亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        酞酸酯在土壤中的環(huán)境行為與健康風(fēng)險研究進展*

        2016-07-25 11:43:40杉呂圣紅汪坤陳剛才張勇張晟滕重慶市環(huán)境科學(xué)研究院重慶4047中國科學(xué)院南京土壤研究所中國科學(xué)院土壤環(huán)境與污染修復(fù)重點實驗室南京0008

        楊 杉呂圣紅汪 軍,**劉 坤陳剛才張 勇張 晟滕 應(yīng)(. 重慶市環(huán)境科學(xué)研究院 重慶 4047;. 中國科學(xué)院南京土壤研究所/中國科學(xué)院土壤環(huán)境與污染修復(fù)重點實驗室 南京 0008)

        ?

        酞酸酯在土壤中的環(huán)境行為與健康風(fēng)險研究進展*

        楊 杉1呂圣紅1汪 軍1,2**劉 坤1陳剛才1張 勇1張 晟1滕 應(yīng)2
        (1. 重慶市環(huán)境科學(xué)研究院 重慶 401147;2. 中國科學(xué)院南京土壤研究所/中國科學(xué)院土壤環(huán)境與污染修復(fù)重點實驗室 南京 210008)

        摘 要酞酸酯(PAEs)又稱鄰苯二甲酸酯, 是環(huán)境激素類有機化合物, 作為增塑劑在塑料、樹脂和橡膠制品中的添加量一般為20%~60%。土壤中PAEs的主要來源有農(nóng)用化學(xué)品、污水灌溉和大氣沉降。PAEs在土壤中有較強的富集作用, 并能通過一系列的環(huán)境地球化學(xué)過程進入不同的環(huán)境介質(zhì), 引起環(huán)境污染和人類健康風(fēng)險。本文結(jié)合國內(nèi)外土壤PAEs的相關(guān)研究成果, 綜述了我國土壤PAEs的污染現(xiàn)狀, 分析了PAEs在土壤-大氣界面(揮發(fā)、沉降)、土壤-植物系統(tǒng)(植物吸收、植物修復(fù))、土壤-水界面下的環(huán)境行為(吸附-解吸)及土壤PAEs污染的環(huán)境健康風(fēng)險, 并指出國內(nèi)土壤PAEs研究中存在的不足。研究結(jié)果顯示, 我國土壤環(huán)境總體上已遭受不同程度的PAEs污染; 同時, 土壤PAEs通過不同界面之間的遷移轉(zhuǎn)化過程, 也面臨較高的生態(tài)環(huán)境健康風(fēng)險。提出今后土壤PAEs研究應(yīng)以區(qū)域土壤污染與環(huán)境行為為重點, 深入研究土壤PAEs的時空傳輸與演變規(guī)律、多介質(zhì)遷移轉(zhuǎn)化機制和風(fēng)險削減與修復(fù)措施, 為保障土壤生態(tài)環(huán)境與健康提供理論依據(jù)。

        關(guān)鍵詞酞酸酯 環(huán)境行為 健康風(fēng)險 土壤環(huán)境 遷移轉(zhuǎn)化

        酞酸酯(phthalic acid esters, PAEs), 又稱鄰苯二甲酸酯, 是一類環(huán)境激素有機化合物[1], 能提高產(chǎn)品的可塑性和柔韌性[1-2], 廣泛用于各類塑料制品、包裝材料、醫(yī)療用品及化妝品, 占全國增塑劑年消費量的90%[2-3], 其在部分產(chǎn)品中的添加量高達20%~60%[4-5]。塑料產(chǎn)品的生產(chǎn)、使用、丟棄和處置過程伴隨著PAEs的大量釋放, 從而導(dǎo)致大氣、水體和土壤環(huán)境污染[2,6]。自然條件下, PAEs具有較強的反應(yīng)活性, 較易被降解, 水溶性低, 脂溶性高[1,7-8],但由于土壤理化性質(zhì)的差異導(dǎo)致PAEs在土壤中呈現(xiàn)特殊的環(huán)境行為[2,9]。土壤獨特的結(jié)構(gòu)體系, 導(dǎo)致PAEs在其中大量富集, 并影響到土壤環(huán)境質(zhì)量和農(nóng)產(chǎn)品質(zhì)量, 威脅環(huán)境安全[10-11]。

        土壤圈處于大氣圈、水圈及生物圈的交接地帶,富集在土壤中的PAEs與各圈層間發(fā)生著強烈的生物地球化學(xué)過程, 這將對生態(tài)環(huán)境和人體健康產(chǎn)生強烈影響。一方面, 土壤中的PAEs通過揮發(fā)、淋溶、植物吸收等途徑進入大氣、水體、植物等自然介質(zhì)中[12-13], 對不同生態(tài)系統(tǒng)的結(jié)構(gòu)和功能穩(wěn)定性構(gòu)成潛在危害, 引發(fā)全球性環(huán)境污染和人類健康風(fēng)險[3]。另一方面, 土壤PAEs通過食物鏈延伸或生產(chǎn)生活中的直接接觸進入人體[7,14-15], 干擾人體正常內(nèi)分泌,擾亂生殖系統(tǒng)和生長發(fā)育功能[16-18]。此外, 長時間暴露于某些PAEs化合物將會影響機體免疫功能, 產(chǎn)生“致突、致畸和致癌效應(yīng)”[19]。因此, 開展區(qū)域土壤PAEs污染調(diào)查、環(huán)境行為與健康風(fēng)險研究, 不僅有利于制定PAEs污染土壤的修復(fù)治理措施, 而且對保障生態(tài)環(huán)境與人類健康具有重要意義。

        目前, 國內(nèi)外學(xué)者針對土壤PAEs的分析方法[20-21]、區(qū)域污染特征[11,22-23]、毒害效應(yīng)[16,24-25]、環(huán)境行為[1,18]、風(fēng)險評價[4,11,26]、污染土壤修復(fù)[27-28]等方面已開展大量研究。本文在這些研究成果的基礎(chǔ)上綜述了我國土壤PAEs的污染現(xiàn)狀, 歸納總結(jié)了土壤PAEs在土壤-大氣界面、土壤-植物系統(tǒng)、土壤-水界面下的主要環(huán)境行為和健康風(fēng)險, 旨在明確我國土壤PAEs的污染特征、遷移轉(zhuǎn)化過程及風(fēng)險程度, 加深對土壤PAEs遷移轉(zhuǎn)化過程的認識, 為更加客觀地評價PAEs的生態(tài)環(huán)境風(fēng)險, 制定污染治理修復(fù)和風(fēng)險削減措施提供理論依據(jù)。

