亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the Study of Some Twisted Deformative Schr?dinger Virasoro Algebra

        2016-07-31 23:19:20TANGJiaGAOShoulanGUHaixia
        湖州師范學(xué)院學(xué)報 2016年4期
        關(guān)鍵詞:導(dǎo)子理學(xué)院高壽

        TANG Jia,GAO Shoulan,GU Haixia

        (School of Science,Huzhou University,Huzhou 313000,China)

        On the Study of Some Twisted Deformative Schr?dinger Virasoro Algebra

        TANG Jia,GAO Shoulan,GU Haixia

        (School of Science,Huzhou University,Huzhou 313000,China)

        In this paper,we study a kind of twisted deformative Schr?dinger-Virasoro Lie algebra with two parameters.The calculation of all the derivations of certain 1-dimensional center extension of the Lie algebra proves that the Lie algebra has 7 outer derivations.The result will be helpful to further study the representation theory of this Lie algebra.

        Schr?dinger-Virasoro Lie algebra;central extension;derivation

        MSC 2000:17B40

        0 Introduction

        The infinite-dimensional Schr?dinger Lie algebra and Virasoro algebra are of great implications in many fields of mathematics and physics.In 1994,Henkel introduced the Schr?dinger-Virasoro Lie algebra[1].Then many generations and extensions of the Schr?dinger-Virasoro Lie algebra appear and they are studied extensively.The twisted deformative Schr?dinger-Virasoro Lie algebra Lλ,μover the complex field was introduced in[2]as follows:for complex numbersλ,μ,the vector space Lλ,μhas a basis{Ln,Mn,Yn|n∈Z}with the following Lie brackets:

        and others are zero.2-cocycles of all the Lie algebras Lλ,μwere determined in[3].According to Theorem 2.1 in[3],we have the one-dimensional central extension of L,forμ?Z,λ∈C.For simpliciλμty,denote the Lie algebra by S.That is,the Lie algebra S has a basis{ Ln,Mn,Yn,C1n∈Z}equipped with the Lie brackets:

        and others are zero,where m,n∈Z andμ?1Z. 3

        Throught the paper,denote the set of integers,the complex field and the set of nonzero complex numbers by Z,C and C*,respectively.All the vector spaces are assumed over the complex field.

        1 The derivations of S

        Definition 1.1[4]Let g be a Lie algebra,V a g-module.A linear map D:g→V is called a derivation,if for any x,y∈g,we have D[ x,y]=x.D( y)-y.D(x).If there exists some v∈V such that D:x?xv.,then D is called an inner derivation.

        Let g be a Lie algebra,V a module of g.Denote by Der( g,V)the vector space of all derivations,Inn( g,V)the vector space of all inner derivations[4].Set

        Denote by Der(g)the derivation algebra of g,Inn( g)the vector space of all inner derivations of g.

        Definition 1.2[4]Let G be a commutative group,a G-graded Lie algebra.A g module V is called G-graded,if

        In this section,we will determine the derivation algebra of S.

        It is easy to see that S is finitely generated.Define a Z-grading on S by

        By Proposition 1.1 in[4],we have the following lemma.

        Theorem 1.4

        and others are zero.

        Theorem 1.5 H1(S,S).That is,the derivation algebra of S is

        2 Proof of Theorem 1.4

        Proof For any m∈Z,D∈(Der S)m,by Lemma 1.3,we can assume

        where a1(n),a2(n),a3(n),x11,b1(n),b2(n),b3(n),x12,c1(n),c2(n),c3(n),x13,y∈C.

        By D[Li,Mj]=[D(Li),Mj]+[Li,D(Mj)],we can get

        From D[Li,Yj]=[D(Li),Yj]+[Li,D(Yj)],we can obtain

        By D[Yi,Yj]=[D(Yi),Yj]+[Yi,D(Yj)],we have

        Case 1 m=0.Letting i=0 in(1)~(13),we can obtain

        for all j∈Z.

        Let j=-i in(1)and use(17),and then we haveLet j=1,i=2 and j=3,i=2 in(1)respectively.Then we get a1(3)=a1(1)+a1(2)and a1(5)=a1(3)+a1(2).So a1(2)=2a1(1).Leting j=0 in(1)and using induction on i,we have

        Letting j=-i in(4)and(17),we have y=0.Letting j=0 in(30),we get

        Subcase 1.1 If there exists some n0∈Z such that 2μ-n0λ=0.Sinceμ≠0,we have n0≠0.Let j=0 in(6),and then we have(2μ-λi)[b2(i)-a1(i)-b2(0)]=0.Hence

        Letting i=j=n0in(6),we get b2(2n0)=a1(n0)+b2(0).According to(19),we can obtain b2(n0)= n0a1(1)+b2(0).So b2(i)=a1(i)+b2(0)=ia1(1)+b2(0)for all i∈Z.By(18),we have

        Letting j=-i≠0 in(14)and using(20),

        Subcase 1.2 2μ-nλ≠0 for all n∈Z.Letting j=0 in(6),we have b2(i)=ia1(1)+b2(0)for all i∈Z.By(18),we have

        Letting j=-i≠0 in(14)and using(21),we can obtainTherefore,

        Therefore,by Subcase 1.1 and Subcase1.2,we always have Hence

        Thus we obtain

        So Der S()0=Inn S()0⊕CD-1⊕CD-2⊕CD-3.

