiquidambaformosanabefore nitrogen deposition treatment

        因子Parameters對照Control氮沉降Nitrogendepositiont-檢驗t-test林分密度Standdensity/(株/hm2)22502150-杉木和楓香混交比例CUL∶LIF(2)8∶28∶2-杉木平均胸徑CULMeanDBH/cm12.2±0.211.9±0.3ns杉木平均樹高CULMeantreeheight/m8.5±0.28.7±0.2ns楓香平均胸徑LIFMeanDBH/cm12.8±0.313.3±0.4ns楓香平均樹高CULMeantreeheight/m9.8±0.410.1±0.4ns凋落物厚度Litterthickness/cm3.5±0.23.7±0.2ns

        平均值±標(biāo)準(zhǔn)誤,ns,差異不顯著; CUL:杉木Cunninghamialanceolata;LIF:楓香Liquidambaformosana

        1.3樣品采集

        2014年8月,在每塊樣地中選定杉木和楓香標(biāo)準(zhǔn)木各1株,4次重復(fù),共16株。在離樹干0.5—1 m的位置挖掘3個10 cm×10 cm×15 cm的土塊,將依附在植物根系上4 mm之內(nèi)土壤輕輕抖落出來,并用鑷子將細根及其它雜物移除,將抖落下來的土壤定義為根際土;非根際土為未依附于根系上的土壤[10,21]。收集好足量土壤后,將其混勻分裝過2 mm篩,在4℃冰箱中保存,并盡快完成土壤相關(guān)指標(biāo)的測定。

        1.4土壤養(yǎng)分特性的測定

        1.5土壤碳礦化估測方法

        土壤有機C礦化的估測采用堿液密閉吸收法,每個樣品各稱取3份過2 mm網(wǎng)篩的新鮮土壤30 g于可封閉的廣口瓶中,加蒸餾水至飽和持水量的40%左右,量取1 mol/L NaOH溶液10 mL于50 mL燒杯中,在廣口瓶內(nèi)蓋上涂抹凡士林直至密封良好,密閉放入25℃的恒溫箱中進行培養(yǎng),采用堿液吸收法測定礦化量,測定時間為第3、6、9、14、19、24天和第34天[23]。為便于描述和分析,本文將0—9 d、9—19 d和19—34 d劃分為前期、中期和后期3個礦化階段。

        有機C礦化的動力學(xué)模型參數(shù)計算公式使用Cm=C0(1-e-kt),Cm和C0分別代表在培養(yǎng)期累積的OC礦化量(%)和礦化潛力(礦化勢%),k和t分別代表礦化常數(shù)和培養(yǎng)時間。同時,將培養(yǎng)34 d C礦化總量占水溶性有機C量之比定義為可礦化強度;將N沉降處理有機C礦化速率與對照之比定義為對N沉降的響應(yīng)強度。

        1.6根際效應(yīng)的界定

        根際效應(yīng)是指根際土壤理化與生物學(xué)特性不同于非根際土壤的差異性。通常用R/B來表示,其中R代表根際土壤,B代表非根際土壤,根際正效應(yīng)是指根際土壤中某個指標(biāo)的量高于非根際土壤,因此,用R/B>1表示為正效應(yīng),R/B<1為負效應(yīng)[10]。

        1.7數(shù)據(jù)處理

        采用SPSS 17.0 統(tǒng)計軟件和Excel 2007進行統(tǒng)計和數(shù)據(jù)分析,不同處理間參數(shù)的差異采用Duncan法進行多重比較(P<0.05)。

        2結(jié)果與分析

        2.1氮沉降對土壤氮磷供應(yīng)的影響

        表2氮沉降處理前杉木和楓香混交林土壤基本養(yǎng)分特征

        Table 2Soil general nutrient properties in the mixed forest ofCunninghamialanceolataandLiquidambaformosanabefore nitrogen deposition treatment