        1 我國土壤PAEs污染現(xiàn)狀

        1.1 土壤中PAEs的來源

        土壤PAEs的主要來源有農(nóng)用化學(xué)品、污水灌溉和大氣沉降。農(nóng)用薄膜[14,29]、肥料和農(nóng)藥[30-32]、污泥堆肥[31,33]等農(nóng)業(yè)生產(chǎn)資料是我國農(nóng)田土壤PAEs的重要來源。PAEs在農(nóng)膜中的穩(wěn)定性較差, 易從本體滲出[2,34], 農(nóng)膜的材質(zhì)、顏色、厚度、使用強度、覆蓋模式等與土壤PAEs的累積有較強的相關(guān)性[11,14,30]。研究表明, 我國肥料中PAEs平均含量為0.25 mg·kg-1[35],施用后土壤中PAEs的污染程度將提高1~2倍[36], 不同方式污泥堆肥的使用均能造成土壤中PAEs濃度明顯提高[9,31,37]。長期應(yīng)用污水灌溉, 使得污水中的PAEs與土壤有機質(zhì)相結(jié)合, 導(dǎo)致大量的PAEs滯留富集于土壤, 加劇了土壤PAEs污染[36]。PAEs附著于大氣顆粒物質(zhì)后通過沉降作用進入土壤, 這也是導(dǎo)致我國城郊和工業(yè)區(qū)土壤PAEs污染的重要原因之一[31,38-39]。由此可見, 土壤中PAEs的來源具有一定的復(fù)雜性和廣泛性, 區(qū)分土壤中PAEs的來源以及各種來源的貢獻率, 是研究土壤PAEs污染與控制措施的重要內(nèi)容。

        1.2 土壤PAEs污染特征

        我國土壤環(huán)境總體上已遭受不同程度的PAEs污染, 總濃度達幾十毫克每千克[11,23,40]。土壤PAEs污染的時空變異性大, 地域分異明顯, 并與土地利用方式、耕作模式、污染源遠近等密切相關(guān)[41-42]??v向上, 土壤PAEs多分布在0~20 cm土壤深度, 濃度隨深度的增加而遞減[36,43]; 橫向上, 經(jīng)濟發(fā)達、人口密度大的城市(如廣東、北京、上海)[11,15]、工業(yè)區(qū)和污水灌溉區(qū)[7,33,44]土壤PAEs濃度相對較高; 受農(nóng)膜使用的影響, 北方地區(qū)農(nóng)田土壤PAEs含量也較高[15,23]。受氣候條件的影響, 土壤PAEs濃度呈現(xiàn)冬季含量高、夏季含量低的規(guī)律[45]。

        與世界其他地區(qū)相比, 我國土壤PAEs的污染程度是西方發(fā)達國家的幾倍到幾十倍[11,23]; 以農(nóng)田土壤為例, 高出荷蘭10~100倍[23]。此外, 根據(jù)美國土壤PAEs控制標(biāo)準, 我國大部分地區(qū)土壤PAEs均已超標(biāo)[11,23], 部分地區(qū)甚至超標(biāo)37.6%~610.0%[29], 但絕大多數(shù)低于治理標(biāo)準[44]。這主要是由于我國農(nóng)膜使用不科學(xué)、耕作方式不合理, 導(dǎo)致PAEs在土壤中大量積累, 并制約了農(nóng)田生態(tài)系統(tǒng)的生產(chǎn)力[42]。

        1.3 土壤PAEs的組分特征

        目前, 商業(yè)化使用的PAEs約有14種[1,42], 但研究多集中在美國環(huán)境保護署(USEPA)、歐盟(EU)和中國等列為優(yōu)先控制類污染物的鄰苯二甲酸二甲酯(DMP)、鄰苯二甲酸二乙酯(DEP)、鄰苯二甲酸二正丁酯(DnBP)、鄰苯二甲酸丁基芐基酯(BBP)、鄰苯二甲酸二(2-乙基)己酯(DEHP)和鄰苯二甲酸二正辛酯(DnOP)等6種化合物[21,23,42,46]。土壤PAEs化合物的檢出性具有一定的規(guī)律, 通常以高分子DEHP和DnBP的檢出率和濃度最高[11,14,22-23,30,47](表1), 這是因為二者是我國塑料制品生產(chǎn)中的主要增塑物質(zhì)[19,23,41], 占土壤PAEs總量的65.3%~75.4%[11,23]。土壤PAEs組分的空間分布規(guī)律與ΣPAEs的地域分異性表現(xiàn)一致[8,15],與南方地區(qū)相比, 北方地區(qū)農(nóng)業(yè)土壤中DEHP和DnBP含量為南方地區(qū)土壤的3~4倍, 這可能與北方地區(qū)溫度低, 地表覆膜時間長, 土壤殘膜難降解有較大關(guān)系[23]。

        從全球范圍來看, 土壤PAEs組分的污染特征大致相同, DEHP和DnBP是最主要的PAEs污染物[6,22,55],其他PAEs化合物含量相對較低[31]。研究表明, 我國部分農(nóng)田土壤中DEHP的含量高達29.37 mg·kg-1[38],遠超過荷蘭(0.031~0.041 mg·kg-1)[55]、丹麥(0.012~1.900 mg·kg-1)[31]、捷克(0.030~0.730 mg·kg-1)[36]等國家。這可能與我國長期大量使用低標(biāo)準的農(nóng)用薄膜,導(dǎo)致大量農(nóng)膜破碎殘留于土壤密切相關(guān)[14,29]。

        2 PAEs的土壤環(huán)境行為

        土壤是PAEs累積、遷移和轉(zhuǎn)化的重要媒介, 其在土壤中的環(huán)境行為是指在土壤及其他環(huán)境介質(zhì)間的動態(tài)平衡過程, 包括揮發(fā)[50]、淋洗[2]、吸附[56]、生物降解[46,50]、非生物降解(光解和氧化作用)[1,31]和植物吸收[18,24]等, 經(jīng)由這些過程, PAEs滯留于土壤/植物體內(nèi)[14,18,57], 或轉(zhuǎn)移進入大氣/水體中(圖1)[13]。主導(dǎo)PAEs在土壤中的環(huán)境行為的因素眾多, 交互作用復(fù)雜, 不同生境下土壤類型[33]、土壤理化性質(zhì)[11,30,50,58]與環(huán)境界面條件[59]的差異影響較大。研究表明, 土壤有機質(zhì)對PAEs有較強的吸附作用, 有機質(zhì)含量越多, 對PAEs的吸附作用越大[38,41]; 土壤有機質(zhì)含量不同, 勢必會影響PAEs在土壤中的殘留和轉(zhuǎn)化過程[30,41]; 土壤結(jié)構(gòu)、水分含量的改變也將對PAEs在土壤中的遷移轉(zhuǎn)化產(chǎn)生一定的影響[31,37]。

