李 寧,羅懷超,張廣健,李秀蘭,張丁丁
(1.遵義醫(yī)學(xué)院 免疫學(xué)教研室, 貴州 遵義 563099;2.西南醫(yī)科大學(xué) 臨床醫(yī)學(xué)院, 四川 瀘州 646000;3.泰山醫(yī)學(xué)院附屬醫(yī)院, 山東 泰安 271000;4.四川省人民醫(yī)院 健康管理中心, 四川 成都 610000)
?
綜述
人類長壽相關(guān)基因的遺傳學(xué)研究進展
李寧1,羅懷超2,張廣健3,李秀蘭1,張丁丁4
(1.遵義醫(yī)學(xué)院 免疫學(xué)教研室, 貴州 遵義563099;2.西南醫(yī)科大學(xué) 臨床醫(yī)學(xué)院, 四川 瀘州646000;3.泰山醫(yī)學(xué)院附屬醫(yī)院, 山東 泰安271000;4.四川省人民醫(yī)院 健康管理中心, 四川 成都610000)
[摘要]人類長壽是個體的遺傳背景和環(huán)境因素聯(lián)合作用的結(jié)果。作為一種復(fù)雜的生物學(xué)現(xiàn)象,長壽相關(guān)的信號通路和基因較多。隨著二代測序技術(shù)的廣泛運用,三代測序技術(shù)的研究開發(fā),一系列長壽相關(guān)基因被人們所認(rèn)知,例如:胰島素胰島素樣生長因子-1信號通路相關(guān)基因、脂代謝信號通路相關(guān)基因、端粒酶基因、抗炎癥因子基因、腫瘤抑制基因、氧化應(yīng)激損傷基因等。對長壽基因的研究將加深人們對衰老的認(rèn)識,促進對增齡相關(guān)疾病病理機制的研究。本文就長壽相關(guān)基因最新研究進展進行綜述。
[關(guān)鍵詞]人類長壽;長壽相關(guān)基因;衰老;單核苷酸多態(tài)性
人們對于長壽的探尋及研究由來已久,新近研究表明長壽作為一種復(fù)雜的生物學(xué)現(xiàn)象,與多種基因、多種環(huán)境地理因素的聯(lián)合作用密切相關(guān)。雙生子和家族聚集性研究顯示遺傳因素在決定長壽現(xiàn)象中所占的比例為25%,并且在60歲以后遺傳因素的作用更為顯著。當(dāng)前,國內(nèi)外關(guān)于長壽相關(guān)基因的研究大量涌現(xiàn),但研究較深入的主要包括五個方面:①代謝途徑相關(guān)基因;②抑癌相關(guān)基因;③端粒相關(guān)基因;④免疫系統(tǒng)相關(guān)基因;⑤心血管疾病相關(guān)基因。通過減緩衰老實現(xiàn)長壽,也催生衰老相關(guān)基因的研究,例如端粒逆轉(zhuǎn)錄酶基因、DNA甲基轉(zhuǎn)移酶基因等。對于長壽及衰老相關(guān)基因的研究,不僅有助于在分子水平認(rèn)識長壽及衰老的生理機制,同時還能為增齡疾病的預(yù)防治療提供重要的理論依據(jù)。鑒于當(dāng)前世界各國人口老齡化問題加劇的現(xiàn)狀,只有準(zhǔn)確揭示長壽及衰老完整的生理和分子機制,才能更有效的減緩衰老,預(yù)防增齡相關(guān)疾病,最終實現(xiàn)健康老齡化。本文就長壽相關(guān)基因研究的進展作一簡要綜述。
1代謝途徑相關(guān)基因
1.1FOXO3A基因FOXO3A基因作為胰島素/胰島素樣生長因子信號通路的關(guān)鍵基因之一,參與正調(diào)控轉(zhuǎn)錄及紅細胞分化。Clancy等[1]在研究秀麗隱桿線蟲時,發(fā)現(xiàn)調(diào)節(jié)線蟲壽命的關(guān)鍵基因daf-2和daf-16,daf-2基因突變型線蟲壽命比對照組多一倍,經(jīng)序列同源分析發(fā)現(xiàn)daf-16基因與人類FOXO3A基因同源。2008年,Willcox等[2]第一次報告在日本裔美國男性FOXO3A基因的3個SNPs位點(rs2764264, rs13217795和rs2802292)與長壽存在關(guān)聯(lián)。 Li等[3]在中國漢族人群中發(fā)現(xiàn)FOXO3A基因的3個SNPs位點(rs2253310、rs2802292、rs4946936)與中國漢族長壽人群相關(guān)。Soerensen等[4]運用Illumina Golden Gate Platform二代測序技術(shù),對1089例丹麥長壽人群進行研究,重復(fù)驗證出FOXO3A基因的3個已知長壽相關(guān)SNPs位點(rs13217795、rs2802292、rs4946936),并新發(fā)現(xiàn)4個長壽相關(guān)SNPs位點(rs12206094、rs13220810、rs7762395、rs9486902),同時發(fā)現(xiàn)rs9486902、rs10499051、rs12206094 3個位點產(chǎn)生的單倍型TAC和CAC與長壽顯著相關(guān)。