師 杰,趙志偉,崔福義,梁志杰,孫天一,聶亞林
(1.解放軍后勤工程學院 國防建筑規(guī)劃與環(huán)境工程系,重慶 401311;2.哈爾濱工業(yè)大學 市政環(huán)境工程學院,哈爾濱 150090;3.中國人民解放軍69330部隊,新疆 哈密 839200)
?
化學改性強化活性炭纖維吸附重金屬離子
師杰1,趙志偉1,崔福義2,梁志杰2,孫天一2,聶亞林3
(1.解放軍后勤工程學院 國防建筑規(guī)劃與環(huán)境工程系,重慶 401311;2.哈爾濱工業(yè)大學 市政環(huán)境工程學院,哈爾濱 150090;3.中國人民解放軍69330部隊,新疆 哈密 839200)
摘要:為提高活性炭纖維(ACF)對水中重金屬離子的吸附性能,采用兩種不同改性方法對ACF進行改性處理,比較其對水中Pb(II)、Cu(II)和Co(II)的競爭吸附效能,并對改性前后ACF表面的物理化學特征變化進行分析.結果表明:改性ACF均具有較大的比表面積和孔容積;HNO3及Fe改性后ACF結晶程度較未改性ACF有所降低,且Fe改性ACF具有明顯的Fe衍射峰.ACF對重金屬離子吸附速率較快,60 min吸附基本達到平衡,HNO3及Fe改性ACF的吸附平衡時間有所增加.初始pH變化直接影響ACF對Pb(II)、Cu(II)和Co(II)的去除效果.3種ACF對重金屬離子的親和力順序均為Pb(II)>Cu(II)>Co(II),隨著平衡質量濃度的增加,其對Pb(II)和Cu(II)的吸附量增大,而對Co(II)的吸附量呈先增加再下降趨勢.Langmuir和Freundlich模型均能較好地描述競爭吸附中Pb(II)和Cu(II)離子的吸附過程,但不能有效模擬Co(II)離子的吸附過程.
關鍵詞:活性炭纖維;重金屬;競爭吸附;改性;pH;等溫線模型
水環(huán)境中重金屬污染物具有持續(xù)性、劇毒性和難降解性等特點,已經引起廣泛關注.重金屬污染源主要包含人工源和自然源兩類,其中人工源是造成水源水中重金屬污染的主要原因[1],主要來自礦山、冶金、電子、電鍍、石油和化肥生產等工業(yè)排水[2].重金屬離子Pb(II)、Cu(II)和Co(II)等可以富集在微生物、水生植物和動物等生物體內[3-4],并通過食物鏈進入人體,導致重金屬離子在不同器官內富集,進而影響人體健康[5].因此,重金屬污染已經成為水環(huán)境中重要問題之一,國家《生活飲用水衛(wèi)生標準》(GB5749—2006)規(guī)定Pb(II)和Cu(II)離子的限值分別為0.01和1.0 mg/L.
目前,常用的重金屬離子去除方法有化學沉淀、吸附、電解、離子交換和膜分離等[6-8],其中,吸附技術由于具有快速、高效、操作方便及價格便宜等優(yōu)點廣泛應用于重金屬污染物的去除[9].活性炭纖維(ACF)作為一種新型活性炭,具有很大的比表面積以及大量的微孔和豐富的官能團,吸附性能良好.同時,吸附層不會因為碎屑沉積和沉積不均勻而造成阻力增加或流體分布不均,也不會造成二次污染[10],逐步應用于水處理領域.然而,ACF對重金屬離子的吸附去除能力有限,限制其在重金屬廢水處理中的應用.本實驗采用濃HNO3及Fe溶液對ACF進行浸漬改性以提高其對重金屬離子的吸附能力,在分析ACF表面物理化學特性的基礎上,通過吸附動力學、初始pH影響和等溫線的研究,評價不同改性方法處理的ACF對Pb(II)、Cu(II)和Co(II)的競爭吸附效能.