        2.1 PAEs的土壤-大氣界面過程

        PAEs在土-氣界面的交換過程是其土壤環(huán)境行為的關(guān)鍵環(huán)節(jié), 會影響污染物在不同區(qū)域尺度上的傳輸、分布和歸趨[12,60-61], 并可能改變PAEs的暴露途徑[12,62]。主要的交換途徑包括空氣向土壤界面的干/濕沉降[11,13,47,60], 土壤向空氣界面的揮發(fā)[12,22,62], 但揮發(fā)速率緩慢, 以空氣相向土壤相的沉降為主[59]。

        PAEs容易被大氣中的氣溶膠、顆粒物吸附, 隨干/濕沉降到達土壤表層, 且與顆粒物沉積量顯著相關(guān)[13,60,63]。由于PAEs具備較強的疏水性和吸附性,大氣顆粒物附著的PAEs被土壤表層吸附后大量累積, 不易向底層土壤淋溶, 累積濃度隨土壤深度的增加而遞減[12,62]; 相比干沉降, 通過濕沉降到達土壤中的PAEs含量會高出1倍[13,60]。沉降至土壤中的PAEs或又隨水氣蒸發(fā)/擴散、土壤擾動等揮發(fā)方式重新返回大氣中[13], 在一定的排放條件下, 形成了土-氣界面PAEs各過程的動態(tài)平衡。

        PAEs在土-氣界面間的遷移和分配過程通常采用逸度(f)模型來描述, 從而估算其遷移通量及方向[55,59,61-62]。計算土壤逸度系數(shù)(fS)與空氣逸度系數(shù)(fA)的比值, 若fS/fA=1時, 為平衡狀態(tài), 不發(fā)生遷移行為; 若fS/fA≠1, 則為非平衡狀態(tài), PAEs則從f大的環(huán)境介質(zhì)向f較小的環(huán)境介質(zhì)遷移[12,61-62], 因而土壤表現(xiàn)出“匯”和“源”的雙重特性[42,47]。一般來說, 蒸汽壓(PV)高、辛醇-水分配系數(shù)(Kow)小、濃度(Cw)大的PAEs(DMP)較易從土壤向空氣遷移; 而PV低、Kow大、Cw小的PAEs(DEHP)較易從空氣向土壤遷移[12,62]。局地污染水平[12,44]、土壤理化性質(zhì)[59,61]、環(huán)境條件(風(fēng)速、氣溫、植被覆蓋)[13,60-61]、農(nóng)耕活動[60]、降解[12]等均能打破PAEs在土壤-空氣間的動態(tài)平衡,導(dǎo)致PAEs在空間上的再分配。因此, 要明確PAEs在土-氣界面的環(huán)境行為, 應(yīng)加強PAEs在區(qū)域土壤、大氣中的分布狀況和影響研究。

        2.2 PAEs土壤-植物系統(tǒng)轉(zhuǎn)化

        植物吸收是PAEs在食物鏈中傳遞與富集的源頭[17,39,42]。一般來說, 分子量小、Kow(logK≥5)大的PAEs(DEP/DEHP)更易被植物吸收[36,39], 吸收量與土壤污染程度成正比[24,57,64]。植物吸收土壤PAEs的途徑包括: 1)植物根系直接吸收土壤水溶液中的PAEs, 再沿木質(zhì)部在蒸騰流的驅(qū)動下, 向上轉(zhuǎn)運至地上莖葉部分, 并累積在植物體內(nèi)的有機組分中[25,57],代表植物類型有大豆(Glycine max)、玉米(Zea mays)等[1,18,24]。2)植物地上部分(葉、莖)吸收土壤表層空氣中的PAEs, 并在植物體內(nèi)的有機組分中累積, 代表植物類型有菜心(Brassica campestris)等[64]。哪種傳輸方式占據(jù)優(yōu)勢, 需根據(jù)作物品種、環(huán)境條件和PAEs自身性質(zhì)決定。在同樣的土壤環(huán)境下, 同一植物對各PAEs化合物的吸收程度不同。logKow>3.5 的PAEs化合物(DEHP)降解速率小且有很強的親脂性, 能強烈吸附在植物根表面, 僅有少量轉(zhuǎn)移到葉片中[24,65]; 而1<logKow<3.5的PAEs化合物(DEP)被根系吸收后, 由根系向植物體內(nèi)的傳輸過程更為明顯[24]。但是, 植物對PAEs的吸收速率會受植物品種[1,64]、性狀指標(biāo)(葉片形狀、根系類型等)[36,64]、種植方式[39,66]等因素的影響。一般來說, PAEs含量與葉片表面積呈正相關(guān)關(guān)系[64], 根系越發(fā)達, 對PAEs的吸收能力越強[18]。部分水溶性較低的PAEs化合物(DnBP/ DEHP)較難被植物降解或代謝, 累積在植物根系或莖葉部位[64], 干擾植物正常的生理代謝活動[1,65],降低蔬菜維生素C含量, 嚴重危害植物生長發(fā)育及品質(zhì)[39,67]。

        圖1 土壤中酞酸酯的來源及其土壤環(huán)境行為Fig. 1 Sources of phthalic acid esters (PAEs) in soils and their environmental fate

        植物修復(fù)是利用植物固有的生理過程或聯(lián)合土壤-植物-微生物復(fù)合體系原位地吸收、轉(zhuǎn)化、轉(zhuǎn)移污染物[25,28,66], 以達到降低污染的目的。研究表明,土壤PAEs的植物修復(fù)機制主要包括: 1)通過種植修復(fù)植物如紫花苜蓿(Medicago sativa)[28,39]吸收土壤中的PAEs, 而后在植物組織中累積非植物毒性的代謝物, 是一種植物直接吸收去除污染物的修復(fù)方式[18,39];但植物吸收作用有限, 其吸收量不到初始污染濃度的2%[20,25,28]。2)在適宜的范圍內(nèi), 植物釋放的根際分泌物或酶能增加微生物利用的有效碳源和能量,進而改變根際微生物的群落結(jié)構(gòu)和數(shù)量, 增強微生物活性[18]; 或誘導(dǎo)能與PAEs一同代謝的化合物分泌出過氧化物酶、漆酶等PAEs降解酶[65], 利用分泌物或降解酶修復(fù)污染土壤, 是植物修復(fù)的主要途徑[25]。但隨著分泌物含量的增多, 可能轉(zhuǎn)而成為PAEs微生物降解的競爭性碳源, 在一定程度上抑制對PAEs的消減作用, 尤其是對DEHP的消減作用[18,65]。3)接種菌根真菌(AM), 其菌絲在加速PAEs降解、削減植物PAEs殘留量中能起到重要作用[18,27,57]; 與不接種的土壤相比, 接種AM后, 土壤中PAEs含量減少21.7%~66.4%[27,57]。此外, 污染物的生物可利用性[25,65]、修復(fù)植物的組合選擇[66]也會影響到植物修復(fù)的效果。因此, 應(yīng)加強植物根系分泌與土壤PAEs的交互作用、植物-微生物聯(lián)合修復(fù)PAEs、植物對PAEs的吸收與轉(zhuǎn)化機理方面的研究, 為明確PAEs在土壤-植物系統(tǒng)的傳輸和潛在風(fēng)險提供科學(xué)支撐。

