亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        水熱法制備納米Bi2Te3的反應(yīng)機(jī)理

        2016-08-04 00:57:15周麗娜

        周麗娜

        (上海電機(jī)學(xué)院 機(jī)械學(xué)院, 上海 201306)

        ?

        水熱法制備納米Bi2Te3的反應(yīng)機(jī)理

        周麗娜

        (上海電機(jī)學(xué)院 機(jī)械學(xué)院, 上海 201306)

        摘要實(shí)驗(yàn)調(diào)整水熱合成納米Bi2Te3的反應(yīng)物添加過(guò)程,研究了Bi2Te3的反應(yīng)機(jī)理。結(jié)果表明,盡管改變反應(yīng)先后順序可得到不同的中間產(chǎn)物,但均可被強(qiáng)還原劑快速還原為單質(zhì),而后期單質(zhì)原子結(jié)合生成Bi2Te3的速率相對(duì)緩慢。因此,Bi2Te3的生長(zhǎng)機(jī)制不受影響,均能得到Bi2Te3納米顆粒和納米棒。

        關(guān)鍵詞Bi2Te3; 納米顆粒; 水熱法; 反應(yīng)機(jī)理

        熱電材料可實(shí)現(xiàn)熱能與電能的直接轉(zhuǎn)換,是非常優(yōu)異的新能源材料。衡量其熱電轉(zhuǎn)換效率的標(biāo)準(zhǔn)是熱電優(yōu)值ZT(ZT=S2σT/κ)。優(yōu)秀的熱電材料同時(shí)需要高的Seebeck系數(shù)(S)、電導(dǎo)率(σ)和低的熱導(dǎo)率(κ),但往往很難實(shí)現(xiàn)。近年來(lái)的研究表明,利用納米技術(shù)可有效提高材料的ZT值。因?yàn)?,由熔體旋甩[1-2]、球磨[3-5]、化學(xué)合成[6-10]和原位析出等[11-12]方法制備的納米顆粒,在后期燒結(jié)而成的塊體材料中,會(huì)轉(zhuǎn)變?yōu)樾螒B(tài)各異的納米晶粒,并促使生成了大量的不同類型的界面。晶粒的微觀結(jié)構(gòu)[13],晶粒內(nèi)的化學(xué)成份偏析[14]、亞穩(wěn)相的存在[15]和應(yīng)力[16-18]、點(diǎn)缺陷中填充原子的種類和濃度[19-22],以及晶界尺寸[23],界面處第二相的析出[24-25]、位錯(cuò)的密度[26-27]等因素,均能改變聲子的散射機(jī)制,進(jìn)而降低材料的晶格熱導(dǎo)率。同時(shí),納米塊體材料仍能保持較高的Seebeck系數(shù)和電導(dǎo)率,從而提高了ZT值。

        Bi2Te3及其固溶體合金是室溫區(qū)域最優(yōu)秀的熱電材料。為進(jìn)一步提高其熱電性能,人們嘗試過(guò)許多方法來(lái)改進(jìn)合成工藝以得到產(chǎn)量高、微觀形貌可控的納米Bi2Te3。區(qū)別于其他化學(xué)制備方法,水熱法制備納米Bi2Te3,工藝簡(jiǎn)單,溶劑選擇隨處可取的水,價(jià)格低廉,且得到的產(chǎn)物形貌多樣,特別適合未來(lái)大規(guī)模的商業(yè)生產(chǎn)。本文通過(guò)改變水熱法制備納米Bi2Te3中反應(yīng)物的添加順序,研究納米Bi2Te3的生長(zhǎng)機(jī)理,為得到高熱電性能的Bi2Te3納米塊體材料做鋪墊。

        1實(shí)驗(yàn)方法

        1.1水熱法制備Bi2Te3納米粉末

        使用的藥品有: 碲粉(原料為Te塊,在瑪瑙研缽中研細(xì),過(guò)200目篩后使用)、BiCl3、NaOH、乙二胺四乙酸二鈉鹽(EDTA),NaBH4和NaOH。以上反應(yīng)物均為分析純。反應(yīng)裝置如圖1所示。