Flachsbart等[5]研究長壽人群FOXO3A基因的未知功能型SNPs位點,發(fā)現(xiàn)位于外顯子區(qū)域的兩個SNPs位點rs4945816和rs4946936與長壽相關(guān),提示該兩個位點有可能影響氨基酸變化,但仍需結(jié)構(gòu)生物學(xué)驗證,例如:X射線單晶衍射技術(shù)、電子顯微學(xué)方法等,然而這些實驗設(shè)備價格昂貴,難以廣泛開展,因此,可利用國外免費在線蛋白三維結(jié)構(gòu)預(yù)測軟件,預(yù)測該蛋白的功能性結(jié)構(gòu)域,進一步開展功能驗證實驗。Nygaard等[6]對2712例丹麥長壽人群的研究中,發(fā)現(xiàn)FOXO3A基因的rs7762395在隱性模型中顯示與長壽呈負(fù)相關(guān)關(guān)系。Tan等[7]在丹麥長壽人群的研究中,表明FOXO3A基因的rs9486902位點與長壽顯著相關(guān),筆者[8]對中國四川地區(qū)的576例長壽人群進行重復(fù)驗證,同樣驗證出FOXO3A基因的rs9486902位點與中國長壽人群顯著相關(guān),相反并未重復(fù)驗證出Willcox 等實驗結(jié)果,提示不同種族長壽人群間存在遺傳異質(zhì)性。
1.2SIRT1基因SIRT1基因維持細胞染色質(zhì)沉默,保護細胞應(yīng)對氧化損傷,其活性形式可與抑癌基因P53結(jié)合,參與P53介導(dǎo)的信號傳導(dǎo),提示該基因調(diào)控長壽部分作用可能通過與P53基因協(xié)同作用抑制腫瘤生長。Figarska等[9]對1390例荷蘭人群進行18年的隨訪調(diào)查中發(fā)現(xiàn),SIRT1基因上rs12778366位點與減少死亡風(fēng)險顯著相關(guān)。Braidy等[10]對衰老小鼠的研究中表明伴隨著鼠齡的增長,小鼠大腦中SIRT1基因表達增加,進一步研究顯示SIRT1表達增加與小鼠壽命延長相關(guān)[11]。通過體外成纖維細胞熱量限制實驗表明,熱量限制介導(dǎo)SIRT1的表達增加,顯著延長細胞的復(fù)制壽命[12]。Kilic等[13]發(fā)現(xiàn)SIRT1基因的rs7895833位點AG基因型攜帶者體內(nèi)存在更高水平的SIRT1蛋白表達,并顯示該位點多態(tài)性變化與長壽相關(guān)。針對中國廣西永福地區(qū)長壽人群的研究顯示SIRT1基因的rs4746720位點CT基因型與長壽相關(guān)[14]。為了研究SIRT1基因與增齡相關(guān)疾病的關(guān)系,Kuningas等[15]對1245例85歲以上萊頓長壽人群的研究中,表明SIRT1基因上rs3758391位點與較低的心血管患病率及良好的認(rèn)知能力相關(guān)。
1.3AKT1基因新近研究顯示AKT1基因突變與長壽相關(guān),Pawlikowska等[16]對高加索長壽女性群體研究,顯示AKT1基因的rs3803304與人類長壽相關(guān)。然而,Nygaad等[17]對2996例德國和丹麥長壽人群進行重復(fù)驗證,結(jié)果顯示AKT1基因的rs3803304以及鄰近的6個SNPs位點均與長壽不相關(guān)。為進一步研究上述基因位點在中國人群的分布特點,筆者[8]對中國四川地區(qū)的576例長壽人群進行重復(fù)驗證,結(jié)果顯示AKT1基因的rs3803304以及5個鄰近SNPs位點均與長壽不相關(guān),提示AKT1基因可能不是普遍的長壽基因,上述基因位點是否與人類長壽相關(guān)尚存在爭議,有待進一步擴大樣本,不同種族進行驗證。此外,對于AKT1基因的動物研究報道則得出相反的結(jié)論,Nojima等[18]研究發(fā)現(xiàn)AKT1基因單倍劑量不足的小鼠,表現(xiàn)為壽命顯著延長,通過抑制AKT1基因可減少核糖體基因的表達,線粒體DNA的含量,提示該基因劑量效應(yīng)可影響長壽。
2抑癌相關(guān)基因