1實驗
1.1實驗配水
根據(jù)不同實驗需求,采用去離子水添加一定量的Pb(II)、Cu(II)和Co(II)等儲備液配制所需質量濃度水源水,其中Pb(II)、Cu(II)和Co(II)儲備液采用相應的硝酸鹽進行配置,儲備液質量濃度均為1 000 mg/L,Pb(II)、Cu(II)和Co(II)儲備液的pH均調節(jié)為5.5.
1.2實驗材料
ACF購于江蘇蘇通碳纖維有限公司.將ACF剪為10 cm×10 cm的正方形后,放入1 000 mL的大燒杯中,先用蒸餾水沖洗雜物,然后進行加熱處理,待煮沸后繼續(xù)加熱半小時,至ACF表明無明顯氣泡,以去除其中的水溶性和揮發(fā)性物質,然后烘干待用,記為ACF-0.
將一定量預處理后的ACF剪為2 cm×2 cm的小塊,然后浸漬于質量分數(shù)為65%~68%濃硝酸中,在20 ℃水浴條件下氧化2 h,然后用蒸餾水反復沖洗,至濾液呈中性,105 ℃烘干至恒質量,記為ACF-1;將該ACF小塊浸漬在體積比為4∶1的0.15 mol·L-1FeCl3·6H2O和FeSO4·7H2O混合溶液200 mL,逐滴加入5 mol·L-1的NaOH溶液50 mL,在80 ℃磁力攪拌下反應4 h,用蒸餾水反復沖洗至中性,105 ℃烘干至恒質量,記為ACF-2.
1.3實驗方法
吸附動力學實驗中,對于初始質量濃度均為10 mg/L的Pb(II)、Cu(II)和Co(II)重金屬離子溶液,加入500 mg/L ACF,并置于搖床中25 ℃恒溫震蕩,分別于5,10,20,30,60,120,180,240,300 min后取濾液,過濾后測定殘余重金屬離子質量濃度.
吸附等溫線實驗中,配制初始質量濃度分別為5,10,15,20,25,30 mg/L的Pb(II)、Cu(II)和Co(II)溶液100 mL于碘量瓶中,并加入500 mg/L ACF于25 ℃搖床中反應6 h,過濾后測定殘余重金屬離子質量濃度.
初始pH影響因素實驗中,500 mg/L ACF加入初始質量濃度均為10 mg/L的Pb(II)、Cu(II)和Co(II)溶液中,利用0.1 mol/L HCl 和 0.1 mol/L NaOH調節(jié)初始pH在2.83~9.54變化,置于搖床中25 ℃恒溫震蕩6 h,過濾后測定pH和殘余重金屬離子質量濃度,其余實驗中pH調節(jié)為6.0.
1.4分析方法
重金屬離子質量濃度通過ICP-OES電感耦合等離子體發(fā)射光譜儀確定,樣品測量前通過0.45 μm無機濾膜過濾;SEM通過FEI-Quanta200環(huán)境掃描電子顯微鏡測定,并利用自帶能譜儀EDAX Genesis 2000 XMS Image 60S進行樣品元素的定性分析;利用ASAP2020M全自動比表面積及孔隙度分析儀在77 K氮氣實驗條件下分析ACF表面的吸附量和脫附量.XRD采用日本島津6100型X射線衍射儀測定.
2結果與討論
2.1ACF表面特性
2.1.1BET結果分析
圖1為ACF的孔徑分布等溫線,3種ACF的孔徑主要分布在1~20 nm,有利于ACF對重金屬離子的吸附去除.同時,3種ACF的氮氣吸附脫附曲線均屬于國際純粹與應用化學聯(lián)合會(IUPAC)分類的Ⅰ型吸附等溫線(插圖),表明3種ACF的孔結構均以微孔為主,呈現(xiàn)較強的吸附作用.