        圖1 實(shí)驗(yàn)裝置示意圖Fig.1 Schematic of experimental setup

        反應(yīng)實(shí)驗(yàn)在水溶液中進(jìn)行,溫度為100℃,反應(yīng)時(shí)間為2d。按照摩爾比Bi∶Te=2∶3的比例精確稱量碲粉和氯化鉍,設(shè)計(jì)的反應(yīng)物的添加步驟如下:

        (1) Te+NaOH→NaBH4→EDTA→BiCl3

        (2) Te+NaOH→EDTA+BiCl3→NaBH4

        反應(yīng)結(jié)束后,離心、洗滌和烘干樣品。

        1.2Bi2Te3的物性表征

        采用Rigaku D/MAX-2550P型X射線衍射儀(X-Ray Diffractions, XRD)對(duì)樣品的物相定性和半定量分析。采用HITACH S-4800型場(chǎng)發(fā)射掃描電鏡(Field Emission Scanning Electron Microscopy, FESEM)觀察樣品的表面形貌。應(yīng)用Phillips CM200型透射電鏡(Transmission Electron Microscopes, TEM)觀察材料的微觀形貌。

        2結(jié)果與討論

        按步驟(1)操作,將碲粉加入NaOH水溶液中,沸騰無(wú)法將碲粉攪拌均勻,顆粒較大的會(huì)沉于瓶底,較小的則形成灰黑色的懸浮液。當(dāng)溶液中加入NaBH4粉末后,水溶液立即變?yōu)樽霞t色溶膠。再將EDTA溶于其中,溶解完畢后,最后加入BiCl3粉末,此時(shí)溶液迅速變黑。為研究步驟(1)的反應(yīng)過(guò)程,重復(fù)上述實(shí)驗(yàn)以獲得紫紅色的溶膠。將溶膠劇烈攪拌,長(zhǎng)時(shí)間加熱,觀察到溶液的紫紅色逐步褪去,并沉淀出黑色粉末。將此黑色粉末制樣,其測(cè)試的XRD圖譜(見(jiàn)圖2)分析表明,為Te單質(zhì)。

        圖2 Te納米顆粒的XRD圖Fig.2 XRD patterns of Te nanoparticles

        使用SEM觀察Te單質(zhì)的微觀形貌(圖 3(a)),發(fā)現(xiàn)Te為一維納米材料,直徑為100~600nm左右。透射電鏡照片(圖3(b)~(d))表明,這些納米Te主要為納米棒,也能觀察到納米管(圖3(d))。研究表明[28],Te的一維納米材料的微觀形貌主要受其濃度的控制。當(dāng)Te濃度高時(shí),易生長(zhǎng)為納米管;反之,則易生長(zhǎng)為納米棒。最后,當(dāng)加入BiCl3粉末后,溶液迅速變黑,這是由于體系中快速還原出了Bi單質(zhì)[29]。

        圖3 Te納米顆粒的微觀形貌圖Fig.3 Microstructure of Te nanoparticles

        區(qū)別于步驟(1),在步驟(2)中,當(dāng)添加完BiCl3粉末后,則得到乳白色懸浮液,這是由鉍鹽的水解得到不溶于水的產(chǎn)物而產(chǎn)生的。當(dāng)添加NaBH4粉末后,溶液迅速變黑。將上述兩種方法得到的樣品制樣,收集其X射線粉末衍射圖譜,如圖4所示。

        圖4 步驟(1)和步驟(2)的Bi2Te3的XRD圖Fig.4 XRD patterns of Bi2Te3 for process (1) and (2)

        兩組實(shí)驗(yàn)最終產(chǎn)物的XRD衍射峰均與碲化鉍的標(biāo)準(zhǔn)圖譜(PDF82-0358)相對(duì)應(yīng),無(wú)其他雜質(zhì)峰。因此,產(chǎn)物均為Bi2Te3。