        Case 2 m≠0.Let i=0 in(1)~(16).Then we have

        ①λ≠0,-1,-2.Let j=0 in(31).Then we get a2(0)=0.Let j=-i in(31).Then we have

        Let j=1,i=-2 in(31).and then we obtain a22()=2a21().Let i=1 in(31)and use induction on j>1,and then we can get that a2j()=ja21()for all j∈Z.Hence,we have D(Mn)=D(C1)=0 and

        ②λ=0.By(32)and(24),we have

        Then(31)becomes

        Let i=1,and then we have(j-1)a2(1+j)=-a2(1)+ja2j().Hence we have

        Let i=-j in(34),and then we get

        Let j=-2 in(35),ang then we obtain a20()=2a21()-a2(0).So

        Thus we have D(Mn)=D(C1)=0 and

        Set a1=a2(1)-a2(0),a2=a2(0).Then we can check.So

        ③λ=-1.By(31)~(33),we have

        Let i=1 in(36).Then we have(j-1)a2(1+j)=-j+1()a2(1)+j+1()a2j().So we can deduce

        Hence D(Mn)=D(C1)=0 and

        ④λ=-2.By(31)~(33),we have

        Let i=1 in(37),and then we have

        Use induction on j>1,and then we can deduce

        Let j=0 in(38),and then we get a2(0)=0.Let j=-i in(38),and then we get a2(-i)=-a2(i)for all i∈Z.Then we canall j∈Z.Hence

        [1]HENKEL M.Schr?dinger invariance and strongly anisotropic critical systems[J].Journal of Statistical Physics,1994,75(5/6):1 023-1 061.

        [2]ROGER C,UNTERBERGER J.The Schr?dinger-Virasoro Lie group and algebra:representation theory and cohomological study[J].Ann Henri Poincare,2006,7(7-8):1 477-1 529.

        [3]LI J.2-cocycles of twisted deformative Schr?dinger-Virasoro algebras[J].Comm Algebra,2012,40(6):1 933-1 950.

        [4]FARNSTEINER R.Derivations and extensions of finitely generated graded Lie algebras[J].J Algebra,1988,118(1):34-35.

        [5]JIANG C,MENGD.The derivations,algebra of the associative algebra Cq[X,Y,X-1,Y-1][J].Comm Algebra,1998,6(2):1 723-1 736.

        [6]BENKART G,MOODY R.Derivations,central extensions and affine Lie algebras[J].Algebras Groups Geom,1986,3(4):456-492.

        一類扭形變Schr?dinger-Virasoro代數(shù)的研究

        唐 佳,高壽蘭,顧海霞
        (湖州師范學(xué)院理學(xué)院,浙江湖州313000)

        研究了一類含有兩個參數(shù)的扭形變Schr?dinger-Virasoro李代數(shù),計(jì)算了這類李代數(shù)的一維中心擴(kuò)張的所有導(dǎo)子,證明它有7個外導(dǎo)子.此結(jié)果為繼續(xù)研究這個李代數(shù)的表示理論提供了依據(jù).

        Schr?dinger-Virasoro李代數(shù);中心擴(kuò)張;導(dǎo)子

        O152.5

        O152.5 Document code:A Article ID:1009-1734(2016)04-0007-07

        [責(zé)任編輯 高俊娥]

        Received date:2016-03-05

        s:Supported by National Nature Science Foundation(11201141,11371134)and Natural Science Foundation of Zhejiang Province(LQ12A01005,LZ14A010001).

        Biography:Gao Shoulan,Doctor,Research Interests:Lie algebra.E-mail:gaoshoulan@hutc.zj.cn

        MSC 2000:17B40

        猜你喜歡
        導(dǎo)子理學(xué)院高壽
        素*-環(huán)上可乘混合斜Lie(Jordan)導(dǎo)子的可加性
        昆明理工大學(xué)理學(xué)院學(xué)科簡介
        昆明理工大學(xué)理學(xué)院簡介
        *-代數(shù)上ξ-*-Jordan-型非線性導(dǎo)子
        擴(kuò)張的圈Schr?dinger-Virasoro代數(shù)的導(dǎo)子
        養(yǎng)生篆刻
        西安航空學(xué)院專業(yè)介紹
        ———理學(xué)院
        古代長壽有哪些雅稱
        多病且可高壽一曾國藩的養(yǎng)生之道
        誰最“高壽”?
        国产精品久久久久久久妇| 青青草视全福视频在线| 91中文在线九色视频| 国产av一级黄一区二区三区| 成年性生交大片免费看| a级毛片100部免费看| 免费看一级a女人自慰免费| 加勒比东京热久久综合| 一本色道精品亚洲国产一区| 亚洲av无码成人精品国产| 国产中文字幕乱人伦在线观看| 国农村精品国产自线拍| 91在线无码精品秘 入口九色十| 青青草视频在线播放观看| 亚洲中文字幕午夜精品| 狠狠色狠狠色综合| 久久99国产伦精品免费| 亚洲一区二区女优av| 曰日本一级二级三级人人| 国产激情无码视频在线播放性色| 久久综合九色综合欧美狠狠 | 久久久久久好爽爽久久| 99精品免费视频| 99国产精品欲av麻豆在线观看| 男女啪啪视频高清视频| 精品国产三级a∨在线| 国产熟妇搡bbbb搡bb七区| 久久AⅤ无码精品色午麻豆| 久久久精品国产av麻豆樱花| 国产av无码专区亚洲版综合| 国产真实夫妇视频| 亚洲中文字幕乱码免费| 久久精品国产亚洲av夜夜| 日本饥渴人妻欲求不满| 欧美极品jizzhd欧美| 国产一区二区三区韩国| 在线视频精品少白免费观看| 亚洲乱码一区二区三区在线观看| 五级黄高潮片90分钟视频| 久久精品成人免费观看97| 国产精品丝袜美女久久|