圖1 ACF的孔徑分布曲線
由表1可知,ACF存在發(fā)達的內部孔隙,具有較大的比表面積和孔容積,ACF-0比表面積可達1 281.57 m2/g,經HNO3及Fe改性后ACF的BET表面積、BJH平均孔徑和孔容均有不同程度的變化.在常溫條件作用下,濃HNO3可以溶解ACF表面部分灰分,有利于孔道結構的進一步拓展,但濃HNO3還可以腐蝕ACF結構,導致內部孔道結構產生部分塌陷,進而使改性后ACF的比表面積減少;而Fe改性ACF由于表面負載一層Fe物質,導致部分孔道堵塞[11-12],比表面面積、平均孔徑和孔容均相應減少.2.1.2SEM結果分析
由圖2(a)可以看出,ACF-0本身存在少量的裂縫和細微的斑點,表面基本呈凹槽狀,纖維表面整體上是平滑的.經過HNO3及Fe改性后ACF本身結構沒有發(fā)生破壞,但其表面形貌發(fā)生了變化,表面本身的粗糙度增大,特別是Fe改性ACF-2,其表面包裹著直徑約幾百nm的白色絮狀物,這與Xu等[13]觀察到的吸附材料的表面負載現(xiàn)象一致,在載Fe活性炭去除高氯酸鹽的實驗中,通過SEM觀察到活性炭表面存在一層尺寸保持在20~80 nm的納米鐵顆粒.
圖2 ACF的SEM圖及ACF-2的EDAX圖譜
2.1.3XRD結果分析
圖3為不同ACF的XRD圖譜.3種ACF均出現(xiàn)了石墨化特征的衍射峰C(002),ACF經過HNO3及Fe改性后,衍射峰C(002)的強度減弱,表現(xiàn)為寬而矮的特征,由此可知,ACF-1和ACF-2結晶程度較ACF-0有所降低,并呈現(xiàn)向右移動的趨勢;同時,在2θ=44.8°處,三者均檢測出一個較小的石墨平面峰C(101),經過HNO3及Fe改性的衍射峰C(101)也有所下降,這兩個衍射峰特性表明ACF是由部分石墨微晶構成的無定性區(qū)材料[14-16],改性過程本質上是孔的刻蝕過程.此外,F(xiàn)e改性的ACF-2出現(xiàn)衍射峰Fe(311),該衍射峰為Fe3O4特征峰[16].
圖3 ACF的XRD分析
2.2吸附動力學
圖4為3種ACF對Pb(II)、Cu(II)和Co(II)離子吸附量隨時間變化規(guī)律.可以看出,吸附量隨時間的增大而增大.對ACF-0,Pb(II)、Cu(II)和Co(II)離子在60 min時吸附基本達到平衡,吸附量可分別達11.48、5.07和2.24 mg/g,在隨后吸附時間內基本保持恒定;相比ACF-0吸附過程,HNO3及Fe改性ACF的吸附平衡時間增長,吸附量增大,這主要是因為HNO3及Fe改性可以增加ACF表面羧基和酚羥基等酸性含氧官能團的數(shù)量,進而強化ACF與陽離子之間的離子交換反應,而ACF-2制備過程中NaOH溶液的加入可以中和部分羧基和酚羥基,使其與陽離子之間相互作用弱于ACF-1,吸附量相應降低.
圖4 ACF對Pb(II)、Cu(II)和Co(II)離子的競爭吸附動力學
2.3pH影響
pH會通過影響重金屬離子形態(tài)以及氫氧根與重金屬離子之間的配位作用而改變重金屬離子和吸附劑之間的相互作用[17].圖5為重金屬離子吸附過程中pH的變化.可以看出,ACF-0和ACF-2的pHPZC保持在3.66~5.5,而ACF-1的pHPZC保持在2.83~3.66.圖6為不同初始pH條件下,不同活性炭纖維對Pb(II)、Cu(II)和Co(II)去除效果的變化.可以看出,隨著初始pH的增大,去除率均呈上升趨勢.當初始pH≥6.94時,Pb(II)和Cu(II)離子去除效果趨于穩(wěn)定,去除率保持在95%左右.3種吸附劑ACF-0、ACF-1和ACF-2對Co(II)的去除率分別由7.34%增加為83.43%、7.43%增加為76.25%和6.53%增加為83.61%.這主要是由于pH會影響Pb(II)、Cu(II)和Co(II)在水環(huán)境中的存在形態(tài),當pH小于6時,3種重金屬主要以離子形式存在,隨著pH的增大,PbOH+、CuOH+和CoOH+形式會產生,然后重金屬離子將以沉淀形式存在[18-20].