        2.3 PAEs的土壤-水界面過程

        土壤中的PAEs能通過淋失、徑流、浸潤等途徑進入水體, 后經(jīng)沉淀、吸附和交換等作用在沉積物中累積[68-69], 從而影響PAEs在土壤中的分布和遷移[23,32]。土壤中的PAEs進入水體后, 從土壤顆粒上解吸到水中的釋放過程, 隨淹水時長的增加, 釋放量加大[70]。整個過程分為快釋放過程和慢釋放過程兩步, 其中慢釋放占整個過程釋放量的99.12%[70]。隨釋放過程的持續(xù), 水體中PAEs濃度達到最大值后,多余的PAEs又會被沉積物吸附[69]。最終, 土壤-水間的PAEs含量達到平衡, 實現(xiàn)PAEs在土壤-水-沉積物之間的遷移交換。水體離子強度、有機質(zhì)含量等水體條件[70]、溫度、光照等環(huán)境條件[71]和微生物活性[70]的改變會打破PAEs在土壤與水體之間的濃度平衡。

        部分Kow大、溶解度小、側(cè)鏈較長的PAEs化合物, 如DEHP更傾向于從水相向有機質(zhì)含量豐富的沉積物中轉(zhuǎn)移[1,26,69], 濃度為0.1~331.7 mg·kg-1[32,69,72-73],故沉積物也被稱之為PAEs的最終儲庫[33,55,72]。與土壤PAEs的分布規(guī)律類似, 靠近人口密度大的工業(yè)區(qū)、商業(yè)區(qū)周邊河湖沉積物的PAEs濃度高于農(nóng)田土壤區(qū)[32], DEHP是沉積物中污染程度最高的PAEs化合物, 占總量的49.26%~98.1%[32,69,73], 可在深層沉積物中富集[45]。不同PAEs化合物的吸附速率和吸附能力有差異, 當(dāng)DnBP在沉積物-水兩相間接近平衡時, DMP、DEP有由沉積物向水相遷移的趨勢, 而此時, DEHP則由水相向沉積物遷移。在水流和水生動/植物的擾動下, 沉積物也可能懸浮于水體中, 對土-水界面PAEs的遷移釋放產(chǎn)生一定影晌[47,74]。為此, 應(yīng)該深入研究水體環(huán)境條件對PAEs在沉積物中的轉(zhuǎn)化過程的影響和PAEs在沉積物表面的作用過程和轉(zhuǎn)化機制。

        3 土壤PAEs的環(huán)境健康風(fēng)險

        土壤PAEs的環(huán)境健康風(fēng)險是表征人類或其他受體暴露于環(huán)境危害導(dǎo)致的潛在不良效應(yīng)的可能性[14], 依據(jù)風(fēng)險受體的不同, 分為生態(tài)風(fēng)險和健康風(fēng)險[15,75]。針對土壤PAEs對生態(tài)系統(tǒng)(環(huán)境)的潛在危害, 通過生態(tài)環(huán)境風(fēng)險評價能定量預(yù)測土壤PAEs對生態(tài)環(huán)境結(jié)構(gòu)和功能產(chǎn)生風(fēng)險的可接受程度[76]。目前, 在我國基于水生生態(tài)系統(tǒng)的PAEs生態(tài)環(huán)境風(fēng)險評價較為常見[32,72,77], 而對于土壤系統(tǒng)的生態(tài)環(huán)境風(fēng)險鮮有報道。結(jié)果顯示, 部分地區(qū)水生生態(tài)系統(tǒng)的PAEs生態(tài)環(huán)境風(fēng)險高出國外相關(guān)標(biāo)準以及我國地表水環(huán)境質(zhì)量標(biāo)準(GHZB 1—1999)[32,77], 存在極大的負面生態(tài)環(huán)境效應(yīng)。沉積物或水體中的PAEs能通過施肥或灌溉進入土壤, 使土壤環(huán)境面臨較高的生態(tài)風(fēng)險。

        土壤PAEs的健康風(fēng)險是假設(shè)土壤PAEs在呼吸、飲水、接觸、皮膚吸收、攝入食物等各種暴露途徑下[3,7,41], 對人體產(chǎn)生的危害效應(yīng), 根據(jù)暴露劑量風(fēng)險臨界值來判斷健康風(fēng)險的等級[11,39,67]。土壤PAEs的健康風(fēng)險包括致癌風(fēng)險和非致癌風(fēng)險, 又以致癌風(fēng)險為主[11,67]。有研究表明, 我國大部分農(nóng)田土壤中PAEs化合物的致癌風(fēng)險和非致癌風(fēng)險均小于健康風(fēng)險規(guī)定的可接受上限, 處于相對安全狀態(tài)[3,41]。但南京、新疆、廣東等地區(qū)部分農(nóng)田土壤DEHP存在較高的致癌風(fēng)險, 風(fēng)險值為7.37×10-6~3.94×10-5>1×10-6[11,67]。這與這些地區(qū)農(nóng)業(yè)發(fā)展高度集約化, 普遍使用農(nóng)膜有關(guān)[8,67], DEHP已成為潛在危害最大的PAEs化合物[15]。其次, 飲食攝入被認為是中國成年人群最主要的暴露途徑, 占總攝入量的90%以上[15,17,47]。不同暴露途徑的健康風(fēng)險因PAEs化合物理化性質(zhì)的差異而不同, 小分子量PAEs的致癌風(fēng)險大小依次為皮膚接觸>呼吸攝入>口腔攝入, 高分子量PAEs則表現(xiàn)為皮膚接觸>口腔攝入>呼吸攝入[67]。綜上所述, 農(nóng)用品的合理使用以及暴露途徑的防護是控制土壤PAEs環(huán)境健康風(fēng)險的有效途徑。