        變量Variable對照Control氮沉降Nitrogendepositiont-檢驗t-test容重Soildensity/(g/cm3)1.22±0.031.25±0.03nspH(H2O)4.43±0.044.40±0.08ns有機碳Organiccarbon/(g/kg)21.20±2.222.41±1.62ns全氮Totalnitrogen/(g/kg)1.29±0.131.26±0.09ns全磷Totalphosphorus/(g/kg)0.29±0.020.31±0.03nsC/N16.60±1.0917.80±0.78nsN/P4.68±0.664.30±0.57nsC/P76.34±9.1876.78±10.59ns

        圖1 兩種處理條件下杉木和楓香根際和非根際土壤pH值和有效養(yǎng)分的變異格局Fig.1 Rhizosphere and bulk soil pH and available nutrients of two trees with and without N deposition平均值±標(biāo)準(zhǔn)誤;* P<0.05,** P<0.01,** P<0.001

        2.2氮沉降對不同樹種土壤有機碳礦化的影響

        方差分析結(jié)果表明,N沉降對根際和非根際土壤礦化勢影響顯著,對非根際水溶性有機C、可礦化強度和前期礦化速率影響顯著;對中期、后期礦化速率和平均礦化速率影響均不顯著;除礦化勢以外,不同樹種以上土壤化學(xué)指標(biāo)在根際土壤中均無顯著差異。N沉降處理和不同樹種對根際和非根際土壤可礦化強度、前期、中期和平均礦化速率的交互作用顯著,僅對非根際土壤后期礦化速率和礦化勢交互作用顯著。此外,N沉降僅對前期礦化速率的根際效效應(yīng)影響顯著,N沉降處理和不同樹種的交互作用僅對后期礦化速率具顯著影響(圖2)。

        進一步對比分析發(fā)現(xiàn),N沉降僅顯著提高了杉木非根際土壤水溶性有機C含量,增幅為23.6%,對杉木根際土壤、楓香根際和非根際土壤水溶性有機C含量影響不顯著。N沉降顯著降低楓香非根際土壤有機C可礦化強度,降幅達44.2%,但對杉木根際和非根際、楓香根際土壤有機C可礦化強度影響不顯著(圖2)。

        圖2 不同處理杉木和楓香根際和非根際土壤水溶性有機碳和可礦化強度(可礦化碳/水溶性有機碳)的變異格局Fig.2 Rhizosphere and bulk soil water soluble organic carbon and mineralization intensity of two trees with and without N deposition

        杉木根際和非根際土壤的34 d有機C礦化量均表現(xiàn)為N沉降處理高于對照,增幅分別為71.2%和41.2%;楓香根際和非根際土壤的34 d礦化量均表現(xiàn)為對照高于N沉降處理,降幅分別為10.6%和44.1%;其中對照處理楓香非根際土壤礦化量最高((67.13±5.09)mg CO2/g OC),對照處理杉木根際土壤礦化量最低((33.49±3.01)mg CO2/g OC)(圖3)。同時,杉木土壤有機C各個時期的礦化速率對N沉降的響應(yīng)強度均表現(xiàn)為正效應(yīng),而楓香則均為負效應(yīng)(圖4)。

        圖3 不同處理杉木和楓香根際和非根際土壤有機碳礦化動態(tài)及其模型Fig.3 The dynamics and their models of rhizosphere and bulk soil organic carbon mineralization under two tree species with and without nitrogen depositionCK, Rhizo表示對照處理根際土壤;CK, Bulk表示對照處理非根際土壤;[+N], Rhizo表示N沉降處理根際土壤;[+N], Bulk表示N沉降處理非根際土壤

        圖4 杉木和楓香根際和非根際土壤有機碳礦化前期(Ⅰ)、中期(Ⅱ)、后期(Ⅲ)對N沉降的響應(yīng)強度(N沉降/對照)Fig.4 Response intensity to nitrogen deposition at early (Ⅰ), middle (Ⅱ), late (Ⅲ) organic carbon mineralization rates in rhizosphere and bulk soil under two tree speciesⅠ,前期Early stage;Ⅱ,中期Middle stage;Ⅲ,后期Late stage;CUL,杉木 Cunninghamia lanceolata; LIF,楓香 Liquidamba formosana