P53基因作為人體重要的抑癌基因,50%以上的人體腫瘤存在P53基因突變,Grobs等[19]研究155例德國長壽人群P53基因多態(tài)性,發(fā)現(xiàn)女性長壽人群中P53基因的rs1042522位點與長壽相關(guān)。相反,在男性長壽人群中,這一相關(guān)性卻并不存在,提示性別特異性效應(yīng)影響長壽,這一效應(yīng)也被驗證在Li等[3]對FOXO1A基因研究中,提示性別特異性與長壽的相關(guān)性,可能是通過多個性別特異性基因相互作用的結(jié)果。Hu[20]對P53基因家族(P53基因、P63基因、P73基因)的研究中顯示P53基因敲除小鼠,其生育能力顯著降低,研究報道FOXO1A基因敲除小鼠,其生育能力同樣顯著降低,提示多個長壽基因的聯(lián)合作用與降低生育能力相關(guān),P53基因缺失小鼠表現(xiàn)為更高的癌癥發(fā)病率以及更短的壽命。此外,P53基因在氧化應(yīng)激損傷及熱量限制中發(fā)揮重要作用。熱量限制導(dǎo)致P53基因表達降低,延長細胞復(fù)制壽命[12],SIRT1基因可通過P53基因信號通路,緩解氧化應(yīng)激損傷引起的細胞衰老[21]。另有研究發(fā)現(xiàn)利用IGF-1干擾胰島素胰島素樣生長因子-1信號通路,使SIRT1去乙?;缴?,從而增加P53乙?;?,可導(dǎo)致細胞過早衰老[22]。提示P53基因可作為監(jiān)測IGF-1誘導(dǎo)細胞增殖和過早衰老的分子開關(guān)。
3端粒相關(guān)基因
TERT基因與端粒DNA結(jié)合,參與端粒的維持。對小鼠動物模型實驗表明TERT基因過表達小鼠,其壽命顯著延長[23]。國外針對老齡小鼠,采用TERT基因療法,可使小鼠壽命延長13%[24],并顯著改善其代謝狀況,同時未引起癌癥患病率增加[25],運用hTERT轉(zhuǎn)染細胞可使細胞壽命延長50%[26]。Concetti等[27]對意大利中部1072例(18~106歲)個體進行分層分析,結(jié)果顯示TERT基因的可變數(shù)目串聯(lián)重復(fù)序列MNS16A在長壽人群顯著減少,提示該多態(tài)性可能與人類長壽呈負(fù)相關(guān)關(guān)系,這一多態(tài)性可能通過調(diào)節(jié)端粒橫斷面損耗率而影響人類長壽。然而,Liu等[28]對中國漢族人群的研究發(fā)現(xiàn),MNS16A與中國漢族長壽人群無相關(guān)性。Atzmon等[29]利用全基因組關(guān)聯(lián)研究表明TERT基因的(rs33954691、 rs2853669、rs2736098、rs33954691、rs2853691)位點組成的3個單倍型與長壽相關(guān),同時發(fā)現(xiàn)TERC的rs3772190位點與長壽相關(guān),然而這一結(jié)果在1089例丹麥長壽人群中未得到重復(fù)驗證[30],提示可能由于種族異質(zhì)性造成結(jié)果不一致,同時也表明可能端粒維持通路中多種基因參與長壽調(diào)節(jié)。
4免疫系統(tǒng)相關(guān)基因
4.1IL-6基因IL-6基因通過編碼白細胞介素-6參與免疫反應(yīng),調(diào)節(jié)各種免疫細胞的增殖分化。 Kayaalt等[31]發(fā)現(xiàn)IL-6基因-174G/C(rs1800795)多態(tài)性與長壽存在關(guān)聯(lián),且IL-6基因-174 C+攜帶者長壽機率更高[32],另有研究表明IL-6基因高表達引起自身免疫疾病[33]不利于男性壽命的延長[34]。Di Bona 等[35]對3個意大利男性百歲老人群體進行Meta分析,結(jié)果顯示IL-6基因-174GG 基因型顯著低于其他基因型,表明該GG基因型與長壽呈負(fù)相關(guān)關(guān)系。然而,Christiansen等[36]對丹麥人群進行年齡分層分析,IL-6基因的三個多態(tài)性位點(-597G/A、-572G/C、-174G/C),結(jié)果顯示伴隨年齡增長,-174 GG基因型頻率顯著增高,這一結(jié)果與Di Bona等[35]研究結(jié)果相反,提示該基因位點與長壽的關(guān)聯(lián)可能存在性別特異性。Pes等[37]對112例撒丁島百歲老人IL-6基因多態(tài)性的研究顯示IL-6基因-174G/C(rs1800795)多態(tài)性分布頻率在百歲老人與正常對照之間不存在顯著差異,表明該位點與長壽的相關(guān)性可能存在種族異質(zhì)性。