        4 研究展望

        PAEs已成為全球性的土壤環(huán)境有機污染物, 國內(nèi)外研究者對土壤PAEs的污染行為已開展大量研究, 但仍缺少對PAEs在土壤環(huán)境中遷移轉(zhuǎn)化過程和機理的深入探討, 從維護環(huán)境安全與人類健康的角度出發(fā), 今后亟需加強以下幾個方面的研究:

        1)加強土壤PAEs污染的時空尺度演變特征研究。了解不同區(qū)域尺度土壤PAEs的污染特征, 是正確評估區(qū)域風(fēng)險的基礎(chǔ)?,F(xiàn)有土壤PAEs污染調(diào)查多集中在東部地區(qū)、城市或城郊土壤[38,41,50], 而中、西部地區(qū)、農(nóng)村地區(qū)的報道相對較少; 土地利用方面,多集中于設(shè)施菜地[58,67], 對于種植糧食作物的農(nóng)田研究較少; 化合物方面, 局限在一種或少數(shù)幾種PAEs化合物[33,64,66,68-78], 這些均不能代表區(qū)域土壤PAEs污染的整體狀況。

        2)加強土壤PAEs在多介質(zhì)間遷移轉(zhuǎn)化機理研究。研究PAEs在不同介質(zhì)間的環(huán)境行為, 能有效地追蹤PAEs的代謝過程。目前, 多介質(zhì)間的單一環(huán)境行為的研究還不足, 且大多停留在對現(xiàn)象的描述或機理過程的猜測, 缺乏對機理的深入探討; PAEs與其他有機污染物在各環(huán)境介質(zhì)中的轉(zhuǎn)化機理及聯(lián)合毒效尚不清楚。應(yīng)加強探討PAEs在土壤中的殘留動態(tài)及在整個生態(tài)系統(tǒng)中的運轉(zhuǎn)機制和限制因子, 定量估算環(huán)境各介質(zhì)中PAEs的分配行為及貢獻率。

        3)加強土壤PAEs污染與人體健康風(fēng)險研究。風(fēng)險評價是進行環(huán)境風(fēng)險管理及保障環(huán)境安全和人體健康的重要手段。當(dāng)前, 土壤PAEs污染的風(fēng)險評價對象還多停留于生態(tài)環(huán)境[32,78]或人體健康[11,23], 很少考慮土壤PAEs的環(huán)境健康風(fēng)險綜合效應(yīng)。其次,現(xiàn)有評價過程中多局限對現(xiàn)存單一污染源的識別,而在多種風(fēng)險源或歷史污染源下, 如何計算復(fù)合污染造成的風(fēng)險尚不清楚, 可能低估實際風(fēng)險。同時,我國尚未制定土壤PAEs污染評價和治理的相關(guān)標(biāo)準, 實際研究中多參照國外的相關(guān)標(biāo)準來鑒定污染程度[11,23], 可能會出現(xiàn)界定PAEs污染水平的偏差。

        4)加強土壤PAEs削減與修復(fù)技術(shù)研究。土壤削減和修復(fù)技術(shù)能有效地減少或消除污染物對環(huán)境或人體的危害, 是保護土壤環(huán)境的根本措施。相比單一的植物修復(fù)或微生物修復(fù)技術(shù), 微生物-植物聯(lián)合修復(fù)技術(shù)能有效地提高PAEs的修復(fù)效率[25,28], 但研究還比較少。

        參考文獻References

        [1] Stales C A, Peterson D R, Parkerton T F, et al. The environmental fate of phthalate esters: A literature review[J]. Chemosphere, 1997, 35(4): 667-749

        [2] He L Z, Gielen G, Bolan N S, et al. Contamination and remediation of phthalic acid esters in agricultural soils in China: A review[J]. Agronomy for Sustainable Development,2015, 35(2): 519-534

        [3] Guo Y, Wu Q, Kannan K. Phthalate metabolites in urine from China, and implications for human exposures[J]. Environment International, 2011, 37(5): 893-898

        [4] van Wezel A P, van Vlaardingen P, Posthumus R, et al. Environmental risk limits for two phthalates, with special emphasis on endocrine disruptive properties[J]. Ecotoxicology and Environmental Safety, 2000, 46(3): 305-321

        [5] Sathyanarayana S. Phthalates and children’s health[J]. Current Problems in Pediatric and Adolescent Health Care, 2008,38(2): 34-49

        [6] Wormuth M, Scheringer M, Vollenweider M, et al. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans?[J]. Risk Analysis, 2006, 26(3): 803-824

        [7] Schettler T. Human exposure to phthalates via consumer products[J]. International Journal of Andrology, 2006, 29(1):134-139

        [8] Mo C H, Cai Q Y, Tang S R, et al. Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China[J]. Archives of Environmental Contamination and Toxicology, 2009, 56(2):181-189

        [9] Cai Q Y, Mo C H, Wu Q T, et al. Quantitative determination of organic priority pollutants in the composts of sewage sludge with rice straw by gas chromatography coupled with mass spectrometry[J]. Journal of Chromatography A, 2007,1143(1/2): 207-214

        [10] Cai Q Y, Mo C H, Wu Q T, et al. The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: A review[J]. Science of the Total Environment, 2008,389(2/3): 209-224

        [11] Niu L L, Xu Y, Xu C, et al. Status of phthalate esters contamination in agricultural soils across China and associated health risks[J]. Environmental Pollution, 2014, 195:16-23

        [12] Cousins I T, Jones K C. Air-soil exchange of semi-volatile organic compounds (SOCs) in the UK[J]. Environmental Pollution, 1998, 102(1): 105-118

        [13] Zeng F, Lin Y J, Cui K Y, et al. Atmospheric deposition of phthalate esters in a subtropical city[J]. Atmospheric Environment, 2010, 44(6): 834-840

        [14] Wang J, Luo Y M, Teng Y, et al. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film[J]. Environmental Pollution, 2013, 180: 265-273

        [15] Chen L, Zhao Y, Li L X, et al. Exposure assessment of phthalates in non-occupational populations in China[J]. Science of the Total Environment, 2012, 427/428: 60-69

        [16] Kapanen A, Stephen J R, Brüggemann J, et al. Diethyl phthalate in compost: Ecotoxicological effects and response of the microbial community[J]. Chemosphere, 2007, 67(11):2201-2209

        [17] Jaro?ová A. Phthalic acid esters (PAEs) in the food chain[J]. Czech Journal of Food Sciences, 2006, 24(5): 223-231