        2.3兩個樹種各變量根際效應(yīng)對氮沉降的響應(yīng)格局

        圖5 不同處理條件下杉木和楓香土壤氮磷供應(yīng)和有機碳穩(wěn)定性的根際效應(yīng)Fig.5 The rhizosphere effects of soil nitrogen and phosphorus supply, and organic carbon stability under two tree species with and without nitrogen depositionI表示pH值的根際效應(yīng);II、III和IV分別表示-N和速效磷的根際效應(yīng)根際效;V表示水溶性有機碳的根際效應(yīng);VI、VII和VIII分別表示有機碳前期礦化速率、中期礦化速率和后期礦化速率的根際效應(yīng)

        3討論

        氮沉降對土壤生態(tài)過程的影響已成為近年來森林生態(tài)學(xué)研究的熱點[2,4,7]。N沉降影響效應(yīng)的多面性表現(xiàn)為,在缺N的某些地區(qū),適量N沉降對生態(tài)系統(tǒng)將產(chǎn)生正效應(yīng),如增加土壤N供應(yīng),從而提高生態(tài)系統(tǒng)生產(chǎn)力;但在大多數(shù)地區(qū),過量N沉降給養(yǎng)分循環(huán)帶來負面效應(yīng),如過量N導(dǎo)致土壤C∶N∶P化學(xué)計量比改變,影響土壤呼吸,降低土壤pH,加快養(yǎng)分流失,形成N飽和癥狀等[14, 24-25]。根際是陸地生態(tài)系統(tǒng)物質(zhì)和能量轉(zhuǎn)化最激烈的區(qū)域[10, 15],N沉降對于地下生態(tài)過程的影響可能優(yōu)先作用于根際土壤[17]。

        碳和N的耦合是森林生態(tài)過程研究關(guān)注的焦點之一[2]。氮沉降改變森林土壤N循環(huán),必將影響土壤C過程。本研究發(fā)現(xiàn),N沉降提高杉木非根際土壤水溶性有機C含量,增強杉木根際和非根際土壤有機C礦化速率,而降低楓香非根際土壤有機C可礦化強度,抑制楓香根際和非根際土壤有機C礦化速率。袁穎紅等[31]于杉木林中開展模擬N沉降試驗,發(fā)現(xiàn)隨著N沉降量增加,土壤可溶性有機C增加。Deforest等[32]在美國密歇根開展的N沉降試驗結(jié)果也表明,土壤可溶性有機C含量因N沉降可導(dǎo)致可溶性酚類物質(zhì)積累而顯著提高。與此同時,胡正華等[33]在北亞熱帶落葉闊葉林開展了模擬N沉降試驗,發(fā)現(xiàn)N沉降顯著抑制土壤呼吸。劉博奇等[14]在北方針葉林內(nèi)開展模擬N沉降試驗,發(fā)現(xiàn)N沉降提高了土壤呼吸速率。李凱等[34]開展模擬N沉降對石櫟(Lithocarpusglaber)和苦櫧(Castanopsissclerophylla)幼苗土壤呼吸速率影響的研究,發(fā)現(xiàn)土壤呼吸對N沉降的響應(yīng)因施N水平和幼苗種類不同而各異,但兩樹種的土壤呼吸在中、高N處理下均表現(xiàn)為抑制。我們的研究結(jié)果也表明,針葉樹杉木和闊葉樹楓香的土壤C過程對N沉降的響應(yīng)各異,潛在原因可能是:杉木為喜肥性的速生樹種,且根系無內(nèi)外生菌根[18],N輸入可促進根系的生長發(fā)育,提高根系的活性,導(dǎo)致根系分泌物增加,提高可溶性C含量及其礦化速率;而楓香為具內(nèi)外菌根菌的樹種[19],高N輸入不利于菌根菌的生存,抑制根系發(fā)育及碳水化合物的分泌,導(dǎo)致土壤有機C礦化強度和礦化速率下降。為此,也不難解釋杉木礦化速率對N沉降的響應(yīng)表現(xiàn)為正效應(yīng),即根際有機C礦化速率優(yōu)先加快;而楓香表現(xiàn)為負效應(yīng),即其根際有機C礦化速率優(yōu)先受到抑制。