4.2IL-10基因白細胞介素-10是重要的抗炎性因子,能夠抑制單核細胞釋放炎癥介質(zhì),研究表明促炎性因子和抗炎性因子的平衡在調(diào)節(jié)人類壽命方面發(fā)揮重要作用。在雌性長壽小鼠(125周)中發(fā)現(xiàn),血清IL-10表達水平越高,更有助于長壽[38-39],相反,應(yīng)用IL-10抑制劑則誘導(dǎo)小鼠高死亡率[40]。Cederholm等[41]對瑞典老年人群(平均年齡83±7歲)的研究中,發(fā)現(xiàn)IL-10 -1082GG基因型攜帶者血清中高表達IL-10。Basile等[42]研究發(fā)現(xiàn)IL-10同系物:IL-22,調(diào)節(jié)Th-1,Th-17細胞預(yù)防感染,促進長壽。Khabour等[43]對119例約旦長壽人群研究顯示長壽男性組與年輕對照組相比,IL-10-1028G/A位點基因型和等位基因頻率存在顯著差異,而在長壽女性組則無統(tǒng)計學(xué)差異,提示該位點對長壽的影響存在性別特異性。Mustafina 等[44]研究發(fā)現(xiàn)IL-10基因的rs1800792位點CA基因型與長壽顯著相關(guān)。新近MicroRNAs (miRNAs)的研究發(fā)現(xiàn),miR-181a與IL-10基因表達呈正相關(guān)關(guān)系,提示循環(huán)miR-181a可作為檢測老齡化的候選標(biāo)志物[45]。
4.3HLA基因HLA基因編碼HLAⅠ和HLAⅡ類抗原,參與機體內(nèi)源性和外源性抗原的加工與提呈,調(diào)節(jié)免疫應(yīng)答。為了探尋HLA基因多態(tài)性與長壽的關(guān)聯(lián)性,Listì等[46]研究了HLA基因的DR等位基因在長壽人群與對照組間的分布頻率,結(jié)果表明西西里島男性百歲老人的HLA-DRB1*18等位基因頻率顯著高于對照組。Artem'eva等[47]也檢測了HLA基因的DRB1,DQA1,DQB1等位基因在莫斯科地區(qū)長壽人群的分布頻率,結(jié)果表明HLA-DRB1*11基因的GA基因型頻率與長壽顯著相關(guān)。Scola等[48]對意大利撒丁島123例百歲老人和92例對照的研究,提示HLA-DRB1*15等位基因頻率顯著高于對照組。盡管進一步檢測HLA-DQA1,DQB1等位基因頻率及單倍型頻率,均顯示與長壽無顯著相關(guān),但顯示HLA-DR,DQ等位基因強關(guān)聯(lián),這些數(shù)據(jù)也提示HLA-DQA1*01,DQB1*05 和HLADQA1*01,DQB1*06單倍型可能參與決定長壽,上述研究資料可以看出HLA基因?qū)﹂L壽的影響存在種族以及地區(qū)的遺傳異質(zhì)性,提示進一步研究需開展多地區(qū)合作、擴大樣本篩查長壽相關(guān)基因位點。此外,Qin等[49]對1068例中國人群進行年齡分層分析發(fā)現(xiàn),伴隨年齡的增長,機體免疫系統(tǒng)加速衰老,呈現(xiàn)CD28表達缺失,HLA-DR表達顯著增加。Busse等[50]研究也顯示隨年齡的增長,單核細胞表面HLA-DR表達顯著增加。
5心血管疾病相關(guān)基因
5.1CETP基因CETP基因參與將肝外組織細胞內(nèi)膽固醇轉(zhuǎn)運至肝臟代謝并排除體外,保持機體脂類及膽固醇正常代謝。丹麥長壽人群研究發(fā)現(xiàn)CETP基因rs9923851位點次要等位基因頻率在長壽人群顯著升高[51]。Kolovou等[52]發(fā)現(xiàn)CETP基因TaqIB多態(tài)性位點,B2等位基因頻率長壽組比對照組顯著增高,提示該多態(tài)性位點與長壽相關(guān)。Barzilai等[53]在德系猶太人的研究中發(fā)現(xiàn)CETP基因的rs5882位點純合纈氨酸基因型攜帶者,表現(xiàn)為高密度脂蛋白水平高于對照組,并呈現(xiàn)較大的脂蛋白顆粒,該兩者是癡呆癥的保護因素,提示該基因可能通過影響脂類代謝,減少增齡相關(guān)疾病的患病率,從而實現(xiàn)長壽。此外,Sanders等[54]對608例70歲以上老年人群進行的前瞻性隊列研究,也顯示CETP基因的rs5882位點純合纈氨酸基因型攜帶者具有更低的癡呆癥及阿爾茨海默病患病率,并且可減緩記憶力的下降。然而,Novelli等[55]對美國749例高加索長壽人群的研究卻并未驗證出CETP基因rs5882位點存在統(tǒng)計學(xué)差異,提示可能由于種族差異導(dǎo)致遺傳異質(zhì)性,也可能樣本量過小,統(tǒng)計效力較低。Yang 等[56]對中國西南地區(qū)380例長壽老人進行CETP基因分型分析,發(fā)現(xiàn)該基因4個多態(tài)性位點(-573A/G、-629A/G、-971A/G、-1046T/C)與對照組相比不存在統(tǒng)計學(xué)差異,提示CETP基因可能與中國人群長壽無關(guān)。