        結(jié)合上述實(shí)驗(yàn)現(xiàn)象及數(shù)據(jù)認(rèn)為,Bi2Te3的生成主要包含兩個(gè)過(guò)程: ① 得到還原出的Bi與Te納米顆粒;② Bi與Te納米顆粒結(jié)合生成Bi2Te3。其中,Bi的生成包含BiCl3的水解和水解產(chǎn)物被還原兩個(gè)步驟:

        (1)

        (2)

        Te粉的還原過(guò)程為

        (3)

        Bi2Te3的生成過(guò)程為

        (4)并且,兩組實(shí)驗(yàn)得到的產(chǎn)物Bi2Te3不僅化學(xué)組分一樣,微觀形貌也一致: 每一組樣品中均含有細(xì)小的納米顆粒和一維的納米棒。如圖5(a)、(b)所示,納米顆粒形狀不規(guī)則,粒徑在20~60nm之間,透射電鏡照片(見(jiàn)5(a))顯示出Bi2Te3顆粒不同襯度的隨機(jī)分布,代表其堆積和附著也是隨機(jī)的。這些特征在樣品的掃描電鏡圖(見(jiàn)5(b))中看得更為直觀,這些納米晶主要呈現(xiàn)片狀,其片層厚度不超過(guò)10nm,然后無(wú)規(guī)則地團(tuán)聚和分布。片狀晶粒的生成主要是因?yàn)椋珺i2Te3晶體中除大量存在的共價(jià)鍵外,還有作用力較弱的范德華力,使得Bi2Te3晶體沿a和b軸的生長(zhǎng)速率快于c軸。

        圖5 Bi2Te3納米顆粒的微觀形貌圖Fig.5 Microstructure of Bi2Te3 nanoparticles

        除此之外,兩組實(shí)驗(yàn)均得到Bi2Te3納米棒,如圖6(a)和(b)所示,直徑在10~50nm,長(zhǎng)度可至數(shù)μm。一般,其周圍附著有納米晶粒,如圖6(a)所示。此圖中單分散的納米晶則是由于電子束長(zhǎng)時(shí)間照射此納米棒而濺射形成,不屬于原樣品。圖6(b)顯示,Bi2Te3納米棒表面由許多更加細(xì)小的納米顆粒形成。推測(cè),這些Bi2Te3納米晶體可能是以上述一維的Te納米棒為母體生長(zhǎng)而成的: 溶液中大量存在著一維的Te,Bi原子擴(kuò)散至納米碲棒表面,在活化點(diǎn)生成Bi2Te3分子。反應(yīng)繼續(xù)進(jìn)行,形成Bi2Te3晶核,晶核長(zhǎng)大生成如圖6所示的納米顆粒。

        圖6 Bi2Te3納米顆粒棒的微觀形貌圖Fig.6 Microstructure of Bi2Te3 nanorods

        在實(shí)驗(yàn)中還使用了還原劑NaBH4,標(biāo)準(zhǔn)狀況下,電極電勢(shì)為

        可將許多金屬化合物還原為單質(zhì)。在進(jìn)行步驟(1)和(2)時(shí)也能觀察到,兩種反應(yīng)順序里,當(dāng)添加完NaBH4后,體系迅速變紫或變黑。這一實(shí)驗(yàn)現(xiàn)象還表明,NaBH4參與的氧化還原反應(yīng)的速率是很快的。相反,在一個(gè)大氣壓下,反應(yīng)溫度為100℃時(shí),為獲取純度較高的納米Bi2Te3,水熱法的制備時(shí)間至少要2d。若縮短其反應(yīng)時(shí)間,雜質(zhì)的含量將增加,不利于得到高熱電轉(zhuǎn)換效率的塊體材料。也有學(xué)者提出,可提高反應(yīng)溫度和反應(yīng)壓力[30],即使用密閉的反應(yīng)釜取代玻璃容器,此時(shí),高純度的納米Bi2Te3的獲取,仍然需要至少24h。上文已指出,水熱法合成Bi2Te3主要分兩步進(jìn)行,相對(duì)于后期較為緩慢的Bi與Te原子的合成反應(yīng),早期的還原出Bi與Te原子的反應(yīng)迅速。盡管絡(luò)合劑EDTA的加入順序不同,可能會(huì)有不同類型的含Bi的絡(luò)合物生成[31-32],但均能被迅速還原。因此,反應(yīng)物的添加順序不同,不會(huì)改變后期Bi2Te3晶核的形成和長(zhǎng)大的速率,進(jìn)而不影響產(chǎn)物的生成和最終的微觀形貌。