        [18] Sun T R, Cang L, Wang Q Y, et al. Roles of abiotic losses,microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil[J]. Journal of Hazardous Materials,2010, 176(1/3): 919-925

        [19] Latini G. Monitoring phthalate exposure in humans[J]. Clinica Chimica Acta, 2005, 361(1/2): 20-29

        [20] Sablayrolles C, Montréjaud-Vignoles M, Benanou D, et al. Development and validation of methods for the trace determination of phthalates in sludge and vegetables[J]. Journal of Chromatography A, 2005, 1072(2): 233-242

        [21] Net S, Delmont A, Sempéré R, et al. Reliable quantification of phthalates in environmental matrices (air, water, sludge,sediment and soil): A review[J]. Science of the Total Environment, 2015, 515/516: 162-180

        [22] Li X H, Ma L L, Liu X F, et al. Phthalate ester pollution in urban soil of Beijing, People’s Republic of China[J]. Bulletin of Environmental Contamination and Toxicology, 2006, 77(2):252-259

        [23] Hu X Y, Wen B, Shan X Q. Survey of phthalate pollution in arable soils in China[J]. Journal of Environmental Monitoring,2003, 5(4): 649-653

        [24] 甘家安, 王西奎, 徐廣通, 等. 酞酸酯在植物中的吸收和積累研究[J]. 環(huán)境科學(xué), 1996, 17(5): 87-88 Gan J A, Wang X K, Xu G T, et al. Phthalate in the absorption and accumulation in plants[J]. Environmental Science, 1996,17(5): 87-88

        [25] Cai Q Y, Mo C H, Zeng Q Y, et al. Potential of Ipomoea aquatica cultivars in phytoremediation of soils contaminated with di-n-butyl phthalate[J]. Environmental and Experimental Botany, 2008, 62(3): 205-211

        [26] Sirivithayapakorn S, Thuyviang K. Dispersion and ecological risk assessment of di (2-ethylhexyl) phthalate (DEHP) in the surface waters of Thailand[J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84(5): 503-506

        [27] 王曙光, 林先貴, 尹睿. 接種叢枝菌根(AM)真菌對植物DBP污染的影響[J]. 應(yīng)用生態(tài)學(xué)報, 2003, 14(4): 589-592 Wang S G, Lin X G, Yin R. Effect of inoculation with AM fungi on DBP-pollution of plant[J]. Chinese Journal of Applied Ecology, 2003, 14(4): 589-592

        [28] Ma T T, Luo Y M, Christie P, et al. Removal of phthalic esters from contaminated soil using different cropping systems: A field study[J]. European Journal of Soil Biology, 2012, 50:76-82

        [29] 郭冬梅, 吳瑛. 南疆棉田土壤中鄰苯二甲酸酯(PAEs)的測定[J]. 干旱環(huán)境監(jiān)測, 2011, 25(2): 76-79 Guo D M, Wu Y. Detemination of phthalic acid esters of soil in south of Xinjiang cotton fields[J]. Arid Environmental Monitoring, 2011, 25(2): 76-79

        [30] 陳永山, 駱永明, 章海波, 等. 設(shè)施菜地土壤酞酸酯污染的初步研究[J]. 土壤學(xué)報, 2011, 48(3): 516-523 Chen Y S, Luo Y M, Zhang H B, et al. Preliminary study on PAEs pollution of greenhouse soils[J]. Acta Pedologica Sinica,2011, 48(3): 516-523

        [31] Vikels?e J, Thomsen M, Carlsen L. Phthalates and nonylphenols in profiles of differently dressed soils[J]. Science of the Total Environment, 2002, 296(1/3): 105-116

        [32] Wang J, Bo L J, Li L N, et al. Occurrence of phthalate esters in river sediments in areas with different land use patterns[J]. Science of the Total Environment, 2014, 500/501: 113-119

        [33] Magdouli S, Daghrir R, Brar S K, et al. Di 2-ethylhexylphtalate in the aquatic and terrestrial environment: A critical review[J]. Journal of Environmental Management, 2013, 127:36-49

        [34] Guo Y, Kannan K. Comparative assessment of human exposure to phthalate esters from house dust in China and the United States[J]. Environmental Science & Technology, 2011,45(8): 3788-3794

        [35] Mo C H, Cai Q Y, Li Y H, et al. Occurrence of priority organic pollutants in the fertilizers, China[J]. Journal of Hazardous Materials, 2008, 152(3): 1208-1213

        [36] Zorníková G, Jaro?ová A, H?ivna L. Distribution of phthalic acid esters in agricultural plants and soil[J]. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2011,59(3): 233-238

        [37] Yuan S Y, Lin Y Y, Chang B V. Biodegradation of phthalate esters in polluted soil by using organic amendment[J]. Journal of Environmental Science and Health Part B, 2011, 46(5):419-425

        [38] Zeng F, Cui K Y, Xie Z Y, et al. Phthalate esters (PAEs):Emerging organic contaminants in agricultural soils in peri-urban areas around Guangzhou, China[J]. Environmental Pollution, 2008, 156(2): 425-434

        [39] Ma T T, Christie P, Luo Y M, et al. Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site[J]. Environmental Geochemistry and Health, 2013, 35(4): 465-476

        [40] Chai C, Cheng H Z, Ge W, et al. Phthalic acid esters in soils from vegetable greenhouses in Shandong Peninsula, East China[J]. PLOS One, 2014, 9(4): e95701

        [41] Xia X H, Yang L Y, Bu Q W, et al. Levels, distribution, and health risk of phthalate esters in urban soils of Beijing,China[J]. Journal of Environmental Quality, 2011, 40(5):1643-1651

        [42] Kong S F, Ji Y Q, Liu L L, et al. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China[J]. Environmental Pollution, 2012,170: 161-168

        [43] Gao J, Zhou H F. Influence of land use types on levels and compositions of PAEs in soils from the area around Hongze Lake[J]. Advanced Materials Research, 2013, 610/613:2916-2924

        [44] 朱媛媛, 田靖, 景立新, 等. 不同城市功能區(qū)土壤中酞酸酯污染特征[J]. 環(huán)境科學(xué)與技術(shù), 2012, 35(5): 42-46 Zhu Y Y, Tian J, Jing L X, et al. Pollution features of phthalates in soils with different urban functions[J]. Environmental Science &Technology, 2012, 35(5): 42-46

        [45] Liu H, Liang H C, Liang Y, et al. Distribution of phthalate esters in alluvial sediment: A case study at Jianghan Plain,Central China[J]. Chemosphere, 2010, 78(4): 382-388

        [46] Xie H J, Shi Y J, Zhang J, et al. Degradation of phthalate esters (PAEs) in soil and the effects of PAEs on soil microcosm activity[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(8): 1108-1116

