亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On the Study of Some Twisted Deformative Schr?dinger Virasoro Algebra

        2016-07-31 23:19:20TANGJiaGAOShoulanGUHaixia
        湖州師范學(xué)院學(xué)報 2016年4期
        關(guān)鍵詞:導(dǎo)子理學(xué)院高壽

        TANG Jia,GAO Shoulan,GU Haixia

        (School of Science,Huzhou University,Huzhou 313000,China)

        On the Study of Some Twisted Deformative Schr?dinger Virasoro Algebra

        TANG Jia,GAO Shoulan,GU Haixia

        (School of Science,Huzhou University,Huzhou 313000,China)

        In this paper,we study a kind of twisted deformative Schr?dinger-Virasoro Lie algebra with two parameters.The calculation of all the derivations of certain 1-dimensional center extension of the Lie algebra proves that the Lie algebra has 7 outer derivations.The result will be helpful to further study the representation theory of this Lie algebra.

        Schr?dinger-Virasoro Lie algebra;central extension;derivation

        MSC 2000:17B40

        0 Introduction

        The infinite-dimensional Schr?dinger Lie algebra and Virasoro algebra are of great implications in many fields of mathematics and physics.In 1994,Henkel introduced the Schr?dinger-Virasoro Lie algebra[1].Then many generations and extensions of the Schr?dinger-Virasoro Lie algebra appear and they are studied extensively.The twisted deformative Schr?dinger-Virasoro Lie algebra Lλ,μover the complex field was introduced in[2]as follows:for complex numbersλ,μ,the vector space Lλ,μhas a basis{Ln,Mn,Yn|n∈Z}with the following Lie brackets:

        and others are zero.2-cocycles of all the Lie algebras Lλ,μwere determined in[3].According to Theorem 2.1 in[3],we have the one-dimensional central extension of L,forμ?Z,λ∈C.For simpliciλμty,denote the Lie algebra by S.That is,the Lie algebra S has a basis{ Ln,Mn,Yn,C1n∈Z}equipped with the Lie brackets:

        and others are zero,where m,n∈Z andμ?1Z. 3

        Throught the paper,denote the set of integers,the complex field and the set of nonzero complex numbers by Z,C and C*,respectively.All the vector spaces are assumed over the complex field.

        1 The derivations of S

        Definition 1.1[4]Let g be a Lie algebra,V a g-module.A linear map D:g→V is called a derivation,if for any x,y∈g,we have D[ x,y]=x.D( y)-y.D(x).If there exists some v∈V such that D:x?xv.,then D is called an inner derivation.

        Let g be a Lie algebra,V a module of g.Denote by Der( g,V)the vector space of all derivations,Inn( g,V)the vector space of all inner derivations[4].Set

        Denote by Der(g)the derivation algebra of g,Inn( g)the vector space of all inner derivations of g.

        Definition 1.2[4]Let G be a commutative group,a G-graded Lie algebra.A g module V is called G-graded,if

        In this section,we will determine the derivation algebra of S.

        It is easy to see that S is finitely generated.Define a Z-grading on S by

        By Proposition 1.1 in[4],we have the following lemma.

        Theorem 1.4

        and others are zero.

        Theorem 1.5 H1(S,S).That is,the derivation algebra of S is

        2 Proof of Theorem 1.4

        Proof For any m∈Z,D∈(Der S)m,by Lemma 1.3,we can assume

        where a1(n),a2(n),a3(n),x11,b1(n),b2(n),b3(n),x12,c1(n),c2(n),c3(n),x13,y∈C.

        By D[Li,Mj]=[D(Li),Mj]+[Li,D(Mj)],we can get

        From D[Li,Yj]=[D(Li),Yj]+[Li,D(Yj)],we can obtain

        By D[Yi,Yj]=[D(Yi),Yj]+[Yi,D(Yj)],we have

        Case 1 m=0.Letting i=0 in(1)~(13),we can obtain

        for all j∈Z.

        Let j=-i in(1)and use(17),and then we haveLet j=1,i=2 and j=3,i=2 in(1)respectively.Then we get a1(3)=a1(1)+a1(2)and a1(5)=a1(3)+a1(2).So a1(2)=2a1(1).Leting j=0 in(1)and using induction on i,we have

        Letting j=-i in(4)and(17),we have y=0.Letting j=0 in(30),we get

        Subcase 1.1 If there exists some n0∈Z such that 2μ-n0λ=0.Sinceμ≠0,we have n0≠0.Let j=0 in(6),and then we have(2μ-λi)[b2(i)-a1(i)-b2(0)]=0.Hence

        Letting i=j=n0in(6),we get b2(2n0)=a1(n0)+b2(0).According to(19),we can obtain b2(n0)= n0a1(1)+b2(0).So b2(i)=a1(i)+b2(0)=ia1(1)+b2(0)for all i∈Z.By(18),we have

        Letting j=-i≠0 in(14)and using(20),

        Subcase 1.2 2μ-nλ≠0 for all n∈Z.Letting j=0 in(6),we have b2(i)=ia1(1)+b2(0)for all i∈Z.By(18),we have

        Letting j=-i≠0 in(14)and using(21),we can obtainTherefore,

        Therefore,by Subcase 1.1 and Subcase1.2,we always have Hence

        Thus we obtain

        So Der S()0=Inn S()0⊕CD-1⊕CD-2⊕CD-3.