        3結(jié)論

        改變水熱法中Te粉、BiCl3、NaBH4、EDTA 、NaOH等反應(yīng)物的添加順序,研究納米Bi2Te3的生長(zhǎng)機(jī)理。結(jié)果發(fā)現(xiàn),反應(yīng)物添加順序改變,生成的中間產(chǎn)物不同,但均可被NaBH4快速還原為單質(zhì),而后期Bi與Te結(jié)合生成Bi2Te3的速率較為緩慢,不影響B(tài)i2Te3晶核的形成和長(zhǎng)大,因而不改變納米Bi2Te3的生長(zhǎng)機(jī)制。

        參考文獻(xiàn)

        [1]XIE Wenjie,WANG Shanyu,ZHU Song,et al.High performance Bi2Te3nanocomposites prepared by single-element-melt-spinning spark-plasma sintering [J].Journal of Materials Science,2013,48(7): 2745-2760.

        [2]ZHAO Wenyu,WEI Ping,ZHANG Qingjie,et al.Multi-localization transport behaviour in bulk thermoelectric materials [J].Nature Communications,2015,6: 6197.

        [3]ROGL G,GRYTSIV A,HEINRICH P,et al.New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12-xXx(X = Ge,Sn) reaching ZT > 1.3 [J].Acta Materialia,2015,91: 227-238.

        [4]ROGL G,GRYTSIV A,ROGL P,et al.Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6,respectively [J].Acta Materialia,2014,76: 434-448.

        [5]LEE P Y,CHEN T C,HUANG J Y,et al.Enhancement of the thermoelectric performance in nano-/micro-structured p-type Bi0.4Sb1.6Te3 fabricated by mechanical alloying and vacuum hot pressing [J].Journal of Alloys and Compounds,2014,615: S476-S481.

        [6]ZHANG G,YU Q,LI X.Wet chemical synthesis and thermoelectric properties of V-VI one- and two-dimensional nanostructures[J].Dalton Transactions,2010,39(4): 993-1004.

        [7]ZHOU Lina,ZHANG Xiaobin,ZHAO Xiaobing,et al.Synthesis and characterization of carbon nanotube supported Bi2Te3nanocrystals [J].Journal of Alloys and Compounds,2010,502(2): 329-332.

        [8]ZHANG Gengqiang,YU Qingxuan,LI Xiaoguang,et al.Hydrothermal synthesis and microstructure investigation of nanostructured bismuth telluride powder [J].Applied Physics A,2004,80(7): 1567-1571.

        [9]WANG Zhong,WANG Fuqiang,CHEN Hui,et al.Synthesis and characterization of Bi2Te3nanotubes by a hydrothermal method [J].Journal of Alloys and Compounds,2010,492(1): L50-L3.

        [10]SALAVATI-NIASARI M,BAZARGANIPOUR M,DAVAR F.Hydrothermal preparation and characterization of based-alloy Bi2Te3nanostructure with different morphology [J].Journal of Alloys and Compounds,2010,489(2): 530-534.

        [11]DING Juan,GU Hui,QIU Pengfei,et al.Creation of Yb2O3Nanoprecipitates Through an Oxidation Process in Bulk Yb-Filled Skutterudites [J].Journal of Electronic Materials,2013,42(3): 382-388.