5.2APOE基因APOE基因全基因組關(guān)聯(lián)研究顯示APOE基因ε4等位基因與長壽呈負(fù)相關(guān)關(guān)系[57], Schupf等[58]發(fā)現(xiàn)丹麥和美國長壽人群后代APOE基因ε4等位基因頻率顯著低于配偶組,而APOE基因ε2等位基因顯著高于配偶組,提示APOE基因ε4等位基因頻率減少,ε2等位基因頻率增多,更有利于長壽。Garatachea等[59]對長壽人群研究顯示APOEε2等位基因與意大利、日本長壽人群呈正相關(guān)關(guān)系。APOE基因ε4、ε2等位基因與長壽的相關(guān)性在749例美國百歲老人中得到重復(fù)驗證[55],進一步提示APOE在不同種族人群中被廣泛重復(fù)驗證。另有研究顯示APOEε4等位基因?qū)﹂L壽的影響,女性比男性更為顯著[60]。APOEε2等位基因則對大腦認(rèn)知和神經(jīng)保護發(fā)揮重要作用[61]。此外,Lu 等[62]在1015例中國漢族長壽人群研究中,檢測了PVRL2-TOMM40-APOE區(qū)域的18個SNPs位點,結(jié)果表明APOE基因rs405509位點與人類長壽顯著相關(guān)。Beekman等[63]開展全基因組關(guān)聯(lián)分析,在11個歐洲國家,2118例長壽老人的研究中,發(fā)現(xiàn)四個染色體區(qū)域14q 11.2(LOD=3.47)、17q 12-q22(LOD=2.95)、19p 13.3-p13.11(LOD=3.76)、19q 13.11-13.32(LOD=3.57)與長壽相關(guān),而APOE基因ε4和ε2等位基因與19q 13.11-13.32區(qū)域強相關(guān),進一步證明APOE基因在調(diào)節(jié)人類長壽中發(fā)揮重要作用。
6展望
縱觀近10年關(guān)于長壽的遺傳學(xué)研究顯示,長壽相關(guān)信號通路眾多,不同信號通路又包括許多長壽相關(guān)基因,除上述基因外,還有報道顯示FOXO1A、MTP、MEFP、WRN、ACE、P16、IRS2、SOD1、MAPK、TSHR等基因與長壽相關(guān),為更深入的研究遺傳因素對長壽的影響,進一步的研究需要注意:①類似于其他多基因遺傳病,長壽涉及多個基因,而每個基因的作用又是非常小,可否采用系統(tǒng)生物學(xué)理論對多個基因整合研究,并繪制動態(tài)長壽基因調(diào)控網(wǎng)絡(luò)圖;②基因和內(nèi)外環(huán)境的變化均對長壽表型產(chǎn)生影響,未來的研究可預(yù)設(shè)不同內(nèi)外環(huán)境狀態(tài),檢測長壽基因的表達變化;③目前研究發(fā)現(xiàn)的長壽單核苷酸多態(tài)性位點較多,而針對這些位點開展的功能研究相對較少,表觀遺傳學(xué)研究報道也較少,有待進一步加強此方面的研究。近幾年關(guān)于衰老一系列新的研究技術(shù)蓬勃發(fā)展,轉(zhuǎn)化醫(yī)學(xué)的興起,通過交叉學(xué)科科技人員的共同努力,對于人類長壽的認(rèn)識會越來越深入,增齡相關(guān)疾病的預(yù)防和治療也會有更大的進步。
[參考文獻]
[1] Clancy D J, Gems D, Hafen E, et al. Dietary restriction in long-lived dwarf flies [J]. Science, 2002, 296(5566):319.
[2] Willcox B J, Donlon T A, He Q, et al.FOXO3Agenotype is strongly associated with human longevity [J]. Proc Nat Acad Sci, 2008, 105(37):13987-13992.
[3] Li Y, Wang W J, Cao H, et al. Genetic association ofFOXO1AandFOXO3Awith longevity trait in Han Chinese populations [J]. Hum Mol Genet, 2009, 18(24):4897-4904.
[4] Soerensen M, Dato S, Christensen K, et al. Replication of an association of variation in theFOXO3Agene with human longevity using both case-control and longitudinal data [J]. Aging Cell, 2010, 9(6): 1010-1017.