圖5 ACF吸附過程中pH的變化
圖6 ACF對Pb(II)、Cu(II)和Co(II)去除效果隨初始pH的變化
2.4吸附等溫線
在重金屬離子Pb(II)、Cu(II)、Co(II)初始質量濃度均在5~30 mg/L的條件下,開展多種污染物在ACF-0、ACF-1和ACF-2 3種類型活性炭纖維上的競爭吸附實驗,結果見圖7.ACF-0、ACF-1和ACF-2均能夠同時吸附Pb(II)、Cu(II)和Co(II),其中,ACF-0、ACF-1和ACF-2的親和力順序均為Pb(II)>Cu(II)>Co(II),這與離子電負性大小相一致(Pb(2.33)>Cu(1.90)>Co(1.88))[21].同時,隨著平衡質量濃度的增加,Pb(II)和Cu(II)兩者的吸附量隨之增大,而Co(II)由于與ACF親和力最低,吸附位點被Pb(II)和Cu(II)離子占據(jù),致使其吸附量增幅緩慢,甚至出現(xiàn)吸附量下降的現(xiàn)象(圖7(a)、(b)).其他競爭吸附實驗中也觀察到類似現(xiàn)象[22],在CNTs競爭吸附Pb(II)、Cu(II)和Cd(II)實驗中,Cd(II)親和力最小,其在平衡質量濃度為2.9 mg/L時,吸附量最大,為7.1 mg/g,然后隨著平衡質量濃度的增大,吸附量下降.
圖7 ACF對Pb(II)、Cu(II)和Co(II)離子的競爭吸附等溫線
利用Langmuir和Freundlich吸附等溫線模型對實驗數(shù)據(jù)進行擬合,相關參數(shù)比較見表2.ACF-0、ACF-1和ACF-2 3種吸附劑對Pb(II)和Cu(II)的吸附過程能夠利用等溫線模型進行模擬,其中Langmuir相關性R2(>0.98)值略大于Freundlich相關性R2(>0.95),其擬合結果與實驗數(shù)據(jù)相吻合,而Co(II)在Langmuir和Freundlich吸附等溫線模型中的相關性分別為0.173 3和0.049 8,相關性較差,由此可知,在競爭吸附過程中,由于Co(II)與ACF親和力差,吸附過程受Pb(II)和Cu(II)影響較大,無法利用Langmuir和Freundlich模型擬合.由表2 Langmuir數(shù)據(jù)分析可知,HNO3及Fe改性能夠有效提高ACF對重金屬離子的去除效果,3種吸附劑對Pb(II)和Co(II)去除效果大小為ACF-1>ACF-2>ACF-0,而對Cu(II)去除效果大小為ACF-2>ACF-0>ACF-1.總體來講,HNO3改性ACF對重金屬離子去除效果最好,其對Pb(II)、Cu(II)和Co(II)的吸附量分別可達38.61、11.29和4.88 mg/g.
此外,利用0.1 mol/L HCl對3種ACF進行解吸處理,通過對比5次重復吸附實驗效果考察3種吸附劑重復使用效率,結果表明3種ACF均具有較好的重復使用性.以Pb(II)為例,其吸附量分別由第1次的19.61、38.61和28.17 mg/g下降到第5次的16.76、34.21和21.13 mg/g,仍保持較高去除效能.
表2 Langmuir 及 Freundlich模型擬合參數(shù)
3結論
1)ACF均具有較大的比表面積和孔容積,HNO3改性ACF由于能夠腐蝕活性炭纖維內部孔道使比表面有所減少,而Fe改性ACF由于孔道堵塞使比表面有所下降;ACF是由部分石墨微晶構成的無定性區(qū)材料,HNO3及Fe改性使ACF結晶程度降低.
2)ACF對Pb(II)、Cu(II)和Co(II)的吸附在60 min基本達到平衡,HNO3及Fe改性ACF的吸附平衡時間有所增長;隨著初始pH的增大,3種ACF對Pb(II)、Cu(II)和Co(II)的去除效率增加.