        [12]ZHAO X Y,SHI Xun,CHEN Lindong,et al.Synthesis of YbyCo4Sb12/Yb2O3composites and their thermoelectric properties [J].Applied Physics Letters,2006(9): 2121-0921.

        [13]BELLANGER P,GORSSE S,BERNARD-GRANGER G,et al.Effect of microstructure on the thermal conductivity of nanostructured Mg2(Si,Sn) thermoelectric alloys: An experimental and modeling approach [J].Acta Materialia,2015,95: 102-110.

        [14]MENG Xianfu,CAI Wei,LIU Zihang,et al.Enhanced thermoelectric performance of p-type filled skutterudites via the coherency strain fields from spinodal decomposition [J].Acta Materialia,2015,98: 405-415.

        [15]LI Jianhui,TAN Qing,LI Jingfu,et al.BiSbTe-Based Nanocomposites with High ZT : The Effect of SiC Nanodispersion on Thermoelectric Properties [J].Advanced Functional Materials,2013,23(35): 4317-4323.

        [16]XU Y,LI G.Strain effect analysis on the thermoelectric figure of merit in n-type Si/Ge nanocomposites.Journal of Applied Physics,2012,111(5): 054318.

        [17]LUO Xin,SULLIVAN MB,QUEK S Y.First-principles investigations of the atomic,electronic,and thermoelectric properties of equilibrium and strained Bi2Se3and Bi2Te3including van der Waals interactions [J].Physical Review B,2012,86(18): 184111.

        [18]XU Bin,LONG Congguo,WANG Yusheng,et al.First-principles investigation of electronic structure and transport properties of the filled skutterudite LaFe4Sb12under different pressures [J].Chemical Physics Letters,2012,529: 45-48.

        [19]SHI Xun,YANG Jiong,SALVADOR J R,et al.Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports [J].Journal of the American Chemical Society,2011,133(20): 7837-7846.

        [20]ZHOU Lina,QIU Pengfei,UHER C,et al.Thermoelectric properties of p-type YbxLayFe2.7Co1.3Sb12double-filled skutterudites [J].Intermetallics,2013,32: 209-213.

        [21]XI Lili,QIU Yuting,ZHENG Shan,et al.Complex doping of group 13 elements In and Ga in caged skutterudite CoSb3[J].Acta Materialia,2015,85: 112-121.

        [22]QIU Yuting,XI Lili,SHI Xun,et al.Charge-Compensated Compound Defects in Ga-containing Thermoelectric Skutterudites [J].Advanced Functional Materials,2013,23(25): 3194-3203.

        [23]COCEMASOV A I,NIKA D L,F(xiàn)OMIN V M,et al.Phonon-engineered thermal transport in Si wires with constant and periodically modulated cross-sections: A crossover between nano- and microscale regimes [J].Applied Physics Letters,2015,107(1): 011904.

        [24]XIONG Zhen,CHEN Xihong,HUANG Xiangyang,et al.High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy [J].Acta Materialia,2010,58(11): 3995-4002.

        [25]LI Han,TANG Xinfeng,SU Xiali,et al.Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+ybulk materials with nanostructure [J].Applied Physics Letters,2008,92(20): 202114.

        [26]ROGL G,GRYTSIV A,ROGL P,et al.Dependence of thermoelectric behaviour on severe plastic deformation parameters: A case study on p-type skutterudite DD0.60Fe3CoSb12[J].Acta Materialia,2013,61(18): 6778-6789.

        [27]ROGL G,SETMAN D,SCHAFLER E,et al.High-pressure torsion,a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation [J].Acta Materialia,2012,60(5): 2146-2157.

        [28]MAYERS B,XIA Y N.Formation of Tellurium nanotubes through concentration depletion at the surfaces of seeds [J].Advanced Materials,2002,14(4): 279-282.