[5] Flachsbart F, M?ller M, D?umer C, et al. Genetic investigation ofFOXO3Arequires special attention due to sequence homology withFOXO3B[J]. European Journal of Human Genetics, 2013, 21(2): 240-242.
[6] Nygaard M, Lindahl-Jacobsen R, Soerensen M, et al. Birth cohort differences in the prevalence of longevity-associated variants inAPOEandFOXO3Ain Danish long-lived individuals [J]. Experimental Gerontology, 2014, 57(9): 41-46.
[7] Tan Q, Soerensen M, Kruse T A, et al. A novel permutation test for case‐only analysis identifies epistatic effects on human longevity in theFOXOgene family [J]. Aging Cell, 2013, 12(4): 690-694.
[8] Li N,Luo H C,Liu X Q, et al. Association Study of Polymorphisms inFOXO3,AKT1 andIGF-2RGenes with Human Longevity in a Han Chinese Population [J]. Oncotarget, 2016, 7 (1):23-32.
[9] Figarska S M, Vonk J M, Boezen H M.SIRT1 polymorphism, long-term survival and glucose tolerance in the general population [J]. Plos One, 2013, 8(3): e58636.
[10] Braidy N, Poljak A, Grant R, et al. Differential expression of sirtuins in the aging rat brain [J]. Front Cell Neurosci, 2015, 8(9):167.
[11] Giblin W, Skinner M E. Lombard DB.Sirtuins: guardians of mammalian healthspan [J]. Trends Genet, 2014, 30(7):271-286.
[12] de Cabo R, Liu L, Ali A, et al. Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro[J]. Aging (Albany NY), 2015, 7(3):152-166.
[13] Kilic U, Gok O, Erenberk U, et al. A remarkable age-related increase inSIRT1 protein expression against oxidativestress in elderly:SIRT1 gene variants and longevity in human [J]. Front Cell Neurosci, 2015, 9(9):64.
[14] Huang J, Sun L, Liu M, et al. Association betweenSIRT1 gene polymorphisms and longevity of populations fromYongfu region of Guangxi [J].Chin J Med Genet,2013, 30(1):55-59.
[15] Kuningas M, Putters M, Westendorp R G J, et al.SIRT1 gene, age-related diseases, and mortality: the Leiden 85-plus study [J]. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2007, 62(9): 960-965.
[16] Pawlikowska L, Hu D, Huntsman S, et al. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity [J]. Aging Cell, 2009, 8(4):460-472.
[17] Nygaard M, Soerensen M, Flachsbart F, et al.AKT1 fails to replicate as a longevity-associated gene in Danish and German nonagenarians and centenarians [J]. European Journal of Human Genetics, 2013, 21(5): 574-577.
[18] Nojima A, Yamashita M, Yoshida Y, et al. Haploinsufficiency ofAKT1 prolongs the lifespan of mice [J]. Plos One, 2013, 8(7): e69178.
[19] Grobs S, Immel U D, Klintschar M, et al. Germline Genetics of thep53 Pathway Affect Longevity in a Gender Specific Manner [J]. Current Aging Science, 2014, 7(2): 91-100.
[20] Hu W W. The role ofp53 gene family in reproduction [J]. Cold Spring Harbor Perspect Biot, 2009, 1(6): a001073.
[21] Zhou N, Lin X, Dong W, et al.SIRT1 alleviates senescence of degenerative human intervertebral disc cartilage endo-plate cells via thep53/p21 pathway [J]. Sci Rep,2016 ,6:22628.
[22] Tran D1, Bergholz J, Zhang H, et al. Insulin-like growth factor-1 regulates theSIRT1-p53 pathway in cellular senescence [J]. Aging Cell, 2014 ,13(4):669-678.
[23] Vera E, Bernardes de Jesus B, Foronda M, et al. Telomerase reverse transcriptase synergizes with calorie restriction to increase health span and extend mouse longevity [J]. Plos One, 2013, 8(1):e53760.
[24] Bernardes de Jesus B, Vera E, Schneeberger K, et al. Telomerase gene therapy in adult and old mice delays aging and increaseslongevity without increasing cancer [J]. EMBO Mol Med, 2012, 4(8):691-704.
[25] Tomas-Loba A, Bernardes de Jesus B, Mato J M,et al. A metabolic signature predicts biological age in mice [J]. Aging Cell, 2013, 12(1):93-101.
[26] Chung S A, Wei A Q, Connor D E, et al. Nucleus pulposus cellular longevity by telomerase gene therapy [J]. Spine (Phila Pa 1976), 2007, 32(11):1188-1196.
[27] Concetti F, Lucarini N, Carpi F M, et al. The functional VNTR MNS16A of theTERTgene is associated with human longevity in a population of Central Italy [J]. Experimental Gerontology, 2013, 48(6): 587-592.