        Case 2 m≠0.Let i=0 in(1)~(16).Then we have

        ①λ≠0,-1,-2.Let j=0 in(31).Then we get a2(0)=0.Let j=-i in(31).Then we have

        Let j=1,i=-2 in(31).and then we obtain a22()=2a21().Let i=1 in(31)and use induction on j>1,and then we can get that a2j()=ja21()for all j∈Z.Hence,we have D(Mn)=D(C1)=0 and

        ②λ=0.By(32)and(24),we have

        Then(31)becomes

        Let i=1,and then we have(j-1)a2(1+j)=-a2(1)+ja2j().Hence we have

        Let i=-j in(34),and then we get

        Let j=-2 in(35),ang then we obtain a20()=2a21()-a2(0).So

        Thus we have D(Mn)=D(C1)=0 and

        Set a1=a2(1)-a2(0),a2=a2(0).Then we can check.So

        ③λ=-1.By(31)~(33),we have

        Let i=1 in(36).Then we have(j-1)a2(1+j)=-j+1()a2(1)+j+1()a2j().So we can deduce

        Hence D(Mn)=D(C1)=0 and

        ④λ=-2.By(31)~(33),we have

        Let i=1 in(37),and then we have

        Use induction on j>1,and then we can deduce

        Let j=0 in(38),and then we get a2(0)=0.Let j=-i in(38),and then we get a2(-i)=-a2(i)for all i∈Z.Then we canall j∈Z.Hence

        [1]HENKEL M.Schr?dinger invariance and strongly anisotropic critical systems[J].Journal of Statistical Physics,1994,75(5/6):1 023-1 061.

        [2]ROGER C,UNTERBERGER J.The Schr?dinger-Virasoro Lie group and algebra:representation theory and cohomological study[J].Ann Henri Poincare,2006,7(7-8):1 477-1 529.

        [3]LI J.2-cocycles of twisted deformative Schr?dinger-Virasoro algebras[J].Comm Algebra,2012,40(6):1 933-1 950.

        [4]FARNSTEINER R.Derivations and extensions of finitely generated graded Lie algebras[J].J Algebra,1988,118(1):34-35.

        [5]JIANG C,MENGD.The derivations,algebra of the associative algebra Cq[X,Y,X-1,Y-1][J].Comm Algebra,1998,6(2):1 723-1 736.

        [6]BENKART G,MOODY R.Derivations,central extensions and affine Lie algebras[J].Algebras Groups Geom,1986,3(4):456-492.

        一類扭形變Schr?dinger-Virasoro代數(shù)的研究

        唐 佳,高壽蘭,顧海霞
        (湖州師范學(xué)院理學(xué)院,浙江湖州313000)

        研究了一類含有兩個參數(shù)的扭形變Schr?dinger-Virasoro李代數(shù),計(jì)算了這類李代數(shù)的一維中心擴(kuò)張的所有導(dǎo)子,證明它有7個外導(dǎo)子.此結(jié)果為繼續(xù)研究這個李代數(shù)的表示理論提供了依據(jù).

        Schr?dinger-Virasoro李代數(shù);中心擴(kuò)張;導(dǎo)子

        O152.5

        O152.5 Document code:A Article ID:1009-1734(2016)04-0007-07

        [責(zé)任編輯 高俊娥]

        Received date:2016-03-05

        s:Supported by National Nature Science Foundation(11201141,11371134)and Natural Science Foundation of Zhejiang Province(LQ12A01005,LZ14A010001).

        Biography:Gao Shoulan,Doctor,Research Interests:Lie algebra.E-mail:gaoshoulan@hutc.zj.cn

        MSC 2000:17B40

        猜你喜歡
        導(dǎo)子理學(xué)院高壽
        素*-環(huán)上可乘混合斜Lie(Jordan)導(dǎo)子的可加性
        昆明理工大學(xué)理學(xué)院學(xué)科簡介
        昆明理工大學(xué)理學(xué)院簡介
        *-代數(shù)上ξ-*-Jordan-型非線性導(dǎo)子
        擴(kuò)張的圈Schr?dinger-Virasoro代數(shù)的導(dǎo)子
        養(yǎng)生篆刻
        西安航空學(xué)院專業(yè)介紹
        ———理學(xué)院
        古代長壽有哪些雅稱
        多病且可高壽一曾國藩的養(yǎng)生之道
        誰最“高壽”?
        国产成人综合久久大片| 亚洲啪啪AⅤ一区二区三区| 国产美女69视频免费观看| 国产午夜精品久久久久99| 亚洲xx视频| 中文字幕一区二区人妻痴汉电车| 久久久久久国产福利网站| 国产高清一区在线观看| 三个黑人插一个女的视频| 青青草手机免费播放视频| 人妻熟女妇av北条麻记三级| 一区二区三区人妻在线| 91精品国产高清久久福利| 好看的日韩精品视频在线| 免费观看91色国产熟女| 国产精品无码素人福利| 精品无码av一区二区三区| 国产成人精品综合在线观看| 亚洲精品欧美二区三区中文字幕| 亚洲精品永久在线观看| 在线亚洲+欧美+日本专区| 精品一区二区中文字幕| 亚洲天堂一区二区三区| 亚洲av综合色区一区二区| 亚洲av无码专区国产乱码4se| 欧美激情在线播放| 消息称老熟妇乱视频一区二区| 国产又黄又大又粗的视频| 亚洲男女免费视频| 人妻少妇看A偷人无码电影| 偷拍美女一区二区三区视频| 久久麻传媒亚洲av国产| 国产大片内射1区2区| 国产尤物av尤物在线观看| 四虎影库久免费视频| 亚洲国产成人精品91久久久| 国产精品很黄很色很爽的网站| 国产自拍一区在线视频| 中文字幕亚洲乱码熟女1区| 俺去啦最新地址| 97人人模人人爽人人喊电影|