3)ACF均能夠同時吸附Pb(II)、Cu(II)和Co(II),隨著平衡質量濃度的增加,Pb(II)和Cu(II)兩者的吸附量隨之增大;而Co(II)由于與ACF親和力最低,吸附位點被Pb(II)和Cu(II)占據(jù),致使其吸附量增幅緩慢,甚至出現(xiàn)吸附量下降的現(xiàn)象.
4) HNO3及Fe改性能夠強化ACF對Pb(II)、Cu(II)和Co(II)的吸附效果,除Co(II)外,Langmuir和Freundlich模型的相關性R2>0.95,其擬合結果與實驗數(shù)據(jù)相吻合.
參考文獻
[1] 王海東, 方鳳滿, 謝宏芳. 中國水體重金屬污染研究現(xiàn)狀與展望 [J]. 廣東微量元素科學, 2010, 17(1): 14-18.
WANG H, FANG F, XIE H. Research situation and outlook on heavy metal pollution in water environment of China [J].Guangdong Trace Elements Science, 2010, 17(1): 14-18.
[2] GUZE F, YAKUT H, TOPAL G. Determination of kinetic and equilibrium parameters of the batch adsorption of Mn (II), Co (II), Ni (II) and Cu (II) from aqueous solution by black carrot (Daucus carota L.) residues [J]. Journal of Hazardous Materials, 2008, 153(3): 1275-1287.
[3] VAROL M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques [J]. Journal of Hazardous Materials, 2011, 195: 355-364.
[4] VAROL M, SEN B. Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey[J]. Catena, 2012, 92: 1-10.
[5] WANG X, SATO T, XING B, et al. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish [J]. Science of the Total Environment, 2005, 350(1): 28-37.
[6] KONG Z, LI X, TIAN J, et al. Comparative study on the adsorption capacity of raw and modified litchi pericarp for removing Cu (II) from solutions [J]. Journal of Environmental Management, 2014, 134: 109-116.
[7] FU F, WANG Q. Removal of heavy metal ions from wastewaters: a review [J]. Journal of Environmental Management, 2011, 92(3): 407-418.
[8] YU Y, ZHAO C, WANG Y, et al. Effects of ion concentration and natural organic matter on arsenic (V) removal by nanofiltration under different transmembrane pressures [J]. Journal of Environmental Sciences, 2013, 25(2): 302-307.
[9] MEITEI M D, PRASAD M N V. Adsorption of Cu (II), Mn (II) and Zn (II) by Spirodela polyrhiza (L.) Schleiden: equilibrium, kinetic and thermodynamic studies [J]. Ecological Engineering, 2014, 71: 308-317.
[10]SUN Z, YU Y, PANG S, et al. Manganese-modified activated carbon fiber (Mn-ACF): novel efficient adsorbent for Arsenic [J]. Applied Surface Science, 2013, 284: 100-106.
[11]REY A. Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: influence of iron precursor and activated carbon surface [J]. Applied Catalysis B: Environmental, 2009, 86(1/2): 69-77.
[12]SIGRIST M E, BRUSA L, BELDOMENICO H R, et al. Influence of the iron content on the arsenic adsorption capacity of Fe/GAC adsorbents [J]. Journal of Environmental Chemical Engineering, 2014, 2(2): 927-934.
[13]XU J, GAO N, DENG Y, et al. Nanoscale iron hydroxide-doped granular activated carbon (Fe-GAC) as a sorbent for perchlorate in water [J]. Chemical Engineering Journal, 2013, 222: 520-526.
[14]侯方, 陳明, 佟明友. 硝酸處理對活性炭性質的影響 [J]. 化學與生物工程, 2011, 28(5): 70-73.
HOU F, CHEN M, TONG M. Influence of nitric acid modification on properties of active carbon [J]. Chemistry & Bioengineering, 2011, 28(5): 70-73.
[15]PENG L, CHEN Y, DONG H, et al. Removal of trace As (V) from water with the titanium dioxide/ACF composite electrode [J]. Water, Air, & Soil Pollution, 2015, 226(7): 1-11.