[28] Liu L, Wang C, Lu X,et al. The MNS16A polymorphism in theTERTgene inperi-centenarians from the HanChinese population [J]. Sci China Life Sci, 2014, 57(10):1024-1027.
[29] Atzmon G, Cho M, Cawthon R M, et al. Genetic variation in human telomerase is associated with telomere length in Ashkemazi centenarians [J]. Proc Natl Acad Sci USA, 2010,107(1):1710-1717.
[30] Soerensen M, Thinggaard M, Nygaard M, et al. Genetic variation inTERTandTERCand human leukocyte telomere length and longevity: a cross‐sectional and longitudinal analysis [J]. Aging Cell, 2012, 11(2): 223-227.
[32] Walston J D, Matteini A M, Nievergelt C, et al. Inflammation and stress-related candidate genes, plasma interleukin-6 levels, and longevity in older adults [J]. Experimental Gerontology, 2009, 44(5): 350-355.
[33] Hong C, Nam A S, Keller H R, et al. Interleukin-6 expands homeostatic space for peripheral T cells [J].Cytokine, 2013, 64(2):532-540.
[34] Albani D, Mazzuco S, Polito L, et al. Insulin-like growth factor 1 receptor polymorphism rs2229765 and circulatinginterleukin-6 level affect male longevity in a population-based prospective study(Treviso Longeva-TRELONG)[J]. Aging Male, 2011, 14(4):257-264.
[35] Di Bona D, Vasto S, Capurso C, et al. Effect of interleukin-6 polymorphisms on human longevity: a systematic review and meta-analysis [J]. Ageing Research Reviews, 2009, 8(1): 36-42.
[36] Christiansen L, Bathum L, Andersen-Ranberg K, et al. Modest implication of interleukin-6 promoter polymorphisms in longevity [J]. Mechanisms of Ageing and Development, 2004, 125(5): 391-395.
[37] Pes G M, Lio D, Carru C, et al. Association between longevity and cytokine gene polymorphisms. A study in Sardinian centenarians [J]. Aging Clinical and Experimental Research, 2004, 16(3): 244-248.
[38] Dimitrijevi M, Stanojevi S, Vuji V, et al. Aging oppositely affects TNF-α and IL-10 production by macrophages from differentrat strains [J]. Biogerontology, 2014, 15(5):475-486.
[39] Arranz L, Lord J M, De la Fuente M. Preserved ex vivo inflammatory status and cytokine responses in naturallylong-lived mice[J]. Age (Dordr), 2010, 32(4):451-466.
[40] Belloni V, Faivre B, Guerreiro R, et al. Suppressing an anti-inflammatory cytokine reveals a strong age-dependent survivalcost in mice [J]. Plos One, 2010, 5(9):e12940.
[41] Cederholm T, Persson M, Andersson P, et al. Polymorphisms in cytokine genes influence long-term survival differently in elderly male and female patients [J]. Journal of Internal Medicine, 2007, 262(2): 215-223.
[42] Basile G, Paffumi I, D'Angelo A G, et al. Healthy centenarians show high levels of circulating interleukin-22 (IL-22)[J]. Arch Gerontol Geriatr, 2012, 54(3):459-461.
[43] Khabour O F, Barnawi J M. Association of longevity with IL-10 -1082 G/A and TNF-alpha-308 G/A Polymorphisms [J]. Int J Immunogenet, 2010, 37(4):293-8.
[44] Mustafina O E, Pauk V V, Mustafina R S H, et al. Polymorphism of cytokine genes and human longevity [J]. Adv Gerontol, 2010, 23(3):339-345.
[45] NorenHooten N, Fitzpatrick M, Wood W H, et al. Age-related changes in microRNA levels in serum[J]. Aging (Albany NY), 2013, 5(10):725-740.
[46] Listì F, Caruso C, Colonna-Romano G, et al. HLA and KIR frequencies in Sicilian Centenarians[J]. Rejuvenation Research, 2010, 13(2-3): 314-318.
[47] Artem'eva O V, Kostomarova I V, Serova L D.Clinical and genetic characteristics of long-livers in Moscow region[J]. Adv Gerontol, 2013,26 (3):451-457.
[48] Scola L, Lio D, Candore G, et al. Analysis ofHLA-DRB1,DQA1,DQB1 haplotypes in Sardinian centenarians[J]. Experimental Gerontology, 2008, 43(2): 114-118.
[49] Qin L, Jing X, Qiu Z, et al. Aging of immune system: Immune signature from peripheral blood lymphocyte subsets in 1068 healthy Adults [J]. Aging, 2016, Feb 15. [Epub ahead of print].