        [29]ZHOU Lina,ZHANG Xiaobin,ZHAO Xinbing,et al.Influence of NaOH on the synthesis of Bi2Te3via a low-temperature aqueous chemical method [J].Journal of Materials Science,2009,44(13): 3528-3532.

        [30]ZHANG Y H,ZHU Tiejun,TU Jiangping,et al.Flower-like nanostructure and thermoelectric properties of hydrothermally synthesized La-containing Bi2Te3based alloys[J].Materials Chemistry and Physics,2007,103(2): 484-488.

        [31]BERDONOSOV P S,DOLGIKH V A,LIGHTFOOT P.The crystal structure of a new bismuth tellurium oxychloride Bi0.87Te2O4.9Cl0.87from neutron powder diffraction data.Journal of Solid State Chemistry,2007,180(5): 1533-1537.

        [32]CHEN Xiangying,HYUN H S,LEE S W.Controlled synthesis of bismuth oxo nanoscale crystals(BiOCl,Bi12O17C12,alpha-Bi2O3,and(BiO)(2)CO3) by solution-phase methods.Journal of Solid State Chemistry,2007,180(9): 2510-2516.

        收稿日期:2016-03-31

        基金項(xiàng)目:上海高校青年教師培養(yǎng)計(jì)劃項(xiàng)目資助(ZZSDJ13033);上海高校教師培養(yǎng)計(jì)劃產(chǎn)學(xué)研踐習(xí)項(xiàng)目資助

        作者簡(jiǎn)介:周麗娜(1981-),女,講師,博士,主要研究方向?yàn)榧{米能源材料,E-mail: zhouln@sdju.edu.cn

        文章編號(hào)2095-0020(2016)03-0129-05

        中圖分類號(hào)TB 383.02

        文獻(xiàn)標(biāo)識(shí)碼A

        Reaction Mechanism of Bi2Te3Nanoparticles Synthesized Using Hydrothermal Method

        ZHOULina

        (School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306, China)

        AbstractThe reaction mechanism of Bi2Te3 nanoparticles synthesized with a hydrothermal method was studied by changing the reactants sequence. It was found that strong reductant could reduce all intermediate products to elementary substances in different processes. This rapid redox reaction had little influence on the process of Bi2Te3 growth of which the reaction rate was much lower. Thus, the reaction mechanism of Bi2Te3 nanoparticles was not changed. The products were Bi2Te3 nanoparticles and nanorods.

        KeywordsBi2Te3; nanoparticle; hydrothermal method; reaction mechanism

        av在线观看免费天堂| 国产一级淫片免费大片| 亚洲成av在线免费不卡| 日本二区在线视频观看| 日韩精品久久无码中文字幕| 久久不见久久见免费视频7| 高清国产美女av一区二区| av网址在线一区二区| 欧美性猛交aaaa片黑人| av潮喷大喷水系列无码| 久久综合视频网站| 国产精品视频白浆免费看| 久久久久av综合网成人| 熟妇的荡欲色综合亚洲| 手机看片国产日韩| 国产午夜精品综合久久久| 久久久久成人精品免费播放动漫| 国产影片中文字幕| 在线亚洲AV成人无码一区小说| 亚洲第一女优在线观看| 波多野结衣绝顶大高潮| 丰满女人又爽又紧又丰满| 最新手机国产在线小视频| 国产精品成人一区二区在线不卡| 欧美人妻aⅴ中文字幕| 国产精品原创巨作AV女教师| 白白色发布永久免费观看视频 | 久久久久亚洲av片无码下载蜜桃| 久久免费区一区二区三波多野在| 开心激情网,开心五月天| 日韩精品无码熟人妻视频| 亚洲国产精品特色大片观看完整版| 成人国产精品高清在线观看| 亚洲综合中文字幕日韩| 狠狠噜天天噜日日噜无码| 免费AV一区二区三区无码| 日本一区中文字幕在线播放| 成人欧美一区二区三区在线| 比比资源先锋影音网| 中文字幕亚洲区第一页| 日韩三级一区二区三区|