        [47] Net S, Sempéré R, Delmont A, et al. Occurrence, fate,behavior and ecotoxicological state of phthalates in different environmental matrices[J]. Environmental Science & Technology, 2015, 49(7): 4019-4035

        [48] Zhang Y, Wang P J, Wang L, et al. The influence of facility agriculture production on phthalate esters distribution in black soils of northeast China[J]. Science of the Total Environment,2015, 506/517: 118-125

        [49] Wang L J, Xu X, Lu X W. Phthalic acid esters (PAEs) in vegetable soil from the suburbs of Xianyang City, Northwest China[J]. Environmental Earth Sciences, 2015, 74(2):1487-1496

        [50] Cheng X M, Ma L L, Xu D D, et al. Mapping of phthalate esters in suburban surface and deep soils around a metropolis-Beijing, China[J]. Journal of Geochemical Exploration, 2015,155: 56-61

        [51] Zeng F, Cui K Y, Xie Z Y, et al. Distribution of phthalate esters in urban soils of subtropical city, Guangzhou, China[J]. Journal of Hazardous Materials, 2009, 164(2/3): 1171-1178

        [52] Yang H J, Xie W J, Liu Q, et al. Distribution of phthalate esters in topsoil: A case study in the Yellow River Delta,China[J]. Environmental Monitoring and Assessment, 2013,185(10): 8489-8500

        [53] Zhang Y, Liang Q, Gao R T, et al. Contamination of phthalate esters (PAEs) in typical wastewater-irrigated agricultural soils in Hebei, North China[J]. PLoS One, 2015, 10(9): e0137998

        [54] Liu H, Liang Y, Zhang D, et al. Impact of MSW landfill on the environmental contamination of phthalate esters[J]. Waste Management, 2010, 30(8/9): 1569-1576

        [55] Peijnenburg W J G M, Struijs J. Occurrence of phthalate esters in the environment of the Netherlands[J]. Ecotoxicology and Environmental Safety, 2006, 63(2): 204-215

        [56] Pignatello J J, Xing B S. Mechanisms of slow sorption of organic chemicals to natural particles[J]. Environmental Science & Technology, 1995, 30(1): 1-11

        [57] Chen R R, Yin R, Lin X G, et al. Effect of arbuscular mycorrhizal inoculation on plant growth and phthalic ester degradation in two contaminated soils[J]. Pedosphere, 2005,15(2): 263-269

        [58] 蔡全英, 莫測輝, 李云輝, 等. 廣州、深圳地區(qū)蔬菜生產(chǎn)基地土壤中鄰苯二甲酸酯(PAEs)研究[J]. 生態(tài)學(xué)報, 2005,25(2): 283-288 Cai Q Y, Mo C H, Li Y H, et al. The study of PAEs in soils from typical vegetable fields in areas of Guangzhou and Shenzhen, South China[J]. Acta Ecologica Sinica, 2005, 25(2):283-288

        [59] 朱媛媛, 田靖, 吳國平, 等. 酞酸酯在空氣和土壤兩相間遷移情況的初步研究[J]. 環(huán)境化學(xué), 2012, 31(10): 1535-1541 Zhu Y Y, Tian J, Wu G P, et al. Estimation of the air-soil exchange of phthalates[J]. Environmental Chemistry, 2012,31(10): 1535-1541

        [60] Cousins I T, Beck A J, Jones K C. A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air-soil interface[J]. Science of the Total Environment, 1999, 228(1): 5-24

        [61] Bozlaker A, Muezzinoglu A, Odabasi M. Atmospheric concentrations, dry deposition and air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey[J]. Journal of Hazardous Materials, 2008,153(3): 1093-1102

        [62] Wang D G, Yang M, Jia H L, et al. Seasonal variation of polycyclic aromatic hydrocarbons in soil and air of Dalian areas, China: An assessment of soil-air exchange[J]. Journal of Environmental Monitoring, 2008, 10(9): 1076-1083

        [63] Mandalakis M, Stephanou E G. Atmospheric concentration characteristics and gas-particle partitioning of PCBs in a rural area of eastern Germany[J]. Environmental Pollution, 2007,147(1): 211-221

        [64] 曾巧云, 莫測輝, 蔡全英, 等. 鄰苯二甲酸二丁酯在不同品種菜心-土壤系統(tǒng)的累積[J]. 中國環(huán)境科學(xué), 2006, 26(3):333-336 Zeng Q Y, Mo C H, Cai Q Y, et al. Accumulation of di-n-butyl phthalate in different genotypes of Brassica campestris-soil systems[J]. China Environmental Science, 2006, 26(3):333-336

        [65] 王愛麗. 酞酸酯在濕地植物根際環(huán)境中的消減行為[D]. 天津: 天津大學(xué), 2011 Wang A L. Dissipation behaviors of phthalic acid esters in the rhizosphere of wetland plants[D]. Tianjin: Tianjin University,2011

        [66] Wu Z Y, Zhang X L, Wu X L, et al. Uptake of di (2-ethylhexyl)phthalate (DEHP) by the plant Benincasa hispida and its use for lowering DEHP content of intercropped vegetables[J]. Journal of Agricultural and Food Chemistry, 2013, 61(22):5220-5225

        [67] Wang J, Chen G C, Christie P, et al. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses[J]. Science of the Total Environment, 2015, 523: 129-137

        [68] Liu Y, Chen Z L, Shen J M. Occurrence and removal characteristics of phthalate esters from typical water sources in northeast China[J]. Journal of Analytical Methods in Chemistry, 2013, 2013: 419349

        [69] Srivastava A, Sharma V P, Tripathi R, et al. Occurrence of phthalic acid esters in Gomti River sediment, India[J]. Environmental Monitoring and Assessment, 2010, 169(1/4):397-406

        [70] 楊志丹. 三峽庫區(qū)消落帶鄰苯二甲酸二丁酯遷移釋放的靜態(tài)模擬[D]. 重慶: 西南大學(xué), 2014 Yang Z D. The static simulation of dibutyl-phthalate migration and release in the fluctuating zone of Three Gorges Reservoir[D]. Chongqing: Southwest University, 2014

        [71] Huang P C, Tien C J, Sun Y M, et al. Occurrence of phthalates in sediment and biota: Relationship to aquatic factors and the biota-sediment accumulation factor[J]. Chemosphere, 2008,73(4): 539-544

        [72] Yuan S Y, Liu C, Liao C S, et al. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments[J]. Chemosphere, 2002, 49(10): 1295-1299