        綜上所述,許多他人的研究和本研究都表明N沉降效應(yīng)因樹種不同而表現(xiàn)各異,本研究還發(fā)現(xiàn)根際和非根際土壤養(yǎng)分轉(zhuǎn)化和C穩(wěn)定性對N沉降的響應(yīng)也存在顯著差異。無菌根的喜肥針葉樹種杉木根際和非根際土壤過程對N沉降響應(yīng)的同步性顯著強于具有菌根的闊葉樹種楓香。鑒于N沉降效應(yīng)的復(fù)雜性,今后的研究應(yīng)更多地關(guān)注土壤-植物-微生物的耦合機制[15],并力求將地下和地上過程聯(lián)系起來[16],為森林應(yīng)對全球N沉降提供有益參考。

        參考文獻(References):

        [1]Wei C, Yu Q, Bai E, Lü X, Li Q, Xia J, Kardol P, Liang W, Wang Z, Han X. Nitrogen deposition weakens plant-microbe interactions in grassland ecosystems. Global Change Biology, 2013, 19(12): 3688- 3697.

        [2]Chen F S, Duncan D S, Hu X F, Liang C. Exogenous nutrient manipulations alter endogenous extractability of carbohydrates in decomposing foliar litters under a typical mixed forest of subtropics. Geoderma, 2014, 214- 215: 19- 24.

        [3]Galloway J N, Dentener F J, Capone D G, Boyer E W, Howarth R W, Seitzinger S P, Asner G P, Cleveland C C, Green P A, Holland E A, Karl D M, Michaels A F, Porter J H, Townsend A R, V?osmarty C J. Nitrogen cycles: past, present, and future. Biogeochemistry, 2004, 70(2): 153- 226.

        [4]王晶苑, 張心昱, 溫學(xué)發(fā), 王紹強, 王輝民. 氮沉降對森林土壤有機質(zhì)和凋落物分解的影響及其微生物學(xué)機制. 生態(tài)學(xué)報, 2013, 33(5): 1337- 1346.

        [5]陳浩, 莫江明, 張煒, 魯顯楷, 黃娟. 氮沉降對森林生態(tài)系統(tǒng)碳吸存的影響. 生態(tài)學(xué)報, 2012, 32(21): 6864- 6879.

        [6]詹書俠, 陳伏生, 胡小飛, 甘露, 朱友林. 中亞熱帶丘陵紅壤區(qū)森林演替典型階段土壤氮磷有效性. 生態(tài)學(xué)報, 2009, 29(9): 4673- 4680.

        [7]Gundersen P, Emmett B A, Kj?naas O J, Koopmans C J, Tietema A. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. Forest Ecology and Management, 1998, 101(1/3): 37- 55.

        [8]樊后保, 劉文飛, 李燕燕, 廖迎春, 袁穎紅, 徐雷. 亞熱帶杉木(Cunninghamialanceolata)人工林生長與土壤養(yǎng)分對氮沉降的響應(yīng). 生態(tài)學(xué)報, 2007, 27(11): 4630- 4642.

        [9]龐麗, 張一, 周志春, 豐忠平, 儲德裕. 模擬氮沉降對低磷脅迫下馬尾松不同家系根系分泌和磷效率的影響. 植物生態(tài)學(xué)報, 2014, 38(1): 27- 35.