[50] Busse S, Steiner J, Alter J, et al. Expression of HLA-DR, CD80, and CD86 in Healthy Aging and Alzheimer’s Disease[J]. Journal of Alzheimer's Disease, 2015,47 (1):177-84.
[51] Soerensen M, Dato S, Tan Q, et al. Evidence from case-control and longitudinal studies supports associations ofgenetic variation inAPOE,CETP, andIL6 with human longevity [J]. Age (Dordr), 2013, 35(2):487-500.
[52] Kolovou G, Stamatelatou M, Anagnostopoulou K, et al. Cholesteryl ester transfer protein gene polymorphisms and longevity syndrome [J]. Open Cardiovasc Med J, 2010, (29)4:14-19.
[53] Barzilai N, Atzmon G, Derby C A, et al. A genotype of exceptional longevity is associated with preservation of cognitive function [J]. Neurology, 2006, 67(12): 2170-2175.
[54] Sanders A E, Wang C, Katz M, et al. Association of a functional polymorphism in the cholesteryl ester transfer protein (CETP) gene with memory decline and incidence of dementia [J]. JAMA, 2010, 303(2): 150-158.
[55] Novelli V, Anselmi C V, Roncarati R, et al. Lack of replication of genetic associations with human longevity [J]. Biogerontology, 2008, 9(2): 85-92.
[56] Yang J K, Gong Y Y, Xie L, et al. Association study of promoter polymorphisms in theCETPgene with longevity in the Han Chinese population [J]. Molecular Biology Reports, 2014, 41(1): 325-329.
[57] Deelen J, Beekman M, Uh H W, et al. Genome-wide association study identifies a single major locus contributing to survival into old age; theAPOElocus revisited [J]. Aging Cell, 2011,10(4): 686-698.
[58] Schupf N, Barral S, Perls T, et al. Apolipoprotein E and familial longevity [J]. Neurobiology of Aging, 2013, 34(4): 1287-1291.
[59] Garatachea N, Emanuele E, Calero M, et al.APOEgene and exceptional longevity: Insights from three independent cohorts [J]. Exp Gerontol, 2014, 53(5):16-23.
[60] Kulminski A M, Arbeev K G, Culminskaya I, et al. Age, gender, and cancer but not neurodegenerative and cardiovascular diseasesstrongly modulate systemic effect of the Apolipoprotein E4 allele on lifespan [J]. Plos Genet, 2014, 30(10):e1004141.
[61] Suri S, Heise V, Trachtenberg A J, et al. The forgottenAPOEallele: a review of the evidence and suggested mechanisms for the protective effect ofAPOEε2 [J]. Neurosci BiobehavRev, 2013, 37(10):2878-86.
[62] Lu F, Guan H, Gong B, et al. Genetic variants inPVRL2-TOMM40-APOEregion are associated with human longevity in a Han Chinese population [J]. Plos One, 2014, 9(6): e99580.
[63] Beekman M, Blanché H, Perola M, et al. Genome‐wide linkage analysis for human longevity: Genetics of Healthy Aging Study [J]. Aging Cell, 2013, 12(2): 184-193.
[收稿2016-03-08;修回2016-04-20]
(編輯:王福軍)
[基金項目]國家自然科學(xué)基金資助項目(NO:81470667)。
[通信作者]張丁丁,女,博士,教授,碩士生導(dǎo)師,研究方向:免疫遺傳,E-mail:918676628@qq.com。
[中圖法分類號]Q987
[文獻標(biāo)志碼]A
[文章編號]1000-2715(2016)03-0326-07
Progress on aging and longevity-associated genes in humans
LiNing1,LuoHuaichao2,ZhangGuangjian3,LiXiulan1,ZhangDingding4
(1.Department of Immunology, Zunyi Medical University, Zunyi Guizhou 563099, China; 2.Clinic Medical School of Medicine,Southwest Medical University, Luzhou Sichuan 646000, China;3.Affiliated Hospital of Taishan Medical College, Taian Shandong 271000, China;4.Department of Health Management,Sichuan Provincial People's Hospital, Chengdu Sichuan 610000, China)
[Abstract]Human longevity is known to be the result of combinations of the genetic background and environmental factors. As a complex biological phenomenon, longevity is related to many metabolic signaling pathways and genes. With the widespread application of the second generation sequencing technology and the development of the third generation sequencing technology, a series of longevity related genes were known. For example, the genes related to the insulin/IGF-1 signaling (IIS) pathway, the genes related to lipoprotein metabolic signaling pathway, anti-inflammatory factor genes, proinflammatory factor genes, tumor suppressor oncogenes, telomerase genes, oxidative stress injury genes, et al.Thus, the research for the longevity genes could promote the understanding of the human aging and the study for pathogenesis of age-related diseases in the future. This article reviews the latest progress on the longevity-associated genes.
[Key words]human longevity; longevity genes;aging; single nucleotide polymorphism(SNP)