        [73] Sha Y J, Xia X H, Yang Z F, et al. Distribution of PAEs in the middle and lower reaches of the Yellow River, China[J]. Environmental Monitoring and Assessment, 2007, 124(1/3):277-287

        [74] Naito W, Gamo Y, Yoshida K. Screening-level risk assessment of di (2-ethylhexyl) phthalate for aquatic organisms using monitoring data in Japan[J]. Environmental Monitoring and Assessment, 2006, 115(1/3): 451-471

        [75] 陳輝, 劉勁松, 曹宇, 等. 生態(tài)風(fēng)險評價研究進展[J]. 生態(tài)學(xué)報, 2006, 26(5): 1558-1566 Chen H, Liu J S, Cao Y, et al. Progresses of ecological risk assessment[J]. Acta Ecologica Sinica, 2006, 26(5):1558-1566

        [76] De Lange H J, Sala S, Vighi M, et al. Ecological vulnerability in risk assessment-a review and perspectives[J]. Science of the Total Environment, 2010, 408(18): 3871-3879

        [77] Wang H, Wang C X, Wu W Z, et al. Persistent organic pollutants in water and surface sediments of Taihu Lake,China and risk assessment[J]. Chemosphere, 2003, 50(4):557-562

        [78] Jager T, den Hollander H A, van der Poel P, et al. Probabilistic environmental risk assessment for dibutylphthalate (DBP)[J]. Human and Ecological Risk Assessment, 2001,7(6): 1681-1697

        * 重慶市基礎(chǔ)與前沿研究項目(cstc2015jcyjA20002)、國家自然科學(xué)基金項目(41501523)和中國科學(xué)院土壤環(huán)境與污染修復(fù)重點實驗室開放基金項目(SEPR2014-08)資助

        ** 通訊作者: 汪軍, 主要研究方向為土壤污染修復(fù)與環(huán)境行為研究。E-mail: flypigging@hotmail.com楊杉, 主要研究方向為土壤污染修復(fù)與環(huán)境行為研究。E-mail: yangshanwr@163.com收稿日期: 2015-11-06 接受日期: 2016-02-22

        * This study was supported by the Basic and Frontier Research Program of Chongqing (cstc2015jcyjA20002), the National Natural Science Foundation of China (41501523) and the Open Fund of Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (SEPR2014-08).

        ** Corresponding author, E-mail: flypigging@hotmail.com Received Nov. 6, 2015; accepted Feb. 22, 2016

        中圖分類號:X502

        文獻標(biāo)識碼:A

        文章編號:1671-3990(2016)06-0695-09

        DOI:10.13930/j.cnki.cjea.151193

        Environmental fate and health risks of phthalate acid esters in soils: A review*

        YANG Shan1, LYU Shenghong1, WANG Jun1,2**, LIU Kun1, CHEN Gangcai1,ZHANG Yong1, ZHANG Sheng1, TENG Ying2
        (1. Chongqing Research Academy of Environmental Sciences, Chongqing 401147, China; 2. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

        AbstractPhthalic acid esters (PAEs) are classified as environmental hormone organic compounds, commonly contained in plastic, resin and rubber, accounting for 20%-60%, as plasticizers with potentially hazardous impacts on the environment and human health. In soils, the main anthropogenic sources of PAEs are agricultural chemicals, sewage water irrigation and atmospheric precipitation. PAEs can abundantly accumulate in the soil and be transported to different environmental systems via a series of environmental, geochemical processes such as volatilization, leaching, adsorption, biodegradation, plant uptake and food chain. This article combined the results of domestic and international studies to summarize the state of soil PAEs pollution in China. Anthropogenic activities and land use changes were the main factors responsible for seasonal and spatial distributions of PAEs. The contents of PAEs in soils in most regions of China reached dozens milligram per kilogram, which obviously exceeded the standards for the US and the European countries. Di-n-butyl phthalate (DnBP) and di (2-ethylhexyl)phthalate (DEHP) were the dominant PAEs in soils, similar to those observed in other countries. Also the environmental be-havior of PAEs in soil-gas interface (volatilization and atmospheric precipitation), soil-plant system (phytoremediation and plant uptake) and soil-water interface (sediment adsorption and desorption) were analyzed to determine the causes of soil PAEs transfer between air, water, sediments and plants. There were significant differences in the characteristics of PAEs absorption,accumulation, distribution and transformation among the different interfaces. Because of the widespread application of PAEs and its occurrence in most common daily chemicals, humans are exposed to PAEs through foods contaminated during crop growth in soil or during packaging. Humans are also at risk through exposure to air (for breathing or absorption by skin),causing severely ecological and health risks in many regions of China. It was recommended that future soil PAEs research should focus on regional soil pollution and environmental behavior, PAEs transmission and evolution regularity in space and time, medium migration mechanisms, risk reduction and remediation measure research. There was need to use knowledge about the environmental fate and health risks of PAEs in soils to improve the regulation of organic pollution transformation in soils. This knowledge was also necessary for providing theoretical basis for the protection of ecological environments and soil health.

        KeywordsPhthalate acid ester; Environmental fate; Health risk; Soil environment; Migration and transformation

        开心五月激情综合婷婷| 高清少妇二区三区视频在线观看| 加勒比东京热中文字幕| 免费网站看v片在线18禁无码| 九九热在线视频观看这里只有精品| 国产精品无码久久久久久蜜臀AV| 日本成人中文字幕亚洲一区| 国产欧美在线观看不卡| 无码人妻精品丰满熟妇区| 精品人妻中文av一区二区三区| 丝袜美腿av免费在线观看| 国产亚洲超级97免费视频| 亚洲成人色区| 深夜国产成人福利在线观看女同| 一区二区三区少妇熟女高潮| 人妻少妇进入猛烈时中文字幕| 国产精品51麻豆cm传媒| 国产成人AV无码精品无毒| 久久夜色精品国产亚洲av老牛 | 无码成人AV在线一区二区| 国产交换精品一区二区三区| 免费人成年激情视频在线观看| 性一交一乱一伦| AV无码人妻一区二区三区牛牛| 国产美腿丝袜一区二区| 成人免费直播| 亚洲天堂99| 久久精品人妻嫩草av蜜桃| 人妻少妇精品中文字幕专区| 开心五月激情综合婷婷| 亚洲黄色性生活一级片| 蜜桃在线高清视频免费观看网址| 强开少妇嫩苞又嫩又紧九色| 色欲麻豆国产福利精品| 中文熟女av一区二区| av影院手机在线观看| 双腿张开被9个男人调教| 香蕉国产人午夜视频在线观看| av一区二区三区观看| 欧美牲交videossexeso欧美| 中文无码成人免费视频在线观看|