[16]陳龍. 載鐵活性炭纖維的制備及其用于Fenton體系降解羅丹明B和除氟的研究 [D]. 武漢:武漢理工大學, 2014.
CHEN L. Preparation of Fe-modified activated carbon fiber and its applications for Fenton degradation of Rhodamine B and adsorption of fluoride [D]. Wuhan: Wuhan University of Technology, 2014.
[17]CAO F, YIN P, ZHANG J, et al. Nanoplates of cobalt phosphonate with two-dimensional structure and its competitive adsorption of Pb (II) and Hg (II) ions from aqueous solutions [J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 2568-2573.
[18]DEPCI T, KUL A R, ONAL Y. Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: study in single-and multi-solute systems [J]. Chemical Engineering Journal, 2012, 200: 224-236.
[19]SUN W L, XIA J, SHAN Y C. Comparison kinetics studies of Cu (II) adsorption by multi-walled carbon nanotubes in homo and heterogeneous systems: effect of nano-SiO2[J]. Chemical Engineering Journal, 2014, 250: 119-127.
[20]HE M, ZHU Y, YANG Y, et al. Adsorption of cobalt (II) ions from aqueous solutions by palygorskite [J]. Applied Clay Science, 2011, 54(3): 292-296.
[21]ZHANG M. Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost [J]. Chemical Engineering Journal, 2011, 172 (1): 119-127.
[22]LI Y H, DING J, LUAN Z, et al. Competitive adsorption of Pb2+, Cu2+and Cd2+ions from aqueous solutions by multiwalled carbon nanotubes [J]. Carbon, 2003, 41(14): 2787-2792.
(編輯劉彤)
doi:10.11918/j.issn.0367-6234.2016.08.017
收稿日期:2015-12-17
基金項目:國家自然科學基金(51508564);重慶市前沿與應用基礎研究計劃(cstc2015jcyjA20024)
作者簡介:師杰(1988—),男,博士研究生; 趙志偉(1976—),男,教授,博士生導師; 崔福義(1958—),男,教授,博士生導師
通信作者:趙志偉,hit_zzw@163.com
中圖分類號:TU991
文獻標志碼:A
文章編號:0367-6234(2016)08-0102-06
Enhancement of heavy metals adsorption on activated carbon fibers by chemically modification
SHI Jie1, ZHAO Zhiwei1, CUI Fuyi2, LIANG Zhijie2, SUN Tianyi2, NIE Yalin3
(1.Department of National Defense Architecture Planning and Environmental Engineering, Logistical Engineering University,Chongqing 401311, China;2.School of Municipal and Environmental Engineering, Harbin Institute of Technology,Harbin 150090,China; 3.Troops 69330 PLA,Hami 839200, Xinjiang, China)
Abstract:To enhance the adsorption capacity of activated carbon fibers (ACF) towards heavy metals, the surface modification of ACF was conducted and the physical and chemical characteristics were analyzed. Additionally, the competitive adsorption of Pb(II), Cu(II) and Co(II) from liquid solution on the modified ACF were evaluated. It was found that both the modified and unmodified ACF had large specific surface areas and pore volumes. Compared with the unmodified ACF, the crystallinity of Fe and HNO3 modified ACF showed a trend of decrease, and the Fe modified ACF appeared on obvious Fe characteristic diffraction peak. The rate of heavy metal ions adsorption onto ACF were so fast that the adsorption equilibrium achieved at about 60 minutes, and the adsorption equilibrium time increased after the Fe and HNO3 modification. The removal of Pb(II), Cu(II) and Co(II) were influenced significantly by the initial pH. The adsorption af?nity to the three heavy metals was in the order of Pb > Cu > Co for all types of ACF. With the increase of initial concentration, the adsorption amount of Pb(II) and Cu(II) increased, while the adsorption amount of Co (II) increased firstly and then decreased. The Langmuir and Freundlich models could well describe the competitive adsorption process of Pb (II) and Cu (II), but not effectively simulate the adsorption process of Co (II).
Keywords:ACF; heavy metals; competitive adsorption; modification; pH; isotherm model