        [10]劉煜, 胡小飛, 陳伏生, 袁平成. 馬尾松和苦櫧林根際土壤礦化和根系分解CO2釋放的溫度敏感性. 應(yīng)用生態(tài)學(xué)報, 2013, 24(6): 1501- 1508.

        [11]Lorenz K, Lal R. Biogeochemical C and N cycles in urban soils. Environment International, 2009, 35(1): 1- 8.

        [12]張煒, 莫江明, 方運霆, 魯顯楷, 王暉. 氮沉降對森林土壤主要溫室氣體通量的影響. 生態(tài)學(xué)報, 2008, 28(5): 2309- 2319.

        [13]Izauralde R C, Megill W B, Rosenberg N J. Carbon cost of applying nitrogen fertilizer. Science, 2000, 288(5467): 811- 812.

        [14]劉博奇, 牟長城, 邢亞娟, 王慶貴. 模擬氮沉降對云冷杉紅松林土壤呼吸的影響. 林業(yè)科學(xué)研究, 2012, 25(6): 767- 772.

        [15]Philippot L, Raaijmakers J M, Lemanceau P, van der Putten W H. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11(11): 789- 799.

        [16]Terzano R, Cesco S, Mimmo T. Dynamics, thermodynamics and kinetics of exudates: crucial issues in understanding rhizosphere processes. Plant and Soil, 2015, 386(1/2): 399- 406.

        [17]Phillips R P, Fahey T J. The influence of soil fertility on rhizosphere effects in northern hardwood forest soils. Soil Science Society of America Journal, 2008, 72(2): 453- 461.

        [18]盛煒彤, 童書振, 段愛國. 杉木豐產(chǎn)栽培實用技術(shù). 北京: 中國林業(yè)出版社, 2011.

        [19]蘇琍英, 程愛興, 喻愛林, 傅衛(wèi)慶, 鄭平謠. 天目山自然保護區(qū)林木菌根調(diào)查. 浙江林學(xué)院學(xué)報, 1992, 9(3): 263- 276.

        [20]陳永瑞, 林耀明, 李家永, 劉允芬, 楊汝榮. 江西千煙洲試區(qū)杉木人工林降雨過程及養(yǎng)分動態(tài)研究. 中國生態(tài)農(nóng)業(yè)學(xué)報, 2004, 12(1): 74- 76.

        [21]Phillips R P, Fahey T J. Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology, 2006, 87(5): 1302- 1313.

        [22]魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京: 中國農(nóng)業(yè)科技出版社, 2000: 156- 183.

        [23]陳伏生. 城鄉(xiāng)梯度森林生態(tài)過程研究. 北京: 中國林業(yè)出版社, 2013: 72- 93.

        [24]Turner M M, Henry H A L. Interactive effects of warming and increased nitrogen deposition on15N tracer retention in a temperate old field: seasonal trends. Global Change Biology, 2009, 15(12): 2885- 2893.

        [25]沈芳芳, 袁穎紅, 樊后保, 劉文飛, 劉苑秋. 氮沉降對杉木人工林土壤有機碳礦化和土壤酶活性的影響. 生態(tài)學(xué)報, 2012, 32(2): 517- 527.

        [26]Bergkvist B, Folkeson L. Soil acidification and element fluxes of aFagussylvaticaforest as influenced by simulated nitrogen deposition. Water, Air, and Soil Pollution, 1992, 65(1/2): 111- 133.

        [27]袁穎紅, 樊后保, 王強, 裘秀群, 陳秋鳳, 李燕燕, 黃玉梓, 廖迎春. 模擬氮沉降對杉木人工林土壤有效養(yǎng)分的影響. 浙江林學(xué)院學(xué)報, 2007, 24(4): 437- 444.

        [28]孟范平, 李桂芳. 酸雨對土壤元素化學(xué)行為的影響. 中南林學(xué)院學(xué)報, 1998, 18(1): 27- 34.

        [29]魯如坤, 時正元, 錢承梁. 磷在土壤中有效性的衰減. 土壤學(xué)報, 2000, 37(3): 323- 329.

        [30]陳希, 陳伏生, 葉素瓊, 喻蘇琴, 方向民, 胡小飛. 丘陵紅壤茶園根際氮磷轉(zhuǎn)化對不同強度酸雨脅迫的響應(yīng). 應(yīng)用生態(tài)學(xué)報, 2015, 26(1): 1- 8.

        [31]袁穎紅, 樊后保, 劉文飛, 張子文, 孟慶銀, 胡鋒, 李輝信. 模擬氮沉降對杉木人工林土壤可溶性有機碳和微生物量碳的影響. 水土保持學(xué)報, 2012, 26(2): 138- 143.

        [32]DeForesta J L, Zaka D R, Pregitzerc K S, Burtonc A J. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biology and Biochemistry, 2004, 36(6): 965- 971.

        [33]胡正華, 李涵茂, 楊燕萍, 陳書濤, 李岑子, 申雙和. 模擬氮沉降對北亞熱帶落葉闊葉林土壤呼吸的影響. 環(huán)境科學(xué), 2010, 31(8): 1726- 1732.

        [34]李凱, 江洪, 由美娜, 曾波. 模擬氮沉降對石櫟和苦櫧幼苗土壤呼吸的影響. 生態(tài)學(xué)報, 2011, 31(1): 82- 89.

        基金項目:國家自然科學(xué)基金資助項目(31260199, 31360179);江西省研究生創(chuàng)新資金資助項目(YC2014-S190);江西省青年科學(xué)家培養(yǎng)對象資助項目(20122BCB23005);江西省自然科學(xué)基金資助項目(2012BAB204005)

        收稿日期:2015- 06- 17;

        修訂日期:2015- 10- 22

        *通訊作者

        Corresponding author.E-mail: rensh111@126.com

        DOI:10.5846/stxb201506171222

        Influence of nitrogen deposition on soil nutrient supply and organic carbon mineralization inCunninghamialanceolataandLiquidambarformosanaplantations

        WANG Fangchao1, ZOU Liqun1, TANG Jing2, FANG Xiangmin1, WAN Songze1, WU Nansheng1,*, WANG Huimin3, CHEN Fusheng1

        1CollegeofForestry,JiangxiAgriculturalUniversity,Nanchang330045,China2CollegeofLifeandEnvironmentSciences,GannanNormalUniversity,Ganzhou341000,China3InstituteofGeographicScienceandNaturalResearch,ChineseAcademyofSciences,Beijing100101,China

        Abstract:Nitrogen (N) deposition is a major environmental issue that affects global climate change. Study of the rhizosphere has become a research frontier in underground ecology. However, the effects of N deposition on N and phosphorus (P) supplies, and organic carbon (OC) mineralization in the rhizosphere of trees in subtropical China remains unclear, and whether the underlying mechanisms differ between tree species need to be determined. In the present study, a coniferous tree (Cunninghamia lanceolata) and a broadleaf tree (Liquidambar formosana) each 15 years of age were selected at the Qianyanzhou Experimental Station of the Chinese Academy of Sciences to evaluate in situ N deposition. Trees were treated with 10 g N m-2a-1and compared to the control. After 3 years, rhizosphere and bulk soils for both tree species were collected to assess pH value, mineral N, available P, water-soluble organic carbon (WSOC), and the dynamic of OC mineralization following 34 days incubation. Rhizosphere effects of all measured variables were assessed using ratios of rhizosphere to bulk soil, and OC mineralization parameters at early (0—9 d), middle (9—19 d), and late stages (19—34 d) were obtained using the traditional dynamics model. N deposition significantly decreased rhizosphere and bulk soil pH, available P in rhizosphere soil of C. lanceolata, and OC mineralization intensity in bulk soil of L. formosana. N deposition also increased -N in bulk soil of L. formosana and WSOC in bulk soil of C. lanceolata (P < 0.05). In contrast, -N, mineral N, and the ratio of mineral N to available P in rhizosphere and bulk soils did not differ significantly between both species. N deposition significantly increased OC mineralization rates in C. lanceolata rhizosphere and bulk soil by 71.2% and 41.2%, respectively; but decreased OC mineralization rates in L. formosana rhizosphere and bulk soil by 10.6% and 44.1%, respectively. N deposition significantly decreased both the rhizosphere effects of -N and the early OC mineralization rate in L. formosana, but increased its late OC mineralization rate; whereas the rhizosphere effects of all measured variables in C. lanceolata showed no significant differences between control (CK) and N treatments. N deposition significantly altered soil nutrient supply and OC stability, and the synchronicity of responses to N deposition between rhizosphere and bulk soil was stronger for C. lanceolata than for L. formosana. We concluded that response of rhizosphere processes to N deposition differs between conifer and broadleaf tree species. The response of rhizosphere OC mineralization to N deposition showed a positive effect for C. lanceolata, and a negative effect for L. formosana, as their rates preferentially increased and decreased, respectively with N deposition. This difference could be attributed to their nutrient requirements and root traits, because C. lanceolata prefers fertile soil and are not associated with mycorrhizal fungi, whereas L. formosana can tolerate infertile soil with roots that are associated with mycorrhizal fungi. To our knowledge, the present study is the first to report on the effects of N deposition on the interactions between supplies of N and P in soil, and the stability of OC in different tree species of subtropical China, and reports divergent mechanisms in coniferous versus broadleaf tree species.

        Key Words:rhizosphere process; global climate change; nutrient supply; organic carbon stability; hilly red soil

        王方超,鄒麗群,唐靜,方向民,萬松澤,吳南生,王輝民,陳伏生.氮沉降對杉木和楓香土壤氮磷轉(zhuǎn)化及碳礦化的影響.生態(tài)學(xué)報,2016,36(11):3226- 3234.

        Wang F C, Zou L Q, Tang J, Fang X M, Wan S Z, Wu N S, Wang H M, Chen F S.Influence of nitrogen deposition on soil nutrient supply and organic carbon mineralization inCunninghamialanceolataandLiquidambarformosanaplantations.Acta Ecologica Sinica,2016,36(11):3226- 3234.

        亚洲av无码一区二区乱孑伦as| 精品少妇ay一区二区三区| 玩弄放荡人妻一区二区三区| japanese色国产在线看视频| 爱v天堂在线观看| 五十路一区二区中文字幕| 国产免费在线观看不卡| 亚洲av熟女少妇久久| 国产乱人无码伦av在线a| 国产成人亚洲精品| 欧美日韩亚洲精品瑜伽裤 | 日本黄色一区二区三区视频| 亚洲国产精品二区三区| av天堂手机在线看片资源| 亚洲国产精品不卡av在线| 国产va免费精品高清在线观看| 男人j进女人j啪啪无遮挡| 国产香蕉97碰碰视频va碰碰看| 久久久久亚洲av无码尤物| 成人国产一区二区三区精品不卡| 一区二区中文字幕蜜桃| 日韩在线精品视频一区| 国产内射爽爽大片视频社区在线| 天堂√中文在线bt| 国产成人亚洲综合小说区| 美女扒开内裤露黑毛无遮挡| 在线视频免费自拍亚洲| 美女脱了内裤洗澡视频| 免费av一区二区三区无码| 中国丰满熟妇av| 久久久久久亚洲AV成人无码国产 | 久久精品国产亚洲av麻豆长发| 另类内射国产在线| 国产欧美日韩专区毛茸茸| 日本中文字幕av网址| 国产偷国产偷亚洲高清| 精品一区二区三区芒果| 亚洲人成网址在线播放| 色欲麻豆国产福利精品| 亚洲中文字幕av一区二区三区人| 亚洲一区二区三区av资源|